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Abstract
The growing industrial tendency and waste generation has become a major carcinogenic source of soil pollution in the devel‑
oping countries like Pakistan, with no implantation of policies and pollution standards. The main aim of this study was to 
analyze the integrated environmental risk of heavy metals in soil of the industrial area, district Sheikhupura, Pakistan. The 
concentration of three heavy metals chromium, cadmium, lead and physiochemical parameters was evaluated at three soil 
depths using empirical Bayesian kriging, geospatial and spatial autocorrelation Moran’s I techniques. The factor analysis 
and principal component analysis identified the heavy metals as a major carcinogenic source in the soil. The heavy metal 
contamination severity was assessed through the geoaccumulation index and Nemerow integrated pollution index at the scale 
of six classes, and significant (p > 0.05) pollution areas were delineated. The percolation of effluent by irrigation and rainfall 
is the primary carrier of metal pollutants to lower depths of soil. The heavy metals contamination in the soil causes food and 
human body accumulation which is carcinogenic for the human health. The research signifies an adaptive and comprehensive 
approach in analyzing the pollution sources, their distribution pattern and quantification of contamination at a spatial scale.
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Introduction

The anthropogenic activities and the growing tendency of 
industries are major sources of environmental pollution 
(Ali et al. 2013). The quality of hydrosphere, lithosphere, 
pedosphere, biosphere, and atmosphere is being affected 
by the environmental pollution (Luo et al. 2011). The soil 
is considered as basic environmental component, and it is 
a very important ecological path for bioaccumulation of 
minerals and metals to the food chain components. The 
soil contamination may refer to the inclusion of different 
toxic elements and chemical into the soil as a result of 
the natural source or human activities which may cause 
adverse effects on the environment and human health. The 
volume of wastewater and untreated industrial effluent is 
increasing due to increasing population and industrializa‑
tion in the developing countries. Different chemicals and 
extensive amount of water are consumed in industrial pro‑
cedures which are discharged as untreated effluents, con‑
taining poisonous metals, for example, sulfides, chromium, 
lead, zinc and cadmium (Gu et al. 2012). The improper 

waste management and lack of standards for wastewater 
discharge and industrial effluent are worsening the envi‑
ronment and causing pollution in the irrigated soil (Har‑
greaves et al. 2008). The irrigation practices by industrial 
effluent may increase the heavy metals concentration in 
soil, and it also adversely affects the soil salinity, elec‑
trical conductivity, total dissolved solids (TDS), chloride 
contents, biological oxygen demand, pH, alkalinity and 
phosphate (Soodan et al. 2014).

Different researchers investigated that untreated indus‑
trial effluent is used to cultivate cereals and vegetables 
in irrigation practices, due to unawareness of local farm‑
ers (Lourenço et  al. 2010). The regular extensive use 
of industrial waste for irrigation purpose may contrib‑
ute heavy metals in soil (Islam et al. 2017). There is a 
range of dynamic factors such as soluble substances, soil 
pH, soil type, the use of fertilizers, cultivated plant spe‑
cies and composition of industrial effluent which badly 
accumulate the heavy metals at higher levels in the envi‑
ronmental media of groundwater, plants and soil (Zhu 
et al. 2011). The heavy metals may enter into the human 
body by food chain, and it is considered as an important 
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entrance pathway (Soodan et al. 2014). There is variant 
potential in many plant species and edible cereal to store 
heavy metals at concentrations (Xiao et al. 2017). In this 
way, heavy metals also accumulate in different organs 
of the human body causing serious health issues. Heavy 
metals have half‑lives in the long biological system and 
are non‑biodegradable (Chabukdhara et al. 2016). The 
heavy metals and their compounds are of soluble nature 
in water, which may readily increase the contamination 
to the unsafe levels. Li et al. (2013a) investigated the soil 
pollution, and they analyzed that chemical speciation of 
toxic heavy metals and contamination levels of Zn, Cu, Pb 
and Cr have seriously affected the environment and caused 
pollution to soil and sediments in the vicinity of industrial 
area over the past decades.

The possible environmental risk and pollution caused by 
heavy metals accumulation in soil were raised over time. It 
was studied that metal contamination was at a higher level 
in the adjacent areas of an imperfect e‑waste processing unit 
and the highest concentrations of Zn, Pb, Cu and Cd pollu‑
tion in soil were found at the burning sites. The uninhibited 
operations of e‑waste processing unit triggered serious toxic‑
ity to the neighboring soil and cultivated vegetables. Some 
previous studies investigated environmental pollution with 
a focus on heavy metals concentration and their spatial vari‑
ability in soil (Akortia et al. 2017). The continuous intake of 
heavy metals, however, at low dose causes bioaccumulation 
and a significant adverse effect on human health by some 
elements such as Cd, Pb and Cr. The assessment of soil prop‑
erties and broad spatial analysis of heavy metals for contami‑
nation of free vegetables and cereals are a crucial concern 
for safe ecological paths. So, in arable lands, it is important 
to identify the sources of heavy metals for control and pre‑
vention of contamination in different agro‑ecosystems.

In previous studies (Nawaz et al. 2006) classical statistical 
approaches have also been used for analysis of soil heavy 
metal contamination. Multivariate analysis and exploratory 
statistics are valuable methods to identify the common sets 
in distribution patterns of data, which reduce the preliminary 
dimensions of datasets and make it easy to interpret (Kel‑
epertzis 2014). Ha et al. (2014) also applied many statisti‑
cal methods and multivariate analysis in agricultural soils 
and sediments, dust and urban soils. Principal component 
analysis (PCA) and multivariate analysis methods are effec‑
tive techniques to transmute an original set of variables into 
a reduced subset, and the original dataset is represented by 
the systematic way of information (Lv et al. 2015). How‑
ever, the PCA identifies the contamination source and shows 
the results in easy to interpret and logical manner by visual 
assessment of loading plots and data scores. But geographi‑
cally the sources of contamination and spatial distribution 
may differ due to varying development of history and local 
environments.

