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Abstract
The present study aims at developing a wavelet kernel extreme learning machine (WKELM) and meta-heuristic method, 
known as particle swarm optimization (PSO). PSO algorithm is employed in order to provide a desirable modeling by optimal 
determination of parameters attributed to WKELM. In order to confirm the ability of employed PSO-WKELM approach in 
solving the problem, a well-known kernel-based support vector machine (SVM) is applied to compare the obtained results. 
890 data points from 19 gravel-bed rivers located in the USA were used to feed the utilized heuristic models. Three different 
scenarios were proposed; in the scenario 1, different combinations of parameters based on hydraulic characteristics were 
prepared, scenario 2 was developed using both hydraulic and sediment properties as model inputs of bed load transport, 
and lastly, the performance of employed PSO-WKELM approach for prediction of bed load transport with different range 
of median particle size was investigated. The obtained results confirmed the higher predictive potential of PSO-WKELM in 
comparison with SVM. Also, it was found that prediction of bed load transport with median particles size ranging from 1 to 
1.4 mm led to more valid outcome. Performing the sensitivity analysis demonstrated the remarkable impact of the ratio of 
average velocity (V) to shear velocity (U*) in modeling process.

Keywords  Kernel-based methods · Particle swarm optimization · Prediction accuracy · Support vector machine · Sediment 
transport

Introduction

A reliable estimation of bed load transport rate in gravel-bed 
rivers has become a focal point of research in recent years. It 
can influence the three-dimensional morphology of rivers, 
and as a result, various studies relating to fluvial geomor-
phology and management applications need prediction of 
bed load. Considering the importance of this phenomenon, 
numerous models have been formulated and also discussed 
by researches for gravel-bed rivers (Khorram and Ergil 2010; 
López et al. 2014; Hinton et al. 2018). Although these for-
mulas provide acceptable results in some cases, the compli-
cated nature of sediment transport in gravel-bed rivers led 

to large errors in prediction of bed load (Barry et al. 2004; 
Bathurst 2007). Recently, machine learning methods such as 
artificial neural networks (ANNs), support vector machine 
(SVM), adaptive neuro-fuzzy inference system (ANFIS) and 
genetic programming (GP) have been used as alternative 
approaches to reduce the uncertainty of sediment transport 
problems. Sasal et al. (2009) reported the accuracy of ANN 
in predicting bed load of alluvial rivers. Azamathulla et al. 
(2009) suggested ANFIS method as a flexible and more opti-
mum technique for predicting bed load in Malaysian rivers. 
Kitsikoudis et al. (2014) utilized machine learning for esti-
mating bed load transport in gravel-bed rivers and showed 
that the models derived from ANNs and ANFIS generated 
superior results in comparison with symbolic regression 
(SR). Roushangar and Koosheh (2015) assessed the capa-
bility of SVR method for modeling bed load transport in 
gravel-bed rivers with the aim of using genetic algorithm 
for selecting optimal parameters of SVR. In general, the 
quality and performance of machine learning methods are 
influenced by a correct setting of hyperparameters. Different 
optimization algorithms such as particle swarm optimization 
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(PSO) have been implemented with machine learning meth-
ods for this purpose. Chau (2006) used a combination of 
ANN and PSO for stage prediction of river. Zanganeh et al. 
(2011) proposed an effective prediction method based on 
ANFIS coupled with PSO to estimate scour depth. Huang 
et al. (2017) confirmed the excellent generalization capabil-
ity of PSO-SVM for prediction of groundwater level. Sahraei 
et al. (2018) used a least square support vector regression 
(LSSVR) in which the parameters of kernel functions are 
optimized by PSO for the estimation of bed material load.

The extreme learning machine (ELM) is a single-layer 
feed-forward neural network (SLFN) which was proposed 
as a fast and easy usage learning method (Huang et al. 
2006). Taking into account the advantages, this algorithm 
has earned enormous popularity for providing the accurate 
solution in different hydraulic problems (Ebtehaj et al. 2016; 
Roushangar et al. 2018a, b). However, optimal performance 
of ELM is dependent on the correct selection of neurons 
in the hidden layer and the appropriate activation function. 
In order to overcome the problems of randomly assigning 
the weights and choosing the hidden layer in ELM, a new 
method termed as the kernel extreme learning machine 
(KELM) has been developed (Huang et al. 2012). Using 
the kernel function for determining the hidden layer feature 
mapping generates more stability and also higher perfor-
mance for prediction purposes. Promising applications of 
KELM for prediction of local scour around bridge piers (Pal 
et al. 2014), prediction of daily global solar radiation from 
air temperatures (Shamshirband et al. 2015) and prediction 
of total organic carbon (TOC) in marine mud shale reser-
voirs (Zhu et al. 2018) have been reported.

