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Abstract
In recent years, algal research revolves comprehensively in tapping the prospective of various approaches viz. energy sources 
and nutritional supplements. Researchers worldwide are exploring various aspects of microalgae as they attract the scientific 
community because of their various unique properties. It has been shown that changing the parameters for algae growth 
can stimulate these beautiful cells to form substances which are of high value. Biosynthesis of a number of compounds is 
governed through several enzymatic steps which are further influenced and controlled by the type and concentration of nutri-
ent provided or present in the natural habitat that can act as rate-limiting factor. Algal omics has turned out to be the finest 
option in recent years for tapping algae as biofuel resource. Genomics and transcriptomics of algae have delivered decisive 
information to understand lipid biosynthesis. On the other hand, proteomics and metabolomics complement algal omics by 
offering accurate and useful understandings into the linked physiological settings. Although genomic study reveals many 
important parameters for various applications using algae, which can be further enhanced when complemented well with 
the techniques of proteomics, transcriptomics, metabolomics and lipidomics. Combination of datasets from various lipid 
enhancement approaches can deliver a system-wide impression. These approaches permit closer consideration in the future 
with an opinion to different practical impacts that are projected in modern era.
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Introduction

Microalgae are of huge interest while finding alternative 
options for lipid production and refining it to biodiesel. These 
can be used for the production of many other useful products 
like enzymes, medicine, biogas, syngas and biofuels. Micro-
algae have also been used to produce food supplements like 
PUFA (DHA, EPA), β-carotene and polysaccharides since late 
1990s. Neutral lipids are the storage lipids and are stored as 
TAGs in thylakoid membrane. These lipid bodies can be used 
as a source for producing biofuels, whereas structural lipids 
are used as structural units of membranes such as phospho-
lipids and glycolipids. Environmental stresses such as varia-
tion in levels of pH, light intensity, temperature, and salinity 
are used to improve lipid accumulation in algae (Kiran et al. 

2016). Growth rate may get reduced under stress conditions 
resulting in lower biomass production; therefore, monitoring 
of optimal growth condition is an important step in enhance-
ment of total lipid content or biodiesel production. Such 
issues can be monitored through overexpression of key gene 
involved in lipid biosynthesis using genetic engineering or 
molecular approach (Levitan et al. 2015; Arora et al. 2018). 
Lipid synthesis stimulation can be achieved through better 
understanding of metabolic process and genetic information 
among the species of concern. In this review, different meth-
ods are discussed in context to algal lipids identification and 
enhancement through proteomics, genomics, transcriptomics 
and lipidomics. Technologies used in the “omics” provide the 
tools required to distinguish among DNA, RNA, proteins and 
other molecules between species and among the individuals 
of various species. “Omics” provide a huge set of data at dif-
ferent levels of biological organization which uses various 
techniques to integrate data and obtain a general view of func-
tioning of the whole system. Algae have attracted the scien-
tific world because of many advantages like fast growth rate, 
minimum land requirement,  CO2-capturing potential (Ghosh 
and Kiran 2017) and wastewater treatment. Transgenic 
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cyanobacteria led to their use as storehouse for various com-
mercial products such as vaccines, lipids and other pharma-
ceutical products (Akbari et al. 2014).

In-depth knowledge of biological functions in microalgae 
is mandatory to explore their full application potential. Dif-
ferent approaches are discussed below to understand alter-
native strategies related to algal lipids opted by different 
research groups around the globe. These strategies can assist 
in development of strains with superior productivity, which 
can pave a path for future sources of renewable energy.

Algal OMICS versus algal lipids

Genomics

Development of various techniques like next-generation 
sequencing methods, pyrosequencing, sequencing by liga-
tion, real-time sequencing has become the biggest boom in 
the field of genomics (Metzker 2010). Guillardia theta along 
with various other species such as Phaeodactylum tricornu-
tum, Thalassiosira pseudonana, Emiliania huxleyi, Aureo-
coccus anophagefferens, Ostreococcus tauri, Micromonas 
pusilla strain NOUM17, O. lucimarinus and M. pusilla 
strain CCMP1545 has been successfully sequenced (Parker 
et al. 2008). Besides the above mentioned, some more spe-
cies whose genomics studies have been done are shown in 
Table 1. To understand any metabolic process in biological 
system, identification or knowledge of functional gene is 
considered to be the first step which can be achieved through 
genomics. Complete genome sequence of Chlamydomonas 
reinhardtii has been published along with genome of orga-
nelles (Lefebvre and Silflow 1999; Maul et al. 2002; Mer-
chant et al. 2007). Beside this, red alga, Cyanidioschyzon 
merolae, has also been studied extensively including its plas-
tid and genome (Ohta et al. 2003). Chances to increase lipid 
accumulation inside algal cells using genetic engineering 