So, spatial variability of heavy metals is assessed by using 
the advanced analysis of geographical information system 
(GIS) providing source contamination and evidence of non‑
point pollution extent. Normally, in the previous different 
spatial studies, a wide range of geostatistical tools was used. 
However, these methods determined the less significant fac‑
tor for spatial dependency to estimate the spatial correla‑
tion for positive or negative dependency level. Furthermore, 
the common geostatistics cannot identify the outliers in the 
spatial data of different heavy metals. The outliers show 
the significant change values from the nearby locations in 
the surrounding of a point, and these outliers may induce 
uneven semivariogram pattern. Lu et al. (2012) applied gen‑
eral geostatistical and multivariate methods to assess the 
source and concentration of heavy metal pollution levels 
(Lu et al. 2012). The integrated heavy metals contamina‑
tion and spatial distribution have been widely evaluated by 
using geostatistical methods in soil contamination studies, 
and these assessments and approaches are usually less com‑
prehensive. Conversely, an efficient geostatistics method, 
global Moran’s I, can be used to estimate the spatial strength 
and spatial correlation to determine the positive or nega‑
tive values of a spatial variable. The local Moran’s I can 
be used to identify the spatial outliers and spatial clusters 
of given values for distribution of heavy metals. Moreover, 
the significance value of the spatial autocorrelation for spa‑
tial data can be tested. However, the different geostatistical 
methods for spatial autocorrelation were established many 
years before and many researchers have used in their studies 
for spatial analysis, and the global Moran’s I was also used 
for the spatial variability analysis of heavy metals. However, 
Huo et al. (2011) established an inventive understanding of 
the structure for spatial dependence by analyzing the mul‑
tiscale spatial variability of heavy metals in soils by using 
the Moran’s I geostatistics. The spatial autocorrelation sta‑
tistics and geostatistics were used to identify the spatial pat‑
tern of heavy metals in the agricultural soils of Beijing, and 
the autocorrelation was performed using Moran’s I statistic 
(Huo et al. 2011). The multilevels spatial autocorrelation is 
not tested before for a heavy metals concentration at three 
depths of soil profile, and it is a novel approach in soil con‑
tamination studies.

In the industrial multitude areas, the spatial diffusion of 
heavy metals and resulting soil contamination is because 
of traditional methods of soil partition and poor manage‑
ment from decades. The single factor‑based index methods 
and general spatial distribution analysis are less efficient 
to reveal heavy metal contamination in the soil instigated 
by significant anthropogenic activities by human, indus‑
trial and mining activities (Santos‑Francés et al. 2017a). 
In previous researches, the built‑in pollution index has 
been used (Takaki et al. 2017) as the most commonly used 
method for soil heavy metals analysis (Santos‑Francés 
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et al. 2017b). Therefore, it was required a very advanced 
and comprehensive method to analyze the diverse factors 
(Zang et al. 2017) for soil bioaccumulation at different 
subsurface depths in different landforms and obtain exact 
estimation results of contamination load.

In this study, spatial quantification method was adopted 
for soil heavy metal contamination induced by industrial 
effluent and wastewater based on the combined geostatis‑
tical approach and pollution index methods of Igeo and 
Nemerow index. The geoaccumulation index (Igeo) was 
assessed for heavy metals contamination and background 
values of heavy metals to categorize the area at differ‑
ent contamination scales. This index considers the factors 
for soil pollution which are sensitive to environmental 
contamination. The Nemerow index was also assessed to 
integrate the mean index of heavy metals content in the 
soil (Malkoc and Yazici 2017). Moreover, the index‑based 
heavy metals contamination was plotted using geostatisti‑
cal mapping. Previously, most of the researchers adopted 
kriging interpolation technique to monitor the spatial vari‑
ability of soil heavy metals. However, in this research, 
very emerging and innovative mapping techniques by 
using Bayesian interpolation were employed to visualize 
the spatial extent of index‑based heavy metal contamina‑
tion in the study area, which, in turn, enables the influence 
of human activities on soil heavy metals contents to be 
spatially highlighted.

In comparison, most of the studies conducted in the 
heavy metal pollution either use only surface layer of soil 
and use the classical statistical technique to analyze the 
data. Based on the above explanation it was believed that 
present research would add new knowledge to the literature 
of soil heavy metal contamination and in general pollution 
studies. The main objective of this research was to identify 
source and linkages of heavy metals in soil and to explore 
their spatial variability in Sheikhupura district (Punjab) of 
Pakistan which is near the provincial capital and important 
hub of industrial activities. The soil samples were taken in 
the pre‑monsoon season during 2015–2016 for the assess‑
ment of chromium (Cr), cadmium (Cd) and lead (Cd) and 
other physiochemical properties of soil. Furthermore, this 
study also analyzed the spatial patterns of heavy metals in 
the soil at local scale using Moran’s I for different land‑use 
practices in order to categorize the possible risk areas for 
heavy metals pollution and their possible causes. The soil 
contamination indices were also evaluated to quantify the 
heavy metals accumulation areas. This is very advanced and 
comprehensive approach to analyze the soil contamination 
in the complex area of multiple land‑use and environmental 
contamination which has developed a clear understanding of 
spatial variability of soil contamination by using an applica‑
ble and valid evaluation method to achieve soil management 
at varying spatial scale in typical industrial areas.

Materials and methods

The study area

The soil heavy metals pollution was analyzed in Sheikhu‑
pura (31°20′ N–33°05′ N and 73°37′E–74°41′E), Paki‑
stan, and a large number of industrial activities and efflu‑
ent discharge are subject to this area. Industrial zone of 
Sheikhupura District is around the major drains of sewage 
and industries in Muridke and Ferozpura (Fig. 1). There 
are extreme climatic variations in the district Sheikhu‑
pura from winter to summer seasons. The temperature 
in November to March is cold and foggy during mid of 
December to February, which may receive light precipita‑
tion with intervals. The temperature increases in April, and 
three successive months of May, June and July are very 
hot, but monsoon appears from mid of June to August. 
The average rainfall of the district is 630 mm. The soil 
of Sheikhupura is mix loam texture, with the Bar in the 
North Western area which is a level prairie thickly dotted 
soil known as Missie. The low land along the river Ravi 
has light loam. The central portion which is the Deg Val‑
ley has stiff soil. The stiff soil is either Rohi or Kallarathi 
depending on the salt contents (Punjab 2016).

The important characteristics and features of studied 
area and its pollution hubs included in the analysis of spa‑
tial variability are as follows:

1. District Sheikhupura is a very important industrial area 
in Punjab, Pakistan. The Sheikhupura Industrial Estate 
has been established since 1969. Punjab Small Indus‑
tries Corporation (PSIC) is a body corporate enacted in 
1973. According to the Directorate of Industries, Pun‑
jab, Pakistan (2016), a total number of 748 are installed 
in this area. These industries are contributing a large 
amount of waste and effluent contaminating hazard‑
ous and toxic elements. The continuous irrigation with 
industrial effluent and sewage sludge may increase the 
vulnerability of soil for contamination.

2. The study area is the basin for the different effluent and 
sewage slug containing drains and Nallah (open cut 
method), according to Atlas of Punjab Irrigation Depart‑
ment, 2008. There are 220 small and large industries 
which contribute unfit effluent discharge. In this area 
total 403.95 cusec effluent is discharged, where 313.45 
cusec wastewater is generated by the industrial units and 
90.5 cusec sewage is discharged by sewerage system of 
district municipality in different distributaries and drains 
(IPD 2008).

3. There is not any arrangement by any industrial unit or 
municipality to treat wastewater and effluent before its 
disposal in drains. Some of the drains are cross‑district 
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and cross‑boundary in the area. This effluent is used for 
irrigation purpose to cultivate the vegetables in the sur‑
veyed area. The study area is along the North West of 
river Ravi, and remaining effluent drains may discharge 
their untreated wastewater in the river causing aquatic 
contamination.