To the best of our knowledge, despite the high perfor-
mance, the KELM approach with wavelet kernel func-
tion has not been used for the prediction of sediment load. 
Keeping in mind specific characteristics and capabilities of 
WKELM and for the purpose of increasing the prediction 
level of this method, for the first time, the PSO-WKELM 
approach is used to predict the bed load transport rate of 
gravel-bed rivers. The models were proposed based on 
three scenarios with different input combinations. The pre-
sent study also discusses the most influential parameters in 
predicting bed load transport rate using sensitivity analysis. 
The obtained results were compared with the results of some 
well-known equations.

Materials and methods

Study area

The compilation of field data by US Forest service in coopera-
tion with other agencies is utilized in the present study. Data-
set has complete records of channel geometry, and hydraulic 

characteristics consist of flow depth (y), width of channel (B), 
flow velocity (V), flow discharge (Q) and median diameter of 
sediment particles (D50). More details of study site charac-
teristics and overall information are available in King et al. 
(2004). In this study, dataset which were collected from 19 
gravel-bed rivers and streams within the Snake river basin in 
Idaho (USA) is considered. It is worthy of mention that on all 
sites, the d50 and d90 of the surface material were larger than 
those of the subsurface material, indicating the presence of 
an armor layer which is the main characteristics of gravel-
bed rivers. The width to depth ratio for all selected rivers and 
streams is greater than 10 and the Froude number not exceed-
ing 1. In total, there are 890 data points with V 0.13–2.30 m/s, 
y 0.05–2.24 m, D50 0.31–37.20 mm and slope 0.00038–0.017. 
Some characteristics of selected rivers and streams are pro-
vided in Table 1.

Kernel extreme learning machine

Recently, the ELM learning algorithm with fast learn-
ing speed and better generalization capability has gained 
enormous popularity from an increasing number of 
researchers. In ELM, there is no need for tuning the ini-
tial parameters of hidden layer and almost all nonlinear 
piecewise continuous functions can be used as the hid-
den neurons. Therefore, for N arbitrary distinct samples 
{xi, ti|xi ∈ Rn, ti ∈ Rm, i = 1,… ,N} , the output function in 
ELM with L hidden neurons can be expressed as:

where � =
[
�1, �2,… , �L

]
 is known as the vector of the out-

put weights between the hidden layer of L neurons and the 
output neuron, and h(x) =

[
h1(x), h2(x),… , hL(x)

]
 denotes the 

output vector of the hidden layer with regard to the input x, 
which maps the data from input space to the ELM feature 
space (Huang et al. 2006). In order to decrease the training 
error and improve the generalization capability of neural 
networks, the training error and the output weights need to 
be minimized simultaneously, that is

The least squares solution of (2) based on KKT condi-
tions can be expressed as:

where is the hidden layer output matrix, is the regulation 
coefficient, and is the expected output matrix of samples. 
Then, the output function of the ELM learning algorithm is

(1)fL(x) =

L∑
i=1

�ihi(x) = h(x)�,

(2)Minimize: ‖H� − T‖, ‖�‖

(3)� = HT

(
1

�
+ HHT

)−1

T ,
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If the feature mapping h(x) is unknown and the kernel 
matrix of ELM based on Mercer’s conditions can be defined 
as follows,

And thus, the output function f(x) of the kernel-based 
extreme learning machine can be written compactly as:

where M = HHT and k(x, y) is the kernel function of hidden 
neurons of single hidden layer feed-forward neural networks 
(Huang et al. 2012).

Among the various traditional kernel functions which are 
given as follows, the RBF kernel is reported to perform bet-
ter than other kernel functions (Haghiabi et al. 2017; Meh-
dipour and Memarianfard 2018).

Linear kernel:

Polynomial kernel:

(4)f (x) = h(x)hT
(
1

�
+ HHT

)−1

T ,

(5)M = HHT ∶ mij = h
(
xi
)
h
(
xj
)
= k

(
xi, xj

)
,

(6)f (x) =
[
k
(
x, x1

)
,… ,K

(
x, xN

)](1

�
+M

)−1

T

(7)K(xi, xj) = (xi, xj)

RBF kernel:

In this study, wavelet kernel function is utilized for simu-
lation and performance analysis of KELM approach:

The wavelet kernel estimates the non-stationary signal 
with high accuracy, which is impossible for traditional ker-
nels. The wavelet function is orthonormal, which almost 
estimates any function in continuous space; thus, the gener-
alization of wavelet KELM is improved.