tools are very high with the advent of techniques like global 
transcription machinery engineering which generally incor-
porates the engineering of transcriptional factors involved in 
biosynthesis of lipids, and creation of mutant libraries of dif-
ferent strains valuable for desired product synthesis (Alper 
and Stephanopoulos 2009; Banerjee et al. 2018). Genomics 
being basis of all other related techniques has been used 
by many researchers as a tool to increase the rate of lipid 
biosynthesis and its extraction. For example, neutral lipid 
increased to 2.5-fold by the overexpression of DGAT-2 gene 
in Phaeodactylum tricomutum (Niu et al. 2013), whereas in 
case of Nannochloropsis oceanica there is an increase in 
neutral lipids by 69% (Li et al. 2016). Similarly, overexpres-
sion of NoD12 under the control of promoter induces stress 
in Nannochloropsis oceanica simultaneously accelerating 
the production of triacylglycerol and PUFA (polyunsaturated 
fatty acids) (Kaye et al. 2015).

Homblocks developed by Bi et al. (2018) for creating mul-
tiple sequence alignment (MSA) using homologous block 
searching method was found to be in accordance with that 
created by conventional methods. This method works by iden-
tifying the linearly falling blocks from the genome and con-
veys important phylogenetically communicative regions for 
creation of multiple sequence alignment. Homblocks and tra-
ditional methods work with similar efficiency except shorter 
time required by HomBlocks. The utility of this method has 
been demonstrated by comparing the phylogenetic tree drawn 
for 41 red algae mitochondrial genomes using both conven-
tional and HomBlocks methods. This kind of study helps us 
to understand the feasibility of multiple sequence alignment 
among different species and their comparison using phyloge-
netic tree and genome sequences. These methods can further 
be used to synchronize the distribution of different algae spe-
cies in diverse groups on the basis of their genome construc-
tion and phylogenetic similarities. In one of the recent stud-
ies, organization of plastid genome in Batrachospermales was 
studied in order to characterize and compare for establishment 

Table 1  Genomics details of different algal species

S. no Species Genome size Purpose References

1 Chlamydomonas reinhardtii 120 MB For bioremediation, transformation, production of recombinant 
protein

McDonald et al. (2007)

2 Volvox carteri 138 MB For transformation Ejsing et al. (2013)
3 Chondrus crispus 105 MB As food Palenik et al. (2007)
4 Pyropia yezoensis 43 MB Highly stable and promising model genome of marine red algae Klopfenstein (1982)
5 Bathycoccus prasinos 15 MB Comparative genome analysis Krisnangkura (1986)
6 Chlorella variabilis NC64A 64 MB Global expression level, variation in GC content, average intron 

size
Kalayasiri et al. (1996)

7 Micromonas pusilla 21.9 MB High transcriptional activity Tsugawa (2015)
8 Micromonas sp. RCC299 20.9 MB For transformation Ramos et al. (2009)
9 Ostreococcus lucimarinus 13.2 MB Sugar biosynthesis, involved in transport Blanc et al. (2010)
10 Cyanidioschyzon merolae 16.5 MB Used as a model plant system Worden et al. (2009)
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of a better infra-ordinal classification system through phylo-
genetic relationships (Paiano et al. 2018). Red algae top the 
list among various algae groups in terms of having largest 
plastid genomes which range from 149,987 nt lengthwise in 
Cyanidioschyzon merolae (Cyanidiophyceae) to 259,000 nt 
in Porphyridium sordidum (Porphyridiophyceae) (Lee et al. 
2016).

It suggests that algae genomics can be a vital tool in 
deciding future directions. It can further be used to establish 
a relation between two unknown species or to classify them 
in a better way. Known sequences present in genome of any 
species can be used to produce more beneficial products by 
up- or downregulation. Genomics gives us a huge insight 
into the algal classifications, relationships and differences 
among diverse classes of algae.

Transcriptomics

This is another important molecular tool to study gene expres-
sion and the transcriptome produced during lipid biosynthe-
sis. Transcriptomics assists with better ways to understand 
what is going on at the genomic level; i.e., the transcriptomic 
sequences are very much efficient in order to obtain the func-
tional genome information of studied microalga strain. There 
are studies coupling transcriptome sequences with NGS (next-
generation sequencing) technique (Parchman et al. 2010). 
However, problem arises when it comes to improvise tran-
scriptional analysis with model microalgae species lacking 
gene sequencing data. This is one of the necessary param-
eters while dealing with genetic modifications of algae for 
efficient biofuel production (Rismani-Yazdi et al. 2012). A 
detailed study of transcriptome will explain active regions of 
specified genome encoding cell, disclosing their constituent 
molecular secrets and understanding their development and 
disease-causing genes. The main aim of transcriptomics is 
to reveal the gene structure, gene expression and their regu-
lation, and function of the product formed along with their 
dynamic structure and constituents. Profiling techniques for 
gene expression such as serial analysis of gene expression 
(SAGE) and suppression subtractive hybridization (SSH) do 
not require any prior information about the genome or genes 
to be analyzed. On the other hand, expression of sequencing 
tag (EST) requires prior information for the gene in question.