This area is considered good for rice production, veg‑
etables and other agricultural crops, and population is also 
growing in this area due to its vicinity near the provincial 
headquarter, Lahore. To date, no such comprehensive stud‑
ies were carried out in this important area to establish the 
link of different contamination media at spatial variability 
scale and to identify its extent. In this area, the soil parti‑
tion management is recommended based upon the moni‑
toring of heavy metals contamination in soil.

Sampling laboratory analysis of soil samples

The soil samples were collected by confining some crite‑
ria in the study area to ensure the spatial variability and 
standard laboratory procedures were adopted to establish 
the chemical properties of soil.

• To implement a representative soil sampling technique 
all diverse sites of irrigated areas, alluvium, sites near the 
industrial platform, effluent‑irrigated areas and urban soil 
were included in soil sampling (Li et al. 2013c). For this 
purpose, the collection of soil samples was employed by 
a random soil sampling technique.

• The handheld Garmin global positioning system (GPS) 
was used to record the spatial coordinates of the sampling 
locations.

• The soil samples were taken by using tube auger from 60 
sampling sites at three depth profiles of soil (0–15 cm, 
15–30 cm and 60–90 cm) each, and total 180 (60 × 3) soil 
samples were collected (Fig. 1).

• Three replicates of soil were taken for each soil sample 
that was composited as a single sample, and a total 1 kg 
of mixed soil per sample was collected.

• All collected soil samples were kept in labeled zipped 
plastic bags and transported to the laboratory for further 
analysis.

• The soil samples were kept indoor to dry and, later, 
crushed and sieved through a fine sieve of 2 mm (Lu 
et al. 2010). The standard procedures (Klute and Dinauer 
1986; Margesin and Schinner 2005) were used to deter‑
mine the chemical properties of soil samples including 

Fig. 1  Soil sampling locations and major industries in the study area. Source: Shaheen and Iqbal (2018)
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EC, pH, P,  K+ and saturation. The Tyurin’s method was 
employed to determine the soil organic matter (OM) (Ali 
et al. 2015; Carter 1993).

• The acid digestion method for soil/sediment digestion, 
followed by USEPA standards 3051A and 3050B, was 
used to evaluate the total concentrations of heavy metals 
in the soil samples (Edgell 1989; Gowd et al. 2010).

• Further, graphite furnace atomic absorption spectrom‑
eter (GFAAS) was used to analyze the concentration of 
selected heavy metals (Cr, Cd and Pb) through means of 
their respective wavelengths (Kimbrough and Wakakuwa 
1989; Tiwari et al. 2015).

The metal concentrations were expressed in units of 
mg kg−1 on dry soil basis. A geodatabase was developed for 
the concentration of all physiochemical properties and heavy 
metals of soil along with their geographical coordinates in 
ArcGIS environment. Furthermore, other exploratory analy‑
ses and geographical analysis techniques using spatial mod‑
eling were employed to model the soil contamination.

Statistical analysis

The Minitab 17 statistical software, GeoDa 1.12.159ver and 
ArcGIS professional were used to perform different geosta‑
tistical analyses and spatial modeling on soil data to deter‑
mine the source of contamination and context of pollution in 
soil by heavy metals. The graphical statistical summary was 
determined to analyze the data for its skewness, standard 
deviation and mean. The heavy metal sources in the different 
layers of soils were assessed by using multivariate statisti‑
cal analysis and soil contamination indices. The Moran’s I 
autocorrelation was identified to examine the associations 
among the measured heavy metals and spatial characteristics 
of the area.

Multivariate statistical analysis

The multivariate analysis is a good method which offers two 
efficient tools, the principal component analysis (PCA) and 
cluster analysis (CA). These methods, PCA and CA, were 
used to identify the source of factors and classify the inter‑
relationship between measured soil heavy metals (Cd, Cr 
and Pb). PCA was computed with varimax rotation method, 
and CA was developed according to the correlation coef‑
ficient average linkage method. The Euclidean distance was 
employed for measuring the distance between clusters of 
similar metal contents. The correlation matrix (CM) was 
computed to support the results obtained by multivari‑
ate analysis. The multivariate analysis combined with the 
advantages of geostatistical techniques on heavy metals in 
soil may provide comprehensive outcomes.

Global spatial autocorrelation for soil heavy metals

In the spatial autocorrelation, a single dataset is analyzed at 
a spatial scale. In this method, the correlation of a sampled 
variable is analyzed in the given area to its spatial location by 
assessing its attribute value and the location of spatial land‑
scapes. Similarly, the Moran’s I is an autocorrelation statistics 
technique which measures the spatial relationship. The global 
Moran’s I autocorrelation analyzes the spatial patterns and 
identifies the spatial dependency of observed variables. It was 
estimated for a number of soil sample observations separately 
for each heavy metal x at i and j locations, Eq. (1).

where I is Moran’s I, xi and xj are the observations at loca‑
tions of I and j, n is the number of observations of the whole 
region, wij, an element of spatial weights matrix w, is the 
spatial weight between locations of i and j, and x ̄is the mean 
of x.

The varying weight matrixes were calculated for 4, 5, 6, 
7 and 8 weights depicting the association level among an 
element and its neighboring elements. The contiguity‑based 
weights were assigned on distance or relations. At the first 
iteration of Moran’s I autocorrelation only four common 
boundaries neighbors were taken into account, and finally, 
eight surrounding neighboring cells were included comprising 
conjoint corners and shared boundaries. Alternatively, for dis‑
tance‑based method, a threshold distance was assigned within 
the given distance in weight matrix to calculate all surrounding 
locations. The values of Moran’s I autocorrelation may vary 
between 1 and − 1. The strong positive values of Moran’s I 
indicated the clustering of given observation according to its 
neighbors in a spatial location, while negative values indicated 
that low and high values in a set of variable were mixed. The 
Moran’s I values near zero stated no spatial autocorrelation 
showing random distribution.

Local indicator of spatial autocorrelation (LISA)

The local spatial autocorrelation statistics (Moran’s I) analyzed 
the pattern of data at a small scale which computed the loca‑
tion of the single point with reference to its neighbors and 
identified the outliers and clusters. The heavy metals pollution 
content was identified at the local scale in the diverse land‑use 
location. The LISA was computed according to given Eq. (2).

The relating values in Eq. (2) are from the local area of a 
single point to its neighbors, while notations are the same as 
in Eq. (1). In this geostatistical analysis, the local indicator 

(1)
I = n

∑

i = 1 n
∑

j = 1nwij ⋅
∑

i = 1 n
∑

j = 1 nwij(xi − x̄)(xj − x̄)
∑

i = 1 n(xi − x̄)2 i ≠ j

(2)Ii = n(xi − x̄)
∑

j = 1 nwij(xj − x̄)
∑

i = 1 n(xi − x̄)2
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of spatial autocorrelation (LISA) was analyzed on map‑
based spatial clustering method. From the four categories 
of spatial local autocorrelation two suggest outliers and two 
suggest clusters. The LISA indicated the spatial variability 
and clustering based upon statistically significant values and 
predicted the locations which were spatially interesting and 
identified the location which exhibits spatial heterogeneity.