Since the variable parameters of wavelet kernel function 
such as α, β and ω can considerably affect the accuracy of 
training process, particle swarm optimization (PSO) method 
is applicably administered to determine optimal WKELM 
parameters and also regulation coefficient parameter of ρ.

(8)K(xi, xj) =
(
(xi, xj) + 1

)d

(9)K(xi, xj) = exp

(
−
‖‖‖xi − xj

‖‖‖
2

∕2�2
)

(10)K(xi, xj) = cos

⎛⎜⎜⎝
�

���xi − xj
���

�

⎞⎟⎟⎠
exp

⎛
⎜⎜⎜⎝
−

���xi − xj
���

�

2⎞⎟⎟⎟⎠

Table 1   Characteristics of the selected rivers

Rivers Drainage 
area (km2)

Data for 
training

Data 
for test-
ing

Total data D50,sur (mm) Data of sampling Range of 
discharge 
(m3/s)

Range of D50 (mm)

Big Wood River 349.7 17 8 26 119 1999–2000 9.6–30.8 0.7–40.7
Bruneaue River 989 18 9 27 27 1998–2002 4.7–20.9 0.72–34.92
Fourth of July 44.28 17 8 25 51 1994–1995 0.2–3.8 0.38–3.11
Herd Creek 292.6 15 7 22 67 1994–1995 0.5–8.1 0.5–5.7
Jarbidge River 79.25 18 9 26 89 1998–2002 1.4–8 0.79–35.35
Johns Creek 293.1 14 7 22 199.2 1986–1995 0.97–26 0.64–2.38
Little Slate Creek 168.5 55 24 79 98.1 1986–1997 0.52–15.7 0.42–17.5
Lolo Creek 107.7 28 13 41 67 1980–1997 1.8–16.2 0.46–4.22
Main Fork Red River 129.3 77 33 110 50.5 1986–1999 0.29–18.2 0.31–5.28
Marsh Creek 191.5 18 9 27 57 1994–1995 3.36–23.2 1.1–22.65
Rapid River 279.5 50 22 72 61.8 1986–2000 0.91–36.8 0.41–37.20
South Fork Red River 97.8 67 30 97 105.7 1986–1999 0.2–11 0.43–10.71
South Fork Salmon River 853.6 35 16 51 35 1985–1997 3.8–124.3 0.59–2.02
Squaw Creek (USGS) 192 22 10 32 46.6 1994–1995 0.4–7.5 0.44–2.68
Thompson Creek 58.1 16 8 24 67.1 1994–1995 0.4–3.5 0.47–7.07
Trapper Creek 22.2 60 27 87 86.1 1985–1997 0.05–2.8 0.5–1.78
Hawley Creek 104.8 45 20 65 40 1990–1996 0.27–2.6 0.48–3.69
Salmon River near Obsidian 243.9 14 6 19 61.8 1990 11.44–20.9 0.86–4.52
Squaw Creek (USFS) 37.6 26 12 38 23 1990–1996 0.18–1.5 0.59–5.55
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Particle swarm optimization

Particle swarm optimization (PSO) is inspired by the social 
behavior of birds trying to find their food in nature. The origi-
nal form of this algorithm is founded on the communication 
and cooperation of the birds looking for food within an area 
(Eberhart and Kennedy 1995). The birds pursue the nearest 
one to the food and simultaneously using their previous expe-
riences find the food (Kennedy and Eberhart 2001). The food 
can be found only in one point in the search area that the birds 
are not informed of. The actions of each solution are like birds, 
which is known as a particle in this algorithm. Each particle 
enjoys a merit value through optimizing the objective function. 
PSO first generates an initial random solution each of which 
has an n-dimensional position (X), where n is the number of 
decision variables. Furthermore, it allots a velocity vector (V) 
between the maximum and minimum admissible velocities 
to each particle. PSO requires defining some parameters with 
the aim of producing a new population for the next generation 
and has progress in terms of convergence. These parameters 
are inertia weight (w), inertia weight reduction factor (α), 
minimum inertia weight (wmin), personal and global accelera-
tion values (c1 and c2) and maximum velocity reduction factor 
(β). In every generation, the personal (Pp, the best position 
which every single particle has ever had since the beginning 
to the current generation) and global (Pg, the best ever position 
among all particles) best particles are detected to update the 
population for the next iteration. The position of each particle 
can be improved using following equations:

where w is suggested to be considered between 0.8 and 1.4, 
r1,k and r2,k are the random uniform numbers between zero 
and one, and k is the iteration number. The velocity val-
ues are limited to 

[
−Vmax,Vmax

]
 . In order to ensure the con-

vergence of PSO to the optimal objective and either when 
there is no notable change in the value of objective function 
(Eq. 13) or after a certain number of generation the algo-
rithm terminates,

In this study, developed PSO-WKELM approach was codi-
fied in MATLAB software.