Beside these, RNA-Seq (RNA sequencing) is identi-
fied as the utmost recent and developed technique which 
uses deep sequencing technologies for more complex and 
comprehensive experiments (Penn et al. 2014; Kopf et al. 
2015). RNA-Seq is used for both mapping and quantifica-
tion of transcriptomes. This technique has overcome dif-
ferent methods including hybridization, sequence-based 
approach like EST and is expected to revolutionize the area 
of research. Interaction of species can also be analyzed using 
RNA-sequencing technique. It provides data for both the 

coding and non-coding RNA (which means no prior refer-
ence is required and can be applied to any species). It gives 
more accurate and sensitive measurement of gene regulation 
or gene expression (Nagalakshmi et al. 2008). The infor-
mation of genomic functionality is not always available 
for all algae species as their sequenced genome might not 
be available. Thus, this is an important area which needs 
further research in relation to transcriptome sequencing or 
expressed sequence tag for microalgae lipids to generate 
information regarding the genomic functionality or identi-
fication of responsible genes which will further help in the 
determination of functional elements involved in lipid bio-
synthesis (Andersen and Lubberstedt 2003). Transcriptomics 
tool in the area of cyanobacterial research has broadened 
the list of opportunities. It analyzes and compares different 
cyanobacteria species along with their response to vary-
ing environmental conditions and interaction among each 
other. The biggest obstacle for RNA-Seq is to identify or 
pursue complex transcriptomic systems and keep a check 
on changes in expression of rare RNA isoforms for the tar-
geted genes. Studies have identified that targeting sense and 
antisense RNA can also modify the lipid production pattern. 
For example in Thalassiosira pseudonana, RNA interference 
and antisense targeting lipase (Thaps3-264297) increased 
the lipid content from 2.4- to 3.3-fold (Trentacoste et al. 
2013). Transcriptomics studies have revealed many species 
such as C. reinhardtii (Miller et al. 2010) showing several 
functional lipase enzymes under nitrogen stress which func-
tion together in retrieving fatty acid from membrane in order 
to synthesize TAG. Li and Ismar (2018) studied five strains 
of Phaeodactylum tricornutum against grazing treatments 
through morphological analysis, nutritional analysis and 
RNA sequencing. RNA sequence libraries for P. tricornutum 
were constructed through RNA sequence library protocol. 
In harmful cyanobacterial species, microcystin is found to 
interfere with defense against oxidative stress with decline 
in the activity of thioredoxin and peroxiredoxin which are 
involved in hydrogen peroxide degradation. Total RNA 
showed difference in gene expression of toxic and nontoxic 
Microcystis strains (Schuurmans et al. 2018).

Thus, different parameters can be used to manipulate nor-
mal cell circumstances in order to see how gene expression 
or transcripts produced are associated with these conditions. 
Study of these transcripts helps to identify the probable 
cause of any phenomenon happening in a cell at molecular 
level. Proteins are the products formed by the transcribed 
regions of gene and have specific functions. Thus, study 
of proteins and transcripts should be done simultaneously 
in order to have clear understanding of the phenomenon 
involved in any of the molecular processes resulting in phe-
notypical fluctuations like changes in morphology of the 
cells or production of a specific product.
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Proteomics

This is an approach or a way to identify the “proteome” which 
stands for the entire set of proteins available in a given cell 
or organism. Cell response depends upon the alterations in 
protein levels and expression of those proteins coding for 
fatty acids and triacylglycerol biosynthesis during normal and 
stress conditions. Protein structure, modifications, localiza-
tion and interaction with other proteins and cofactors can be 
studied using proteomics. Additionally, expression of func-
tional proteins and some of the epigenetic modifications also 
come under the main aim of proteomics. Hildebrand et al. 
(2013) illustrated wide diversification in metabolic path-
ways followed by different algal classes found through com-
parative genomics. These kinds of studies based on proteins 
involved in lipid biosynthesis give an idea of the target gene 
to be altered/modified for the enhancement of lipid produc-
tion (Guarnieri and Pienkos 2015). Current research related 
to the topic deals with the analysis of quantitative changes 
occurring in protein due to nutrient availability/starvation, 
changes in environmental condition and various other factors. 
Recent research shows that the cyanobacterial proteomics had 
moved from the identification of small set of proteins to a 
whole genome analysis. Several novel proteins were identi-
fied using 2D electrophoresis and mass spectrometry from 
marine algae such as Botryococcus braunii (Nguyen and Har-
vey 2003), Dunaliella bardawil (Katz et al. 1995). Proteomics 
not only handles the identification of proteins involved but 
it also enlightens the hidden functions including the role in 
the evolution along with taxonomic studies and biochemical 
pathways (Kim et al. 2008).