Geoaccumulation index (Igeo)

The spatial variation in the contamination data of soil heavy 
metals suggests classifying the extent of pollution at com‑
putation scale for each observed location. There are differ‑
ent soil contamination and enrichment indices which sug‑
gest the level of heavy metals accumulation. However, the 
geoaccumulation index predominantly determines the soil 
heavy metals contamination by equating the pre‑industrial 
(uncontaminated background sediments) and current con‑
centration of soil sediments. The comprehensive analysis 
of soil heavy metals contamination has been done by using 
the geoaccumulation index. Initially, Igeo was introduced to 
evaluate metal contamination in sediments and surface soil 
by a single factor (Muller 1969). It has been indexed for the 
qualitative assessment of heavy metal contamination in soil 
(Eq. 3) (Marrugo‑Negrete et al. 2017).

where Cn is a current concentration of selected heavy metals 
in soil and Bn is background values of natural concentration 
of sediment (Rahman et al. 2012).

However, the Igeo is a useful index to reduce the factor of 
human interference to assess the soil contamination in indus‑
trial‑irrigated areas. The index was calculated from three 
depths soil data, but there was very less difference among 
the index values of heavy metals in soil at these depths. So, 
it was suggested that an accumulated index can be estab‑
lished for mean contamination of heavy metals at the multi‑
ple depths of soil. The traditional single factor index (Mul‑
ler 1969) was evaluated with some adaptations in it, and a 
comprehensive index by taking the average concentration of 
heavy metals was computed. This index analyzed the overall 
average metal accumulation in three subsoil horizons, and 
 MIgeo was calculated by Eq. (4).

where C̄n is mean concentration of soil of any given metal 
location for three depths of Sheikhupura soils. In this study, 
the effect of parent rock on heavy metals concentration in 
soil was reduced by the background values (Bn). The Bn in 

(3)Igeo = log2
Cn

1.5(Bn)

(4)MIgeo = log2
(C̄n)

1.5(Bn)

this index were taken from the standard metal values of 
WHO (Mekki and Sayadi 2017) and an averages of the ele‑
ments concentration in soil type of the Pakistan. The anthro‑
pogenic impacts and the natural fluctuations of a given metal 
in soil content were compensated by the constant value of 
1.5 (Muller 1969). The proposed six classes for  MIgeo are 
presented in Table 5 which showed the range of contamina‑
tion index with reference to heavy metals in soil.

Improved Nemerow Index (INI)

The prominent anthropogenic‑induced properties and par‑
ent rocks effects of soil heavy metal contamination on three 
depths were evaluated by  MIgeo, and this index is appropri‑
ate to measure the degree of heavy metal toxicity in the soil 
for mining gathering areas and industries. However,  MIgeo 
evaluated contaminant for a given single heavy metal at an 
instant of three depths. A comprehensive and complete pol‑
lution status was required in the study area from all selected 
heavy metals to assess soil pollution risk. The improved 
Nemerow index was in this study by adopting  (MIgeo), the 
single factor index.

The subsequent formula (Eq. 5) was evaluated for INI 
(improved Nemerow index):

where INI is the index for comprehensive contamination of 
a soil sample,  MIgeoave is the arithmetic mean value of  MIgeo, 
and  MIgeomax is the maximum  MIgeo value of the sample. 
The proposed classifications were adjusted for INI (Liang 
et al. 2016) based upon results to be consistent with  MIgeo. 
The classification scheme for this index is shown in Table 7.

Geostatistical analysis

The geostatistical analysis was evaluated by using spatial 
autocorrelation and interpolation techniques for soil con‑
tamination on the results of contamination indices (MIgeo 
and INI). The spatial interpolation was applied to predict 
the surface of the heavy metals (Cr, Cd, Pb) indices in soil 
separately to explore the distribution pattern. Many studies 
had been performed on the determination of spatial extent 
of heavy metals concentrations in soil by different interpo‑
lation methods (De la Torre et al. 2012). The regression 
kriging method was by Martínez‑Murillo et al. (2017), and 
the cross‑validation method was used to predict the accu‑
racy of a process for topsoil (Martínez‑Murillo et al. 2017). 
Iqbal et al. also applied the kriging interpolation technique 
in their research in order to prepare the distribution maps of 
heavy metals (Iqbal et al. 2005; Tziachris et al. 2017) which 

(5)INI =

√

(

MIgeomax

)2
+
(

MIgeoave
)2

2
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were traditional kriging interpolation methods for element 
concentration.

However, the spatial distribution pattern of the average 
geoaccumulation index  (MIgeo) for each metal (Cr, Cd, Pb) 
and improved Nemerow index (INI) is carried out by the 
imperial Bayesian kriging (EBK) method which is a very 
groundbreaking method in its implementation for index‑
based soil contamination studies. The EBK is different 
from classical kriging method which estimates the errors 
for variogram models. However, in EBK many variogram 
models were estimated and analyzed and new values were 
simulated for each given location. Then, new variograms 
were estimated from the simulated data and weights for each 
variogram were assigned based on Bayes principle which 
estimated the likelihood of observed and generated data 
from the variogram models. The spectrum of variograms 
was generated by the repetition of this process to simulate a 
new set of values, and a true semivariogram was computed 
based upon empirical method to predict the surface for soil 
contamination by Bayesian kriging (Krivoruchko 2012; 
Samsonova et al. 2017). The exponential models of semi‑
variogram were considered as best‑fitted models for spatial 
autocorrelation of the samples distribution.

Results and discussion

Principal component analysis and factor analysis 
of soil parameters

The factor analysis (FA) for heavy metals (Cr, Cd and Pb) 
and physiochemical properties of soil was extracted by 
using principal component analysis. The FA is a method to 

investigate the interrelationship between examined param‑
eters (Chandrasekaran et al. 2015). This technique was very 
useful to reduce the multidimensionality of various datasets 
to concise it in interpretable dimensions. The statistical fac‑
tors for soil datasets were identified by CA that recognized 
most of the variance and explained the distribution of all 
elements in the effluent‑irrigated soil. The CA was analyzed 
for three depths of soil data, three factors were analyzed for 
topsoil and deeper soil, while four factors were derived for 
subsoil properties based on eigenvalues > 1, which showed 
that there were negative values at three factors and it repre‑
sented more variability in the subsoil metals and other soil 
properties (Table 1). In F1 of topsoil, all three heavy metals 
(Cr, Cd and Pb) loaded positively (.65, .59 and .36) at 27.2% 
cumulative variance which showed its dimension from the 
same anthropogenic source, while pH and saturation loaded 
negative values in F1. EC and pH and Pb generated strong 
positive values in F2 (at the cumulative variance of 48.3%) 
which indicated their similar dimensionality. All three heavy 
metals showed negative values in F3 (cumulative variance 
62.2%), and all other parameters were loaded positive, which 
designated the pollution source of topsoil by heavy metals 
contamination. In subsoil profile, the F1 showed that all soil 
properties loaded positively except saturation (25.7%), and 
the loading pattern of the subsoil was at four factors due to 
the change in dimensionality in the downward percolation of 
elements which affected the pollution source. The variation 
in subsoil was loaded at four factors (cumulative variance 
71.6%). The deeper soil shows the 66.5% cumulative vari‑
ance at the loading of three factors, and heavy metals have 
a positive load at F1 and negative values at the F3. The soil 
properties (OM, P, K, Sat) showed positive loading at the 
cumulative variance of 50.61% for F2, while heavy metals 