Support vector machine

Many researches have been done in various fields of engineer-
ing using support vector machine. Therefore, only a brief sum-
mary of the employed SVM model called ɛ-SVM is presented 
here. The original SVM algorithm was proposed by Vapnik 

(11)Vi
k+1

= wVi
k
+ c1r1,k(P

p

k
− Xi

k
) + c2r2,k(P

g

k
− Xi

k
)

(12)Xi
k+1

= Xi
k
+ Vi

k+1

(13)
Fmax − Fmin

Fmin
≤ �

(1995). It is assumed that for dataset 
{
xi, yi

}
 , the nonlinear 

function for SVM regression can be given as:

So the main issue is to find the form of the f(x) function 
with high deviation (ɛ) from target (yi), and it should be as 
flat as possible at the same time. This function is accessible 
by training the SVM model on a dataset, which includes 
a process for continuously optimizing the error function. 
Based on the definition of this error function, two examples 
of SVM models are known: (a) SVM regression models of 
the first type that are known as v-SVM models; (b) second 
type of SVM regression models, which are ɛ-SVM models 
based on minimizing the distance of all data points by deter-
mining the optimal hyperplane. In this study, the ε-SVM 
model was used due to its wide application in regression 
problems. For this model, the error function is defined as 
follows.

The error function should be minimized according to the 
following constraints:

where C and ɛ are, respectively, the capacity constant and 
error-intensive zone, the vector W is known as the weight 
factor, and WT is the transposed form of it, ξi and ξi* are 
called Slack Variables, b is the bias, and ϕ is the kernel 
function. In this study, the commonly used radial basis func-
tion was utilized as the kernel trick of the support vector 
machine.

Traditional approaches

Owing to complicated nature of sediment transport, a vari-
ety of numerical models have been formulated and verified. 
The efficiency of developed formulas depended on their 
theoretical backgrounds, methods of sampling and math-
ematical approaches (Yang 1996). These formulas have been 
developed based on different concepts and approaches such 
as shear stress, probabilistic and stream power approaches 
(Khorram and Ergil 2010). Furthermore, equal mobility 
approach has been applied for derivation of some formulas 
(Parker 1990). Under conditions of equal mobility, the bed 
load transport rate could be computed from a single repre-
sentative grain diameter such as the median size, D50. In this 
study, bed load formulas of Parker et al. (1982), Wilcock 

(14)f (x) = W�(x) + b

(15)1

2
WTW + C

N∑
i=1

�i + X

N∑
i=1

�∗
i

(16)

WT�(Xi) + b − yi ≤ � + �∗
i

yi −WT�(Xi) = b ≤ � + �∗
i

�i, �
∗
i
≥ 0, i = 1,… ,N
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(2001), Rottner (1959) and Engelund and Hansen (1972) 
were used as well-known formulas to calculate bed load 
transport rate and moreover, to compare with predicted val-
ues by PSO-WKELM models. Selected bed load transport 
equations are given in Table 2. 

Where U*: shear velocity, θ and θcr: shields’ and criti-
cal shields’ parameters for initiation of motion, s: density of 
sediment, Gs: relative density of sediment, τ0 and τcr: shear 
and critical shear stress at the bed, Rh: hydraulic radius, Vav: 
average velocity, ds: diameter of particles and qb: bed load 
transport rate per unit width.

Performance criteria

In order to evaluate how the hybrid models of PSO-WKELM 
perform, three statistical criteria, namely the root-mean-
square error (RMSE), correlation coefficient (R) and 
Nash–Sutcliffe efficiency (NSE), are used. The RMSE is 
applied to exhibit the accuracy of modeling process, which 
generates a positive value by squaring the errors. The RMSE 
grows from zero for excellent predictions over large positive 
values as the differences between predictions and observa-
tions become increasingly large. Furthermore, R and NSE 
are well-known correlation-based measures which have been 
used in water resources modeling. Clearly, a high values for 
R and NSE (up to one) and small value for RMSE denote 
high performance of model. Statistical parameters are for-
mulated as follows:

(21)
R =

∑N

i=1
(Xi − X̄) × (Yi − Ȳ)

∑N

i=1
(Xi − X̄)2 × (Yi − Ȳ)2

where N represents the number of data, Xi and Yi are the 
observed bed load and predicted bed load.