Among different omics technologies, proteomics is the per-
fect choice for the analysis of various biological processes at 
protein level. MS (mass spectrometry) is most ubiquitous to 
measure endogenous proteins, whereas array-based systems 
(such as yeast two-hybrid assay which is used to study pro-
tein–protein interactions) or structural/imaging tools are non-
MS technologies. Mass spectrometry-based techniques such 
as Tandem-MS and gel-based technique became a prime tool 
in the area of proteomics for analysis of whole protein profile 
and also protein dynamics quantitatively. It generates huge 
quantity of data which enables the researchers for analyzing 
their result with the existing knowledge. LMPD (Lipid MAPS 
Proteome Database) helps in the identification of proteins 
involved in lipid biosynthesis along with its metabolism as 
LMPD consists of lipid-associated protein sequence and anno-
tations. Similar to the above database, there are many other 
bioinformatics tools which help to analyze or compare pro-
teins of interest. In the field of molecular biology, proteomics 
has gained its importance to work on high-yield approaches 
in protein expression analysis of cells or organisms. Algae 
are exposed to various changes in environment such as alter-
ation in light intensity, availability/unavailability of various 

macro- or micronutrients, temperature, salinity, drought, pres-
ence of heavy metals that can cause vigorous modifications in 
their metabolism and various pathways enabling the organism 
to adjust to the given conditions. Such changes can be ana-
lyzed and evaluated at protein level for better understanding of 
the mechanism involved in sustenance and protection of these 
microbes. Different tools have been used for identification 
and quantification of protein in proteome-based experiments.

For the past few years, 2D gel electrophoresis has been 
identified as the most preferred and appropriate method for 
the separation of proteins based on their charge and mass. The 
advantage of using 2D-PAGE is that thousands of polypep-
tides can be analyzed in a single run but sometimes analysis 
of acidic, basic, hydrophobic or hydrophilic proteins which 
are low in abundance can be difficult. For the quantitative 
analysis, gel can be stained with different types of dyes such 
as coomassie blue (Wittig et al. 2007), SYPRO Ruby (Fulda 
et al. 2006) or radioactive labeling followed by autoradiog-
raphy (Guikema and Sherman 1982). Differential expression 
of proteins between cell types can also be analyzed through 
2D gel electrophoresis. Much soluble protein that is present 
in cyanobacterial compartments like cytoplasm or periplasm 
has been quantified through this technique, for example, in 
Synechocystis sp. strain PCC 6803 (Huang et al. 2006). It is 
an accurate, powerful and highly used method of differential 
proteomics analysis.

Proteins undergo various types of modifications such as 
posttranslational modifications (PTM), methylation, phos-
phorylation and functional group attachment which further 
enhance the complexity of proteomics. From the last 15 years, 
research in the area of proteomics has been broadened due 
to advancement in mass spectroscopy technologies. Ioniza-
tion methods like matrix-assisted laser desorption/ionization 
(MALDI) and electrospray ionization (ESI) with the inven-
tion of MS made the study of protein structures more simple 
allowing scientists to obtain mass protein “fingerprints” for 
matching with proteins and peptides available in the data-
bases such as Swiss Prot, NCBI, EMBL to predict and identify 
unknown proteins (Cui et al. 2013). Quantization of target 
proteins (in terms of both relative and absolute quantities) 
has become possible with the use of isotopic tagging. Mass 
analyzer is considered to be the main component of the mass 
spectrometry. Different types of mass analyzers have been 
discovered such as time-of-flight (TOF) chamber, quadru-
pole (Q), ion traps (IT) including Orbitrap having different 
designs, shapes and characteristics with their own merits and 
demerits. Proteomics experiments can be further optimized by 
connecting the high-pressure liquid chromatography (HPLC) 
resulting in the additional separation capability with mass 
spectrometry (LC–MS or LC–MS/MS). Proteomics stud-
ies have identified several proteins which are involved in the 
enhancement of lipids or TAGs. Lipid droplet analysis found 
around 16 proteins necessary for lipid synthesis, among which 
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there is a new protein identified as MLDP (major lipid droplet 
protein) playing an important role in lipid droplet synthesis 
(Guzmán et al. 2011). There is a correlation found between 
protein profile of Cylindrotheca closterium and production of 
fucoxanthin because fucoxanthin is found to be bounded to 
proteins forming a FCP complex (Wang et al. 2018).