Table 1  Principal component 
analysis of soil properties

a 3 components extracted
b 4 components extracted
c 3 components extracted

Soil properties Top  soila Subsoilb Deeper  soilc

F1 F2 F3 F1 F2 F3 F4 F1 F2 F3

EC .077 .773 .306 .340 .708 .342 .154 .169 .681 .532
pH − .176 .750 .427 .192 .781 .157 .265 − .094 .709 .492
OM .760 − .067 .159 .855 − .102 − .298 .049 .843 − .169 .302
P .862 .061 .129 .886 .008 − .116 − .033 .842 − .137 .337
K .425 − .160 .651 .622 − .090 − .379 − .251 .506 − .506 .220
Saturation − .043 − .683 .441 − .011 .021 − .313 .839 .383 − .169 .045
Pb .658 − .120 − .376 .187 − .551 .394 .313 .680 .128 − .485
Cr .592 .032 − .068 .282 − .611 .397 .272 .468 .474 − .593
Cd .364 .467 − .413 .388 .057 .663 − .223 .389 .569 − .266
Cumulative% 27.2 48.3 62.2 25.7 45.8 59.6 71.6 29.91 50.61 66.59
% of variance 27.3 21.0 13.9 25.8 20.1 13.8 12.1 29.9 20.7 16.0
Eigenvalues 2.4 1.8 1.2 2.3 1.8 1.2 1.08 2.6 1.8 1.4
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showed positive loading in F1 for all three soil horizons and 
were considered major source of contamination.

The distribution pattern of soil properties showed three 
factors cluster which revealed their relevancy and interrela‑
tionship (Fig. 2). The first cluster showed the pH and EC of 
soil, which was the important physiochemical properties of 
soil and showed the salinity or alkalinity of the soil, which 
was induced by the various urban and industrial activities 
(Chandrasekaran and Ravisankar 2015). The second cluster 
revealed the heavy metals (Cr, Cd and Pb) group which tends 
to be major carcinogenic elements in soil from the eminent 
source of industrial effluents. The third cluster indicated the 
interconnected group of soil nutrients (OM, K, P) and satu‑
ration in the soil, the concentration of these elements was 
from a natural source in the loamy soil, and the availability 
of these properties in soil was less affected by the industrial 
effluents (Qishlaqi and Moore 2007).

Furthermore, the dendrogram analysis was performed on 
all soil properties, and it was a useful method to explore 
the variables and their linkages based upon the correlation 
coefficient method. The maximum similarity of all soil vari‑
ables was tested for 47.91% (Fig. 3). It was analyzed that Pb 
and EC were from the same group and similarly extent was 
near 70%. The OM and P showed a maximum similarity at 
88% which indicated the same group and natural soil source. 
The Cr and Pb showed the similarity of 68% indicating the 
identical contamination group. However, Cd has similarity 
at the 52% which showed its variation at spatial scale in the 
soil samples (Tejeda‑Benitez et al. 2016). The K and satura‑
tion had a similarity of 65%, showing the same group. These 

linkages showed that the nutrients in the soil were from the 
natural source and had not any significant variability by the 
pollution of accumulation.

Statistical analysis of heavy metals concentration 
in soil

The concentrations of selected heavy metals are reported in 
Fig. 4a–c for each depth of soil. The skewness was tested 
between 1 and − 1, and all three heavy metals show sym‑
metrical normal distribution; however, Cr and Cd in a 
deeper depth of soil showed some skewness at 0.70 and 
0.89 (Fig. 4d) and Cd and Pb showed smaller skewed val‑
ues of 0.60 and 0.72 at subsoil (Fig. 4b). But it was less than 
1 and − 1 and was considered as normal distribution. The 
total concentration of each metal varied in soil samples at 
subsoil profiles and spatial scale, while samples were col‑
lected from effluent‑irrigated or non‑effluent applied areas 
(Soodan et al. 2014). The order of metal enrichment was 
(Cr) > (Pb) > (Cd), and concentration values decreased from 
top to subsoil successively for all three metals Pb, Cr and Cd 
(mean ranges 14.1–5.8 ppm, 26–10.4 ppm and 6–4 µg ml−2) 
individually. The variability of metals bioavailability and 
their accumulation was analyzed in dendrogram by signi‑
fying the mutual metal to metal correlation (Hasan et al. 
2017). The heavy metals may percolate and leach downward 
in subsoil horizons subject to variation in hydrogen ions, 
water, pH and EC (Leung et al. 2017).

The environmental protection agency (EPA) permissible 
limits for Cd are 0.43–70 ppm. The rate of annual accumula‑
tion of Cd in soil may cause alarming concern for at different 
locations. A range of chronic health problems in human is 
caused as a consequent of cadmium intake. This metal is 
considered in a small group of metals with high toxicity for 
which a very provisional standards limit for daily intake by 
humans is set by the FAO/WHO (Chunhabundit 2016). In 
the legislation defined by European Union also demarcated 

Fig. 2  The biplot of soil properties in the PCA indicating the dimen‑
sionality
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Fig. 3  The dendrogram analysis on similarity of variables



4456 International Journal of Environmental Science and Technology (2019) 16:4447–4464

1 3

the maximum permissible concentration (MPC) of Cd was 
in a range of edibles and foodstuffs (Alves 2017). The Cr 
is very carcinogenic trace metal, and it is very volatile by 
its difference valences (Su et al. 2016). The Cr concentra‑
tion showed an increasing trend from the upper soil to the 
subsoil, and this metal has high mobility in the food chain 
and human organs (Friehs et al. 2016). There is a range of 
observations which were according to the given standard 
control limits for Pb (Fig. 4). Lead is considered as poising 
metal causing public health hazard and one of the global 
environmental problems, especially in children of young age 
(Arnemo et al. 2016), and in many countries, there is prohi‑
bition of Pb additives in paint and petrol. In soils, the avail‑
ability of Pb is less labile than Cd, and even at high concen‑
trations, uptake by plants is usually slight in amount (Kede 
et al. 2014). Therefore, it was needed to identify the spatial 
patterns of heavy metals distribution in the study area.

Spatial autocorrelation of heavy metals in soil

Soil samples were stored and arranged in a geodatabase for 
geospatial modeling and analysis. The spatial autocorrelation 

analysis of soil heavy metals was performed using GeoDa 
software including global and local Moran’s I.