Data preparation

For the purpose of predicting bed load transport rate due to 
training and testing goals, datasets were separated into two 
parts. Considering that the data compilation includes data-
sets coming from various streams and rivers, for all cases, 
75% of data from each river were divided for training the 
model and remaining 25% were used for test purposes. As 
a result, there are 612 measurements for training and 278 
measurements for testing. Input and output variables were 
normalized in the intervals of 0.1 and 0.9 with the aim of 
eliminating their dimensions and enhancing the accuracy 
of the modeling process.

Input parameters

Finding the optimum input configuration is of essential 
importance throughout the modeling process. For deter-
mining the input combinations, various independent 

(22)RMSE =

√√√√ N∑
i=1

(Xi − Yi)
2

N

(23)NSE = 1 −

∑N

i=1
(Xi − Yi)

2

∑N

i=1
(Xi − Xi)

2

Table 2   Selected traditional formulas for predicting bed load

Equation number Formula Name Approach

(17) qb =
W∗U3

∗
�s

(Gs−1)g
,�50 =

�

�cr
, � =

U2
∗

(Gs−1)gd50sub

W∗ =

⎧⎪⎨⎪⎩

11.2
�
1 −

0.822

𝜙50

�4.5

𝜙50 > 1.65

0.0025
�
14.2(𝜙50 − 1) − (𝜙50 − 1)2

�
0.95 ≤ 𝜙50 ≤ 1.65

0.0025𝜙14.2
50

𝜙50 < 0.95

Parker et al. (1982)
Pitlick et al. (2009)

Deterministic equal 
mobility method

(18)
qb =

W∗
g
U3

∗
�s

(Gs−1)g

W∗
g
=

⎧⎪⎨⎪⎩

11.2
�
1 − 0.846

𝜏cr

𝜏0

�4.5

𝜏0 > 𝜏cr

0.0025
�

𝜏0

𝜏cr

�
𝜏0 ≤ 𝜏cr

Wilcock (2001)
Pitlick et al. (2009)

Deterministic equal 
mobility method

(19)
qb = �sRhVav ×

{[
0.667

(
D50

Rh

)2∕3

+ 0.14

]
− 0.778

(
D50

Rh

)2∕3
}3 Rottner (1959)

Yang (1996)
Regression method

(20)
�b = 0.05

(
Vav

U∗

)2

�5∕2

Φb =
qb√

(Gs−1)gd
3
s

Engelund and Hansen 
(1972)

Regression method
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variables based on hydraulic conditions such as Froude 
number, ratio of flow depth to channel width (y/B), bed 
slope of the channel (S0) and ratio of average velocity to 
shear velocity (V/U*) were defined. Additionally, some 
other parameters based on sediment characteristic were 
entered in modeling process including particle mobility 
parameter ( � = U2

∗
∕(Gs − 1)gD50 ), depth-particle size ratio 

(y/D50), particle parameter ( D∗ = D50((Gs − 1)g∕�2)1∕3) ), 
transport stage parameter ( T = �� − �cr∕�cr ), where θ′ 
refers to mobility parameter related to grain roughness 
and θcr is the shields’ critical shear stress. Following 
parameters were selected after trial-and-error process to 
describe the bed load transport rate (Bhattacharya et al. 
2007; Pektaş 2015).

Different combinations of mentioned parameters were 
developed, and by carrying out a large number of trials, 
the best models were selected.

PSO‑WKELM modeling development

The performance of WKELM approach is dependent on 
good setting of user-defined parameter of � and kernel 
parameters. For this reason, PSO was incorporated in the 
WKELM algorithm for bed load transport estimation. The 
detail steps can be summarized as follows:

Step 1: Initialize particle population including initial 
velocity V and position X; assign number of iteration, 
population size, inertial weight and acceleration constant.
Step 2: Compute the fitness of each particle; Nash–Sut-
cliffe efficiency (NSE) was used as the fitness function to 
conduct particle population in finding the best solution.
Step 3: Update the values of Pp and Pg in consonance 
with the fitness.