Proteomics gives a chance to understand how proteins 
associated with different biomolecules can be upregulated or 
downregulated under varying conditions affecting the pro-
duction of a specific product necessary for cell survival. Pro-
teins are the ground-level molecules which execute the func-
tions attributed to them by the transcripts from which they 
are formed. With the modification of produced transcripts, 
the protein may get modified or may not even get formed. 
Gene expression, transcripts and proteins are interdependent 
on each other for proper cell functioning. It is really impor-
tant to understand how proteins are associated with the func-
tioning of each cell part for further up- or downregulation 
according to the need of hour. Commercialization of many 
algae products can be given a boon with controlled regula-
tion of these interdependent terms in order to increase the 
production of specified products. Genomics, transcriptomics, 
proteomics and metabolomics have their own importance in 
order to get a better understanding of the cell functionality 
and modifications.

Metabolomics

Metabolites ought to be produced through different metabolic 
pathways, and their levels of production relate biological sys-
tems with those of genetic- or environment-induced changes. 
Metabolomics assists in the study of alterations in metabolic 
pathways of microalgae leading to improved production of 
specified products. This approach gives an opportunity to take 
control of the cell’s machinery responsible for production of 
various compounds and subsequently derive the specific prod-
ucts of interest using the control obtained through transgenes 
or mutagenesis. Microalgae represent a diverse group of 
organisms which are very sensitive to slight changes in their 
surroundings, and these fluctuations in their environment are 
reflected through the variations in their cellular metabolism.

One of the natural mechanisms for the alteration of normal 
metabolic pathway and diverging toward enhanced lipid pro-
duction is stress induction. Stress conditions can be given by 
deprivation of growth nutrients or by varying other environ-
mental conditions (Ratledge 2004). Qualitative and quantita-
tive analysis of metabolites present in the targeted species is 
considered to be main application of metabolomics (Potvin 
and Zhang 2010). Such analysis can be done through high-
performance liquid chromatography/thin-layer chromatogra-
phy (HPLC/TLC), nuclear magnetic resonance (NMR), and 
gas chromatography–mass spectrometry (GC–MS). Besides 
having highly sophisticated technologies, it is quite difficult to 

identify metabolome because of the complex nature of mol-
ecule with a wide range of concentrations. This has made a 
great impact on current and future metabolome research to 
analyze the extracted lipid which is one of the algae metabo-
lites using HPLC (Jones et al. 2012). Metabolomic profile of 
secondary metabolites can be generated to observe the effect 
of nitrates and phosphates as done for three freshwater cyano-
bacterial strains, namely Oscillatoria sp. UIC 10045, Nostoc 
sp. UIC 10110 and Scytonema sp. UIC 10036 (Crnkovic et al. 
2018). Natural products prepared from the secondary metabo-
lites having diverse biological properties can be obtained from 
cyanobacteria. These secondary metabolites can be further 
purified and commercialized for various applications. XCMS 
online (an online platform to study the untargeted metabo-
lomics data) can be used for metabolomics analysis of the data 
obtained from LC–MS.

With deep knowledge of the conditions affecting produc-
tion of these metabolites and the molecular mechanisms 
involved, chances and success of commercialization can be 
greatly enhanced. Therefore, it is necessary to understand the 
physiological as well as genetic parameters in order to get 
the desired product in bulk without having a negative impact.

Lipidomics

Lipidomics is an emerging field in biology which enables 
researchers to analyze quality and quantity of lipid bodies 
present in cells. To achieve higher lipid productivity, there 
is need to know the pathways and factors affecting lipid bio-
synthesis, which can be unfolded nowadays using lipidomic 
studies. The exact knowledge and detailed composition of 
lipid are necessary for the production of various products 
such as biofuels, PUFA.