Weight matrix influence on spatial dependency 
(global Moran’s I)

A neighborhood structure was enforced for given samples 
by using different spatial weight matrixes of eight classes to 
assess the spatial dependency of three heavy metals and var‑
ied distance bands. The values of global Moran’s I for given 
distances for each metal are shown in Table 2. The Moran’s 
I was established at a confidence level of 95% with signifi‑
cance values (p < 0.05). All eight spatial weights loaded sig‑
nificant and positive spatial correlations of heavy metals (Cr, 
Cd and Pb) except Cr which had low (closer to 0) Moran’s 
I values at distance band. There were low significant spatial 
correlations for Cr at four neighbor’s spatial weight. The Cd 
and Pb had low Moran’s I at distance band weight. How‑
ever, the significant spatial correlation was found for all on 
connectivity histogram and other types of weights. It was 
indicated that direction of eight neighbors or four neighbors 
had not affected the direct relations of neighboring locations. 

A 

B 

C 

1st Quartile 25.308
Median 26.375
3rd Quartile 28.250
Maximum 31.950

A-Squared 0.43
P-Value 0.294

Mean 26.378
StDev 2.416
Variance 5.837
Skewness -0.079984
Kurtosis -0.379517
N 60

Minimum 21.500

Statistical SummarySummary Report for Cr mg kg-2

1st Quartile 3.9418
Median 5.5250
3rd Quartile 7.4265
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A-Squared 0.93
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Variance 3.2886
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Statistical SummarySummary Report for Cd mg kg-2

1st Quartile 11.845
Median 13.460
3rd Quartile 17.333
Maximum 21.410

A-Squared 1.70
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Variance 15.298
Skewness 0.422128
Kurtosis -0.894415
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1st Quartile 13.225
Median 17.600
3rd Quartile 23.300
Maximum 24.900

A-Squared 2.35
P-Value <0.005

Mean 18.146
StDev 4.825
Variance 23.282
Skewness -0.04755
Kurtosis -1.61159
N 60

Minimum 10.860

Statistical Summary
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Summary Report for Cr mg kg-2

1st Quartile 4.0348
Median 4.7650
3rd Quartile 5.7300
Maximum 7.5400

A-Squared 1.95
P-Value <0.005

Mean 5.0506
StDev 1.0741
Variance 1.1536
Skewness 0.603657
Kurtosis -0.807795
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Statistical Summary
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Median 4.7300
3rd Quartile 6.7275
Maximum 9.5700

A-Squared 2.72
P-Value <0.005

Mean 5.3533
StDev 1.9839
Variance 3.9359
Skewness 0.725807
Kurtosis -0.793046
N 60

Minimum 2.3300

Statistical Summary
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Summary Report for Pb mg kg-2

1st Quartile 3.347
Median 7.822
3rd Quartile 19.650
Maximum 24.800

A-Squared 4.22
P-Value <0.005

Mean 10.444
StDev 8.244
Variance 67.971
Skewness 0.70255
Kurtosis -1.08887
N 60
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Summary Statistics
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Mean 3.7324
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Variance 0.8764
Skewness -0.13717
Kurtosis -1.35723
N 60

Minimum 2.3300

Statistical Summary
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Summary Report for Cd mg kg-2

1st Quartile 3.9125
Median 4.3950
3rd Quartile 5.9925
Maximum 9.5700

A-Squared 3.21
P-Value <0.005

Mean 5.1978
StDev 1.9045
Variance 3.6272
Skewness 0.894910
Kurtosis -0.350372
N 60

Minimum 2.1100

Statistical Summary

108642

Summary Report for Pb mg kg-2

Fig. 4  Summary statistics by using Anderson–Darling normality test on heavy metals (Cr, Cd, Pb) for three layers of soil, a topsoil, b subsoil 
and c deeper soil
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The increasing number (k) of nearest neighbor points usually 
decreased the coefficients of spatial autocorrelation, follow‑
ing the rule of the less attribute similarity with the remoter 
distance (Table 2). Relatively, higher Moran’s I values were 
found for all metals with the distance band of 4 km in spatial 
weight matrix. However, the distance‑based weight matrix 
was the rational weight matrix for irregular samples (Huo 
et al. 2011). Therefore, distance‑based weight matrix was 
calculated for subsequent spatial autocorrelation analysis of 
heavy metals (Cr, Cd and Pb) which showed positive and 
significant spatial autocorrelation.

An empirical method was used for the selection of spatial 
weight, as well as under a certain distance limit, the same 
weight matrix was assigned to all points of given locations, 
so spatial autocorrelation results for heavy metals had a cer‑
tain impact of these weights (Li et al. 2013b). The results of 
spatial weights showed reasonable influence on the spatial 
autocorrelation of selected heavy metals, if these spatial 
weights were designed based on decay distance.

The Moran’s I scatter plots (Fig. 5) showed spatial interre‑
lationship for all samples of Cr, Cd and Pb, where horizontal 
axis showed standardized values of the neighboring heavy 
metals concentration and vertical axis depicted standardized 
lagged concentration values of given heavy metals. A sig‑
nificant samples portion of these three metals was generally 
clustering in the upper corners and along the line, indicating 
the positive spatial autocorrelation (Huo et al. 2012), and 
showed the complete spatial pattern. A certain part of the 
samples was also representing the negative spatial autocorre‑
lation in the lower right and upper left quadrants, which was 
considered to be ignored. The scatter plot of autocorrelation 
tended to developed more disaggregated with the decrease 
in coefficients of spatial autocorrelation, and some samples 
strongly influenced the global spatial autocorrelation that 
were at far distance from Moran’s I regression line (Golden 
et al. 2015), mainly for Pb and Cr, representing some local 
non‑stationarity in samples points. Therefore, the variability 
in all samples’ spatial patterns should be deliberated.

LISA for local spatial variability and clustering

However, the three heavy metals (Cr, Cd and Pb) had a 
significant positive spatial global autocorrelation. But, the 
LISA is a very interesting spatial analysis which identified 
the local patterns indicating the spatial variability or cluster‑
ing of samples (Li et al. 2014). It was observed that there 
was not any significant spatial pattern for more than half 
of the samples in these metals (Table 3). The significant 
spatial clusters were identified for 25% Cr, about 58.3% Cd 
and 33.3% Pb samples, showing the largest spatial pattern of 
heavy metals. In the soil heavy metals, high–high patterns 
were more than half than the low–low pattern. However, 
the low–low pattern of the three heavy metals dominated 
the overall spatial pattern of the study area. Almost 5–9% 

Table 2  Moran’s I spatial autocorrelation for heavy metals in soil by 
using weight influence

*Significant at p < 0.05

Spatial weights Moran’s I*

Cr Cd Pb

k‑Nearest neighbors 4 .204 .620 .343
k‑Nearest neighbors 5 .309 .597 .311
k‑Nearest neighbors 6 .334 .511 .313
k‑Nearest neighbors 7 .240 .558 .277
k‑Nearest neighbors 8 .203 .497 .246
Distance band .096 .219 .219
First‑order rook contiguity .280 .446 .324
First‑order queen contiguity .280 .446 .324

Fig. 5  The Moran’s I pattern at the weight influence of four neighbors for the distribution of Cr, Cd and Pb in soil
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heavy metals samples had significant spatial outliers, indi‑
cating an overwhelming low–high pattern for Cr, Cd and 
Pb. These three heavy metals indicated significant spatial 
patterns which designated strong ongoing enrichment pro‑
cesses (Yan et al. 2015) of Cr, Cd and Pb in the soils of 
Sheikhupura irrigated by industrial effluent.