(21)Qb = f

(
Fr,

V

U∗

,
y

B
, S0, �,

y

D50

,D∗, T

)

Step 4: Update the velocity and position of each particle 
in consonance with Pp and Pg.
Step 5: Select the optimum values of user-defined param-
eter of and kernel parameters at the maximum number 
of iterations and implement the best WKELM predic-
tion model using the optimum solution. The flowchart 
of WKELM model optimization is presented in Fig. 1.

Proposed scenarios

Some limitations including expensive and time-consuming 
procedure inhibited the collection of bed load transport data. 
In this regard, scenario 1 was defined in which the param-
eters based on flow characteristics were taken into account 
as input data. It would be more useful in some cases, based 
on the fact that there could be only flow characteristics as 
available data. On the other hand, in scenario 2, for predict-
ing the bed load transport rate in gravel-bed rivers, several 
models were developed according to the flow condition and 
particle’s features. Furthermore, the characteristic particle 
sizes in the bed load transport can considerably change both 
in time and space. This variability can reduce the accuracy 
of the sediment transport prediction possibilities. Scenario 
3 was developed to investigate the prediction capability of 
PSO-WKELM in different intervals of median particle sizes.

Results and discussion

The results of PSO-WKELM models are shown in Table 3. 
The model with input parameters of Froude number (Fr) 
and ratio of average velocity to shear velocity (V/U*) which 
had a test R of 0.825, NSE = 0.670 and RMSE = 0.040 was 
selected as the best model of scenario 1. It can be noticed 
from the obtained results that replacing y/B instead of Sf 
in models with three input variables can improve the accu-
racy of modeling. However, based on the results, it could be 
stated that the models established with only flow features 
are not so accurate. In scenario 2, different combinations 

Fig. 1   Flowchart of WKELM model optimization based on PSO algorithm
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of input variables were developed after a trial-and-error 
process according to flow and sediment properties. For this 
scenario, the combination of Fr, V/U* and T led to the best 
result (R = 0.934, NSE = 0.870 and RMSE = 0.025). As can 
be seen from the results, Fr and V/U* had dominant role in 
the prediction of bed load transport rate. On the other hand, 
for the models with three input parameters, introducing T 
instead of y/D50 improved the global average accuracy. It is 
also observed that using three inputs ensured the best perfor-
mance of PSO-WKELM and increased number of inputs did 
not have any effect on improving the obtained results. Actu-
ally, this method constructs necessary input–output mapping 
using the dataset and uses the minimum required parameters 
of modeling. The PSO-WKELM approach demonstrated 
higher precision than SVM for all developed models, and a 
detailed comparison of the overall performance confirmed 
the undesirable results of SVM for proposed models. The 
scatter plots of predicted relative bed load versus observed 
values for optimal model are depicted in Fig. 2. Due to high 
dispersion of data in low sediment transport rate and in order 
to compare the obtained results in a better way, the scat-
ter plots are shown on logarithmic scale. It can be clearly 

noticed from Fig. 2 that SVM overestimated the bed load 
and PSO-WKELM presented better predictive performance. 
Optimization process of kernel parameters showed that vari-
ation of parameter ω which controls the kernel shape was 
from 0.4826 to 10 and as well as the values of α and β were 
optimized in the ranges of 2.2456–9.1158 and 0.007–0.16, 
respectively. Statistical parameters of traditional approaches 
for predicting bed load transport rate are presented in 
Table 4. Proposed formulas obviously presented poor results 
which caused unreliability of traditional methods in predict-
ing bed load. It is worthy of mention that the notably low 
generalization regarding the traditional approaches is due to 
the restrictions of the ranges of the parameters tested in labo-
ratory conditions, and in consequence, not all the physical 
properties behavior of the bed load transport can be exactly 
extracted. This caused an inaccuracy and also negative val-
ues of NSE in predicting bed load transport rate of natural 
rivers which means that the predictor is worse than average 
base models.  