Extracting lipids from cells is a challenge in itself because 
method used for extraction can influence the yield and 
nature. After extraction, lipids are converted into fatty acid 
methyl esters to prevent oxidation. Folch et al. (1957) and 
Bligh and dyer (1959) are the most accepted and widely 
used methods for extraction of lipids. In recent years, various 
other methods have been derived from these two methods. 
A one-step rapid extraction method has also been optimized 
showing fivefold higher yield as compared to conventional 
methods (Axelsson and Gentili 2014). Solvents play an 
important role in the process of lipid extraction. Generally, 
a mixture of polar and nonpolar solvents is used to extract 
high amount of lipids from cells such as hexane, chloro-
form, chloroform–methanol in different ratios. The mixture 
of chloroform–methanol (2:1) after ultrasonication gave 19% 
yield of total lipids (Dos Santos et al. 2015). Supercritical 
carbon dioxide extraction, pressurized liquid extraction and 
sonication are different approaches which can be used for 
the efficient lipid extraction from microalgae.
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Gravimetric is the most commonly used method which 
is able to depict the quantity of lipids extracted but not the 
quality of lipids such as carbon chain length, degree of 
unsaturation, etc. Additionally, large amount of sample is 
required for accurate and reliable results. The gravimetric 
method has been overcome by colorimetric approaches 
such as sulpho-phospho-vanillin (SPV) method which is 
able to detect lower concentrations of lipids even from wet 
algae. SPV reagent does not react with carbohydrate, pro-
tein or glycerol which makes it more reliable (Byreddy et al. 
2016). Fluorescence techniques such as fluorescent dye (Nile 
red) staining of lipid droplets in algal cells have also been 
evolved with time which is a noninvasive technique. Nile 
red is fluorescence dye which binds specifically to polar and 
nonpolar lipid bodies. It gives yellow fluorescence when 
bound to neutral lipids like TAGs and red fluorescence 
when bound to phospholipids. This method is used to visu-
alize lipid bodies inside algal cells. Size of lipid bodies can 
also be measured using confocal microscopy. Optical den-
sity of 0.8 to 1 is considered best for NR analysis, whereas 
high O.D. results in fluorescence quenching (Gusbeth et al. 
2016). Another limitation is photooxidization of dyes due 
to which properties of lipids like degree of saturation, melt-
ing temperature, etc. cannot be predicted. To overcome 
these limitations, researchers have come up with another 
noninvasive technique that is in vivo analysis of cells using 
Raman spectroscopy. It enables us to quantify lipid bodies 
as well as unsaturation, chain length, Tm, etc. Single-cell 
laser-trapping Raman spectroscopy (LTRS), coherent anti-
stroke Raman scattering (CARS), surface-enhanced Raman 
spectroscopy (SERS), resonance Raman spectroscopy (RRS) 
and confocal Raman spectroscopy (CRM) are few variants 
of RS used for lipid analysis (Sharma et al. 2015). Beside 
above-mentioned methods, various spectroscopic methods 
such as NIR, FTIR, MRS, NMR can also be used for lipid 
detection as well as quantification in vivo (Yan 2015).

Various fatty acids have different roles in cellular func-
tions and metabolism. GC–MS is most commonly used 
technique to identify different fatty acids. Different fatty 
acids quantified from various algal species quantified using 
GC–MS are presented in Table 2. Diverse ionic liquid col-
umns have been tested for separation of FAMEs and FAEEs 
for better peak resolution and retention time which was not 
achieved using normal polyethylene glycol (PEG) column. 
Cis and trans forms of fatty acids were also resolved using 
ionic columns (Weatherly 2016). FI-MS studies helped in 
annotating PUFA from biodiesel FAs. A vacuum UV detec-
tor has also been tried in place of FID during GC analysis to 
deconvolute FAs which were co-eluting for the rapid differ-
entiation between cis and trans isoforms of FAs (Furuhashi 
et al. 2016; Fan et al. 2016).

In addition to this, thin-layer chromatography (TLC) has 
also been used which provides high resolution for different 

classes of lipids. In a recent study, urea and  AgNO3 coated 
plates were used to separate branched chain fatty acids lead-
ing to better resolution than normal TLC or GC method (Yan 
2015). HPLC is also used in lipidome studies, for example. In 
chromerid algae, more than 250 analytes were separated and 
identified using Orbitrap mass analyzer (Jouhet et al. 2017). 
A variant of HPLC, i.e., UPLC, helped in identification of 
lipids in Chlamydomonas sp. (Tomvcala et al. 2017; Sharma 
et al. 2015). Integrated chromatography–mass spectropho-
tometry are hyphenated techniques which are always better 
than independent versions for the quantitative scanning of all 
existing fatty acids in sample, whereas it does not identify 
lipid class to which fatty acids are associated. Development 
of highly sophisticated instruments has led to the development 
of new approaches for lipid research. Area of lipidomics has 
taken its height with the development of various ionization 
techniques such as electrospray ionization, desorption elec-
trospray ionization and matrix-assisted laser desorption ioni-
zation (EI) (Lingwood et al. 2011). Mass spectrometers with 
different analyzers like Orbitrap, quadrupole (Q) and time 
of flight (TOF) can be used for the analysis of polar lipid. 
These efforts collectively added momentum to the field of 
lipidomics. Based on the functional group/structural features, 
lipids are identified by MS in positive or negative mode. For 
example, neutral lipids are always identified as positive mode 
which means as a protonated molecule [M + H]+, ammonium 
adducts [M + NH4]+ or alkali cations  [Na+ or  Li+], [M + Na]+ 
whereas SQDGs are mainly detected as negative ions [M-H] 
(Gonen et al. 2005).