Further, the interesting trend of heavy metals was 
detected by LISA maps showing their spatial patterns (Li 
et al. 2014). The northeast (Fig. 6a) region for Pb, southwest 
for Cr (Fig. 6b) and southeast portion for Cd (Fig. 6c) were 
strongly influenced by high–high pattern, these were the 
zones where industrial clusters were found and some nearby 
areas also showed the effluent‑irrigated areas by the indus‑
trial drains (Fig. 1) in the Sheikhupura. Furthermore, it was 
observed that anthropogenic activities had begun to alter the 
low–low spatial pattern (Tang et al. 2013) so high–low outli‑
ers of the three metals were mainly distributed in the western 
region, which were found near low–low spatial clusters. The 
long‑term wastewater irrigation and industrial‑irrigated his‑
tory have been experienced in Sheikhupura areas of central 
and northeast and southeast region of the district with the 
bed drain, Deg Nallah and Niki Deg, which led to heavy 
metal contamination.

Table 3  The spatial distribution of heavy metals pattern (%) in soil

Spatial pattern type of 
LISA

Cr Cd Pb

Not significant 75.0 41.7 66.7
High–high 13.3 28.3 13.3
Low–low 3.3 23.3 6.7
High–low 1.7 3.3 5.0
Low–high 6.7 3.3 8.3

LISA Cluster Map of Pb LISA Cluster Map of Cr 

LISA Cluster Map of Cd

A B 

C 

Fig. 6  The LISA cluster maps of heavy metals (a Pb, b Cr, c Cd) in soil
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However, the LISA map was modeled based on the soil 
heavy metal samples, so it was essential to quantify the 
extent of heavy metals contamination boundaries between 
different spatial patterns. Furthermore, there was a need to 
develop an understanding of pollution zoning for the three 
heavy metals to map the spatial distribution. The disper‑
sals and spatial extent pattern of soil heavy metals could be 
used to demarcate the potential remediation and monitor‑
ing zones. Additionally, the soil contamination indices were 
developed to elaborate the contamination extent in the area 
under study.

Heavy metals contamination indices

The detailed results of Igeo and  MIgeo are shown in Tables 4 
and 5, while the contamination classification schemes for 
these soil contamination indices are presented in Tables 6 
and 7. It was found that mean Igeo and  MIgeo values for Pb 
were less than prescribed class 1 and identified as very less 
contaminated class, and the maximum values of topsoil 
in Igeo and  MIgeo values exceeded slightly from class 1. It 
was found that major sources of lead pollution in soil were 
inorganic metals containing chemicals induced by general 
anthropogenic activities like agriculture, traffic and indus‑
tries (Shakir et al. 2012). The regular irrigation of soil by 
industrial effluents adversely affected the soil quality (Ma 
et al. 2015); this situation increased metal bioaccumulation 
which led to infertility of the soil. Furthermore, the fertile 
soil may change into contaminated and saturated alkaline 
soil due to increasing amount of pollutants (Bolan et al. 
2014).    

The concentration of chromium was found high around 
the loamy drains of tannery waste and adjacent irri‑
gated areas of industrial effluent. There was also a high 

concentration of Cd and Cr in the general contamination 
index (Table 4), along the roadsides and in the vicinity of 
the main drain. The pollution source of Cr and Cd was from 
tannery industry and other chemicals used in industrial 
processes like sodium sulfite, sodium sulfide, ammonium 
chloride, ammonium chloride, hydrogen peroxide, chromate, 
aldehyde tanning agents, sodium bicarbonate, chloride and 
fungicide, and these were extensively used in a variety of 
processes which are very toxic in nature (Mebrahtu and 
Zerabruk 2011). In many studies, a significant positive cor‑
relation was found between the heavy metals in soil and 
industrial effluent which indicated that the transfer of heavy 
metals and source of pollution in soil had considerable rela‑
tion with industrial effluents (Adewuyi et al. 2014).

Spatial distribution of contamination in soil

The spatial extent of Igeo for three major metals (Cd, Cr 
and Pb) in the soil was also demonstrated with interpolation 
maps in Figs. 7, 8 and 9. The interpolation maps revealed 
the spatial distribution of heavy metals (Cd, Cr and Pb) con‑
tamination and their indexed‑based classification in the areas 
irrigated by effluent and drains in the vicinity of the indus‑
trial center (Shaheen and Iqbal 2018). The pollution rate in 
different classes of indices established the comprehensive 
depiction of contamination in the area (Santos‑Francés et al. 
2017a). The maps were developed by evaluating the geosta‑
tistical interpolation methods (EBK) for best‑fitted semivari‑
ogram γ(h) by simulating the iterations for the exponential 
empirical model, and the nugget (error factor) values of the 
given models were very low for the selected variogram mod‑
els (0.26 for Pb, 0.41 for Cd and 0.48 Cd). The low nugget 

Table 4  Results of Igeo index

Soil depth Index ranges Pb Cr Cd

0–15 cm Maximum 01.7 5.50 4.77
Minimum − 0.02 1.66 1.21
Mean 0.47 3.59 2.96

15–30 cm Maximum 0.74 4.80 3.23
Minimum − 0.10 1.09 1.10
Mean 0.27 2.91 2.08

60–91 cm Maximum 0.62 3.60 2.98
Minimum − 0.12 0.65 1.02
Mean 0.22 2.13 1.78

MIgeo Maximum 01.5 4.89 4.52
Minimum − 0.06 1.23 1.13
Mean 0.75 3.57 2.76

Table 5  Improved Nemerow 
index (In)

Soil (cm) Pb Cr Cd

0–15 2.28 4.54 5.68
15–30 1.83 3.69 3.90
15–30 0.65 2.91 1.48

Table 6  Classes of Igeo index

Igeo Class Soil quality

Igeo ≤ 0 0 Uncontaminated
0 < Igeo ≤ 1 1 Uncontaminated to moderately contaminated
1 < Igeo ≤ 2 2 Moderately contaminated
2 < Igeo ≤ 3 3 Moderately to heavily contaminated
3 < Igeo ≤ 4 4 Heavily contaminated
4 < Igeo ≤ 5 5 Heavily to extremely contaminated
Igeo > 5 6 Extremely contaminated
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value in the spatial interpolation model gives a significant 
reliability factor of spatial variability (Turner et al. 2000).   