In order to compare the accuracy and also the capability 
of the wavelet and RBF kernel functions in performance of 
PSO-KELM, model with input parameters of Fr, V/U* and 

Table 3   Results of PSO-
WKELM and SVM approaches 
for prediction of the bed load 
transport rate

Input parameters Method Performance criteria

Train Test

R NSE RMSE R NSE RMSE
(
Fr,

V

U∗

)
PSO-WKELM 0.826 0.682 0.036 0.825 0.670 0.040

SVM 0.775 0.583 0.042 0.736 0.540 0.047(
y

B
, S0

)
PSO-WKELM 0.524 0.272 0.055 0.548 0.299 0.058

SVM 0.430 0.141 0.060 0.353 0.086 0.066(
Fr,

V

U∗

,
y

B

)
PSO-WKELM 0.827 0.683 0.036 0.824 0.654 0.040

SVM 0.796 0.575 0.042 0.781 0.564 0.046(
Fr,

V

U∗

, S0

)
PSO-WKELM 0.809 0.667 0.038 0.773 0.602 0.045

SVM 0.768 0.582 0.042 0.743 0.517 0.048(
Fr,

V

U∗

,
y

B
, S0

)
PSO-WKELM 0.827 0.684 0.036 0.827 0.652 0.041

SVM 0.792 0.590 0.041 0.765 0.570 0.045(
Fr,

V

U∗

,
y

D50

)
PSO-WKELM 0.922 0.846 0.025 0.898 0.775 0.033

SVM 0.919 0.823 0.027 0.873 0.756 0.034(
Fr,

V

U∗

,T
)

PSO-WKELM 0.935 0.873 0.023 0.934 0.870 0.025

SVM 0.929 0.851 0.025 0.836 0.695 0.038(
Fr,

V

U∗

,T ,D∗

)
PSO-WKELM 0.935 0.873 0.023 0.925 0.840 0.027

SVM 0.895 0.786 0.030 0.885 0.776 0.032(
T , �,

y

D50

,D∗

)
PSO-WKELM 0.985 0.968 0.011 0.724 0.503 0.049

SVM 0.646 0.358 0.052 0.605 0.336 0.056(
Fr,

V

U∗

,T ,D∗,
y

D50

)
PSO-WKELM 0.915 0.835 0.026 0.910 0.826 0.029

SVM 0.910 0.815 0.028 0.864 0.732 0.036
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T as the best combination was analyzed by using mentioned 
kernel functions. The obtained results revealed the superior 
performance of wavelet kernel function. However, the RBF 
kernel function showed more flexibility and faster train-
ing speed due to its fewer variables and simple structure in 
comparison with wavelet function. In case of RBF kernel, γ 
stands for the optimal width of kernel function. Great values 
of γ let kernel-based approaches to have a strong impact 
over a large area. Comparison of results from employed 
algorithms showed that KELM with fewer values of γ gives 
more accurate outcomes for developed model. Accordingly, 
there was no linear relation and definite pattern between γ 
and performance criteria and possibly it can show different 
behaviors for different approaches and inputs. Figure 3 dem-
onstrates the optimization process of KELM approach with 
RBF and wavelet kernel functions and also depicts the statis-
tic parameter of NSE via γ values with the aim of comparing 

the impact of RBF kernel parameter of γ on performance of 
employed algorithms for testing set of best model.

One of the main reasons for the difficulty of bed load 
estimation in gravel-bed rivers is the variation of bed mate-
rial size (Zhang et al. 2010). In this part of study, it was 
attempted to depict the effect of bed material size in predic-
tion process of bed load transport rate. The accuracy of best 
input combination in different intervals of median diameter 
of sediment particles (D50) was investigated based on large 
number of trial-and-error procedure, and the results are 
listed in Table 5. According to prediction results of PSO-
WKELM approach, it can be seen that prediction of bed 
load transport rate with the median diameters of sediment 
particles (D50) ranging from 1 to 1.4 mm led to significant 
outcomes of R = 0.991, NSE = 0.982 and RMSE = 0.015. 
Obtained results revealed that PSO-WKELM presents bet-
ter performance in prediction of bed load transport with 
median particle size less than 2 mm which includes more 
than 80% of utilized data. However, incensement of flow 
rate caused movement of coarser particles which play armor 
layer role in gravel-bed rivers (Wang and Liu 2009). This 
caused a sudden scouring of finer subsurface material and 
developed a complicated hydraulic condition which reduced 
the prediction accuracy of PSO-WKELM dramatically 
(NSE = 0.073) for transportation of bed load with median 
particles greater than 2 mm. Different effective parameters 
in bed load transport should be considered at various flow 

Fig. 2   Comparison of observed 
and predicted bed load transport 
rate for optimal model
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Table 4   Results of traditional approaches