Each MS configuration has its own advantages and dis-
advantages whether it is of high resolution like quadrupole-
time of flight (Q-TOF), MALDI-TOF or low-resolution tech-
niques such as triple quadrupole, ion trap, Fourier transform 
ion cyclotron resonance mass spectrometry (FTICR-MS) in 
terms of functions, scanning speed and peak resolution. Lipids 
can further be explored using either electrospray ionization 
(ESI)-QQQ-MS or ESI-QTOF-MS or shotgun-MS approach.

Collision-induced dissociation produces fragments of dif-
ferent lipid classes having diverse characteristics, which can 
be identified through neutral loss or precursor ion scanning 
after infusing directly. In this, the lipid of certain interest 
is added as internal standard to lipid extracts of biological 
samples (Han and Gross 2005).

Tandem mass spectroscopy is a vital part of shotgun lipi-
domics and generates high mass accuracy and high mass 
resolutions in the form of peaks. Quadrupole-time-of-flight 
instrument can also play a significant role for lipid profiling 
of any specific lipid class extracted from sample of interest 
(Krank et al. 2007; Mcdonald et al. 2007).

Lipids synthesis takes place in plastid, where acetyl 
co-A is formed from pyruvate which is a product of gly-
colysis. Acetyl co-A is the building block for lipid biosyn-
thesis, and the key enzyme for this pathway is acetyl co-A 
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carboxylase which converts acetyl co-A into malonyl co-A, 
which is an irreversible and a rate-limiting reaction. The 
ACCase enzyme requires biotin for its activity (Roessler 
et al. 1994). Further synthesis of fatty acid chain occurs via 
three main steps: condensation, reduction and dehydration. 
These reactions form C16:0 ACP or C18:0 ACP with the 
help of enzyme fatty acid synthase (FAS). C18:1 is often 
converted into C18:1 by the enzyme Δ-9 SAD activity (Sla-
bas and Fawcett 1992). Another major step in lipid synthesis 
is termination of chain elongation. The enzymes responsible 
for this step are acyl-transferase and acyl-ACP thioesterase. 
Both the enzymes have different roles in lipid synthesis; viz., 
products of thioesterase are free fatty acids which are des-
tined for TAG, a storage form of lipids in algal cells, whereas 
acyl-transferase enzyme forms glycolipids. Two types of 
thioesterase are present in plastids, FatA and FatB, which 
selectively convert FA-ACPs into free fatty acids. FatA is 
specific for unsaturated, while FatB is associated with the 
saturated fatty acids (Sivakumar et al. 2012).

Desaturation is another step of lipid biosynthesis which 
includes various desaturases. Their nomenclature is based 
on the position of C where they introduce the double bonds 
like Δ-12, Δ-6, Δ-15, etc. Three enzymes, i.e., SAD (DΔ9), 
FAD2 (DΔ12) and FAD3 (Δ-15), work in a sequential way 

to produce PUFAs. PUFA synthesis occurs in the walls of 
ER (Wallis and Watts 2002). Triacylglycerols are the mol-
ecules of interest for biodiesel feed. The formation of TAG 
in algal cells occurs either via Kennedy pathway or via PC-
DAG pathway. The pathways depend on two major enzymes 
DGAT and PGAT, respectively (Merchant et al. 2012).

Lipid accumulation is most likely to occur in the presence 
of high NADPH, due to high energy requirement by enzymes 
like elongases and synthesases. NADPH is produced by the 
conversion of malate and pyruvate by the activity of malate 
enzyme which is a light-dependent process. In a study, activ-
ity of enzymes associated with lipid synthesis with respect 
to light was studied and it was found that during dark period, 
acetyl co-A broke down into citrate using ATP-citrate lyase 
which decreases the NADPH production and thus reduces 
the lipid accumulation in algal cells (Bellou and Aggelis 
2013). Co-expression of genes involved in fatty acid syn-
thesis and TCA cycles has also been found to be expressed 
together, and metabolites of TCA cycle can also be utilized 
in FA synthesis pathways (Mühlroth 2013). Regulation of 
fatty acid synthesis is an important phenomenon. Lipid accu-
mulation is dependent on TAG biosynthesis and the stability 
of TAGs inside cells. In Chlamydomonas, CHT7 is found 
to promote TAG accumulation under nitrogen-depleted 