The spatial extent of the geoaccumulation index showed 
that major pollution content of all three heavy metals was 
around the Nalas irrigated by the different drains of indus‑
trial effluents, i.e., the Wake Nala, Deg Nala, Mandal Nalah, 
Bed Nala and Ferozpura Drain (Figs. 7, 8, 9). Figure 7 shows 

the Pb extent in the (Igeo) which indicated that north and 
southeastern part had 1 < Igeo ≤ 2 class which was moder‑
ately contaminated, while in Fig. 8 Cr (Igeo) showed heavily 
to moderately contaminated (4 < Igeo ≤ 5) area in the north‑
west part, this area was under the effluent irrigation practices 
and major leather and tannery work was processed in this 
area. The Cd (Igeo) was indicated as (Fig. 9) the heavily con‑
taminated in the index (3 < Igeo ≤ 4) around the central and 
slightly southwestern part, which indicated its downstream 
leaching in this area. The improved Nemerow index (IN) 
spatial extent map (Fig. 9) showed the overall contamina‑
tion in the industrial zone of Sheikhupura from all three 
heavy metals, and the major contamination was observed 
near the Deg Nallah irrigation area and its drainage point 
near river Ravi. The soil heavy metal interactions fluctu‑
ate greatly due to complex soil properties and heterogeneity 
of various morphological features resulting from the avail‑
ability of heavy metals, water and pedogenetic processes 
(Alonso et al. 2016).

The comparison of related studies

The aim of this article was to identify the effective and com‑
prehensive model to monitor the soil contamination at the 
spatial scale for better understanding to eliminate the soil 
pollution. The laboratory analytical methods and spatial 
analyses were compared with previous studies (Table 8). 
However, some adaptation and modification always need to 
fulfill the gap and for comprehensive modeling of contami‑
nation in the soil and environmental processes (Fig. 10).  

Table 7  Classes of improved Nemerow index

I(n) Class Soil quality

0 < In ≤ 0.5 0 Uncontaminated
0.5 < In ≤ 1 1 Uncontaminated to moderately contaminated
1 < In ≤ 2 2 Moderately contaminated
2 < In ≤ 3 3 Moderately to heavily contaminated
3 < In ≤ 4 4 Heavily contaminated
4 < In ≤ 5 5 Heavily to extremely contaminated
In > 5 6 Extremely contaminated

Fig. 7  Spatial distribution of  MIgeo of Pb in soil

Fig. 8  Spatial distribution of  MIgeo of Cr in soil

Fig. 9  Spatial distribution of  MIgeo of Cd in soil



4461International Journal of Environmental Science and Technology (2019) 16:4447–4464 

1 3

Conclusion

The present study revealed the extensive effects of the indus‑
trial effluent on the soil contamination levels. The toxic 
heavy metals have enriched the soil by irrigation practices of 
effluent which were ultimately transported to the food chain, 
plant and vegetables. The PCA and FA identified the source 
of contamination as heavy metals and their clustering, while 
global and local Moran’s I identified the distribution pattern 
of heavy metals by using four to eight weight and spatial 
autocorrelation showed that there was strong positive spatial 
autocorrelation. The LISA maps showed that eastern and 
southeastern part was affected by high‑to‑high clustering 
for all three metals which suggested the potential areas for 
contamination hazard. Furthermore, based upon the spatial 
cluster, the soil pollution indices were calculated to quantify 
the extent of contamination. The heavy metals contamina‑
tion was observed at the scale of < 0 to > 5 in six different 

Table 8  Comparison of different analytical features with previous work

Method Technique Description References

Laboratory experimental and analytical methods
Sampling GPS based

Location based
Random sampling
Urban and agricultural sampling

Li et al. (2013c)
Wei and Yang (2010)

Soil sample preparation HNO3 + HCl + H2O2
Soil pellets for LIBS
HF + HNO3 + HClO4

Total heavy metals analysis
Heavy metals digestion

Senesi et al. (2009)
Al‑Farraj et al. (2013)

Heavy metal content (mg/kg) 
observed

ICP‑OESa (iCAP 6000 Series, 
Thermo Electron Corporation) for 
Cd, Cr, Cu, Ni, Pb, V and Zn

LIBSe for Cd, Ni, Fe and Ti ICP‑
OESa (Vista‑PRO, Varian, Inc.) 
for Cu, Ni, Zn, Pb and Cr

GFcAASd 5100 S,  (PEb) for Cd, 
AMA 254 mercury analyzer (Leco 
Corp.) for Hg

a. Inductively coupled plasma opti‑
cal emission spectrometer

b. Laser‑induced breakdown spec‑
troscopy

c. Graphite furnace
d. Atomic absorption spectropho‑

tometer

Senesi et al. (2009)
Zhang et al. (2009)
Rehan et al. (2018)
Iwegbue et al. (2018)
Gopal et al. (2017) and Kan‑

beroglu et al. (2018)

Theoretical analysis and spatial modeling
Multivariate analysis PCA and factor analysis Using SPSS, calculated three factor, 

variance with rotation
Soil landscape pattern

Zou et al. (2015)
Marrugo‑Negrete et al. (2017)

Global Moran’s I GeoDa, pollution hot spot Soil metals pattern Du et al. (2017)
Krami et al. (2013)

LISA Local and global Moran’s I
Moran’s I framework
Spatial modeling

1. Spatial autocorrelation analysis 
of soil pollution data in central 
Taiwan

2. Graphical method
3. Spatial modeling of individual 

arsenic

Chao et al. (2017)
Li et al. (2018)
Chu et al. (2011)

Geoaccumulation index Muller 1979 method rationing of 
background values

Quantification of heavy metals pol‑
lution content

Santos‑Francés et al. (2017a)
El‑Amier et al. (2017)
Liu et al. (2013)

Improved Nemerow index Combined with water index method 
based upon Igeo

For water quality
Soil heavy metals contamination

Zhang et al. (2018)
Guan et al. (2014)

Empirical Bayesian interpolation 
method

EBK method
Comparison of interpolation meth‑

ods with EBK

Metal concentration
For soil components

Yilan et al. (2018)
Bhunia et al. (2017)

Fig. 10  Spatial distribution of INI of heavy metals pollution in soil
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contamination classes. The vegetables and soil irrigated by 
the effluents accumulate elevated levels of heavy metals 
which induced environmental health problems and reduced 
the soil fertility. Although the vegetables cultivated in the 
polluted soil may contain extensively high levels of heavy 
metals (Cd, Pb, Cr), apparently the farmers were ignorant of 
the environmental contamination and possible health hazard 
to the local population. Since this study was on assessment 
of some carcinogenic heavy metals, further investigations 
of heavy metals and their effect on different food plants and 
human health can also be analyzed. The further application 
about the adaptive geospatial soil contamination modeling 
can be point and non‑point soil contamination monitoring, 
modeling and simulation of contamination in different envi‑
ronmental paths. The assessment of these areas can assist 
to develop policies and measures and can be responsive to 
evaluate the pollution processes and spatial variations.
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