Formula R NSE RMSE

Parker et al. (1982) 0.231 − 4.48 0.177
Wilcock (2001) 0.236 − 3.67 0.160
Rottner 0.618 − 2.17 0.132
Engelund and Hansen (1972) 0.104 − 0.652 0.095
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Fig. 3   Optimization process of KELM with wavelet and RBF kernel functions and statistic parameter of NSE via values of RBF kernel param-
eter of γ 
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conditions. In order to enhance the prediction level of bed 
load transport with coarser bed material (median particles 
greater than 2 mm), other parameters were considered as 
inputs with Froude number and ratio of average velocity 
to shear velocity. Obtained results showed that adding the 
shields number (θ) instead of transport stage parameter (T) 
improved the global average accuracy in NSE = 0.743. It 
seems shields number as a criterion for incipient motion 
is the most important parameter since floods may initiate 
bed load transport by moving coarser bed material. Figure 4 
shows the comparison of PSO-WKELM and SVM methods 

in prediction of bed load transport rate with coarser material 
with input parameters of Fr, V/U* and θ.

Sensitivity analysis

To derive the most dominant parameters for prediction of 
the bed load transport rate by PSO-WKELM, a sensitiv-
ity analysis was carried out. For investigating the influence 
of each independent parameter, the best model with three 
inputs was selected, and then, one of the input parameters 
was eliminated, and the POS-WKELM model was prepared 
again. Eliminating one of the input parameters could affect 

Table 5   Results of employed 
approaches for prediction of 
bed load in different intervals of 
median particles size

Number 
of points

Range of D50 (mm) Method Train Test

R NSE RMSE R NSE RMSE

355 0.3 to 1 PSO-WKELM 0.988 0.976 0.014 0.763 0.561 0.079
SVM 0.874 0.584 0.061 0.809 0.437 0.089

213 1 to 1.4 PSO-WKELM 0.995 0.988 0.007 0.991 0.982 0.015
SVM 0.960 0.707 0.040 0.951 0.570 0.076

174 1.4 to 2 PSO-WKELM 0.880 0.770 0.052 0.912 0.660 0.075
SVM 0.956 0.905 0.033 0.927 0.775 0.061

148 Greater than 2 mm PSO-WKELM 0.799 0.634 0.076 0.663 0.073 0.130
SVM 0.794 0.490 0.090 0.786 0.046 0.132

742 Less than 2 mm PSO-WKELM 0.900 0.808 0.025 0.969 0.789 0.037
SVM 0.930 0.850 0.022 0.901 0.654 0.048

Fig. 4   Comparison of the 
performance of PSO-WKELM 
and SVM methods in predic-
tion of bed load transport rate 
with coarser material with input 
parameters of Fr, V/U* and θ 
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Fig. 5   Obtained results of sensi-
tivity analysis
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the performance of employed method. NSE performance 
criteria were used as indication of the importance of each 
parameter. The results of the sensitivity analysis are depicted 
in Fig. 5. ΔNSE denotes the percentage of reduction values 
to Nash–Sutcliffe efficiency which corresponded to each 
eliminated parameter. According to the results, the absence 
of the V/U* led to a dramatic decrease in terms of NSE value 
and reduces the performance of modeling, so it can be stated 
that the parameter V/U* plays a significant role in predicting 
the bed load transport rate of gravel-bed rivers.

Conclusion

The present study evaluates the functionality of generalized 
WKELM approach for prediction of the bed load transport 
rate in gravel-bed rivers. For the purpose of improving the 
overall performance, this technique was coupled with PSO 
algorithm to determine optimal parameters for WKELM 
models. Different input combinations were developed 
based on three scenarios. The obtained results confirmed 
the superiority of scenario 2 in quantification of bed load 
transport rate. Model including parameters Fr, V/U* and T 
with the highest level of R (0.934), NSE (0.870) and lowest 
value of RMSE (0.025) for test series showed more pre-
cise and robust prediction ability in comparison with SVM. 
The proposed input combination was used to predict the 
bed load transport in different intervals of median particles 
size. The results showed that the bed load transport in the 
intervals of 1 to 1.4 mm generated better predictive abil-
ity with NSE = 0.982. The present study indicated that the 
V/U* parameter had dominant role in predicting the bed load 
transport rate. There was also a discussion of the capabil-
ity of traditional approaches for predicting the sediment 
load. The results demonstrated that these formulas suffered 
extremely from poor results due to their limitations of ranges 
of input–output parameters and also complicated conditions 
which govern sediment transport in natural gravel-bed riv-
ers. Obtained results extracted from the sensitivity analysis 
revealed that the ratio of average velocity to shear velocity 
is the most influential parameter in prediction of bed load. 
However, it should be pointed out that utilized PSO-KELM 
approach is data sensitive, so it is recommended to carry out 
more studies using more filed data to confirm the merits of 
proposed models.
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