Table 2  List of fatty acids quantified from algae in various studies

Common name Number of car-
bon atoms

Number of dou-
ble bonds

Algal species References

Butyric acid 4 0 Clostridium sp. S1 Dunahay et al. (1996)
Caproic acid 6 0 Scenedesmus quadricauda
Caprylic acid 8 0 Spirogyra sp.
Capric acid 10 0 Spirogyra sp.
Lauric acid 12 0 Phormidium ambiguum
Myristic acid 14 0 Oscillatoria acuminate
Palmitic acid 16 0 Phaeodactylum
Palmitoleic acid 16 1 Tricornutum
Stearic acid 18 0 Thalassiosira weissflogii Potvin and Zhang (2010)
Oleic acid 18 1 Dunaliella primolecta
Ricinoleic acid 18 1 Nannochloris sp.
Vaccenic acid 18 1 Parietochloris incisa
Linoleic acid 18 2 Nostoc commune
Alpha-linolenic acid (ALA) 18 3 Synechocystis sp. Bahl et al. (2011)
Gamma-linolenic acid (GLA) 18 3 Pavlova lutheri
Arachidic acid 20 0 Emiliania huxleyi
Gadoleic acid 20 1 Heterosigma akashiwo
Arachidonic acid 20 4 Calothrix fusca
EPA 20 5 Microcystis aeruginosa Khozin-Goldberg and Cohen (2006)
Behenic acid 22 0 Microcystis aeruginosa Capell and Christou (2004)
Erucic acid 22 1 Scytonema bohnerii
DHA 22 6 Nostoc linckia
Tricosylic acid 23 0 Lyngbya dendrobia
Lignoceric acid 24 0 Phormidium ambiguum



1836 International Journal of Environmental Science and Technology (2019) 16:1829–1838

1 3

conditions and even it maintains high levels of TAGs up to 
48 h of nitrogen repletion. It also downregulates the genes 
associated with cellular quiescence following better cell 
growth in depleted conditions (Tsai et al. 2014). Addition-
ally, engineered transcriptional regulator assists in effective 
carbon partitioning for biosynthesis of lipids along with high 
biomass productivity (Chen et al. 2018).

Omics can also help to solve the problems related to lipid 
enhancement. The limitations can be overcome by studying 
the metabolism pathways. These pathways are interdepend-
ent and have positive or negative effect on each other. In a 
transcriptomic study, P. tricornutum showed co-expression 
of 106 genes related to TCA cycle and PUFA synthesis 
(Mühlroth 2013). This knowledge helps us in diversion of 
carbon partitioning more toward lipid synthesis. Proteomics 
can also help in studying the activity of different enzymes, 
proteins and transcription factors. Transcription factors 
play major role in regulation of gene expression of various 
enzymes responsible for metabolite production.  N− and  N+ 
cultures of N. gladiana revealed 20 TFs which were affect-
ing the carbon partitioning into lipid. Mutants of TFs were 
developed using CRISPER-Cas9, and they showed 40–50% 
lipid carbon partitioning as compared to WT 20% (Ajjawi 
et al. 2017). Isoforms of various enzymes and their effects 
can be studied using omics techniques.

Conclusion

Algal biofuel is one of the renewable sources of fuel and falls 
under third- and fourth-generation biofuel feedstocks which has 
the potential to combat against the depleting fossil fuels for 
energy demand. In comparison with plants, alga as a feedstock 
for biodiesel production holds a major advantage in the renew-
able energy field as it requires less land and produces more 
biomass. Three strategies could be potentially applied for the 
enhancement of lipid production in microalgae such as bio-
chemical engineering approach, genetic engineering approach 
and transcriptomic approach. Biochemical approach depends 
upon exposure to physiological stress using conventional meth-
ods such as nutrient-derived stress to channel metabolic flux 
and determination of factors which play major role during all 
these processes leading to lipid accumulation and production 
of other beneficial products. Genetic engineering approach and 
transcriptomic engineering approach are the long-term perspec-
tives. Scientific world has recognized omics and has reconnoi-
tered it enormously. Still lot is left there to explore through the 
omics approach. Such technology has been applied in many dif-
ferent fields. This review highlights multidisciplinary scenario 
for the comparative analysis of lipid molecules which seems 
to be an important candidate as renewable source of energy. 
Beside genomics, transcriptomics, metabolomics and proteom-
ics, lipidomics has been highlighted much effectively in recent 

years. Lipidomics is indispensable tool for the system biology 
research. Exploring metabolic pathways of algae for enhanced 
lipid production, comprehensive screening of desired molecule 
and TAG profiling at molecular level are some of the future 
challenges for fixing the algae as a better alternative source of 
biofuel production. Optimization of biomass production and 
recovery of secondary metabolite are quite necessary for the 
potential application as a final marketable product. Further, for 
optimization and improvisation of algal systems, integration of 
various strategies needs to be assured. There is need to high-
lights that the integration of such systems would help and com-
pliment research on microalgal applications. People working in 
the area of physiology, chemistry, biology and engineering have 
to work together to overcome and improve the algal systems. 
Omics can revolutionize the algal lipid field with higher lipid 
productivity and techniques supporting analysis and production.
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