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Abstract
A distinctive feature of construction projects is the uniqueness of conditions for their implementation. Therefore, the dura-
tions data of the works are often formulated imprecisely. On the other hand, the time limit for the execution of the works is 
defined in the contract conditions by data indicating the due time and the deadline. These indicate the distribution of time 
values, which the contractor can allocate for the implementation of the construction project in accordance with the client 
preferences. For assessing the compliance of the planned project makespan with the fuzzy time constraint, it is recommended 
to use the fuzzy sets theory. The article presents a method for assessing the level of satisfaction of fuzzy constraint of time 
for the execution of construction works using the probabilistic measure, in conjunction with the concept of α-cuts of a fuzzy 
number. The application of the presented method is demonstrated on a numerical example, which shows the compliance of 
the evaluation results with those obtained with the simulation methods. The article confirms the correctness of the assump-
tions of the presented method, which allows for its use for the formulation and resolving schedule optimization problems in 
the case of imprecisely formulated schedule input data.

Keywords  Construction planning · Fuzzy constraints · Fuzzy scheduling · Probabilistic measure

Introduction

In planned construction projects, there is always a necessity 
to foresee possible completion dates of project in relation 
to deadline imposed by a client. To fulfill this requirement, 
it is required to take under consideration various delay-
ing factors (Ibadov 2016a, b, 2017). Calculated durations 
under influence of those factors are then compared with 
constraints deriving from the project agreement. Therefore, 
predicting possibility of fulfilling required completion dates 
is of key importance for planning construction projects. In 
the literature, there are various methods and techniques for 
calculating duration of construction projects. Chosen meth-
ods and techniques for assessing construction works dura-
tion are presented by Juszczyk (2014) and Rosłon (2017). 
Despite many tools supporting construction management, 
delays keep occurring in construction projects (Głuszak and 

Leśniak 2015). Therefore, there is a constant need for find-
ing relevant methods of defining projects duration underset 
constraints. It is worth stressing that a distinctive feature 
of construction projects is the uniqueness of conditions for 
their implementation. Therefore, the data on durations of the 
works are often formulated imprecisely, for example, “about 
3 weeks,” “2 to 3 weeks,” and the like. To model ill-defined 
durations of the works, fuzzy numbers are used (Kulejewski 
2010a, 2011; Lorterapong and Moselhi 1996). On the other 
hand, the time limit for the execution of the works is defined 
in the contract conditions by data indicating the due time and 
the deadline. These indicate the distribution of time values, 
which the contractor can allocate for the implementation of 
the construction project in accordance with the client prefer-
ences. For assessing the compliance of the planned project 
makespan with the fuzzy time constraint, it is recommended 
to use the theory of fuzzy sets (Dubois et al. 2003). How-
ever, the result of this assessment significantly depends on 
the optimism or pessimism of the planner. This article dem-
onstrates that for the neutralization of assessing the level of 
meeting the fuzzy time constraint, a probabilistic measure 
can be used, in conjunction with the concept of α-cuts of a 
fuzzy number. The research was done in Warsaw (Poland) 
in year 2017.
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Materials and methods

From the methodological point of view, the article con-
cerns uncertainty modeling in planning and scheduling of 
construction projects (with time constraints), with the use 
of mathematical tools—fuzzy set theory and probabilistic 
measure.

In construction industry, during project planning phase 
one has to take into consideration the occurrence of unfa-
vorable events and its consequences (characterized by term 
“risk”). In the scientific literature, it is often underlined 
that risk factors are random and can be described with 
the use of probability theory (in contrast to “uncertainty,” 
which cannot be described in a quantitative way). Such 
approach requires the knowledge on probability distribu-
tion of these factors. However, in construction practice 
it is impossible to assume probability distribution for a 
hypothetical event. That is why, all risk factors for a con-
struction project are subject to uncertainty. Due to this 
fact, the construction manager (decision maker) should 
know that using any probability distribution hypothesis 
for random variables may result in incompatibility of the 
results with actual conditions. In majority of cases, deci-
sion is made while goals, constraints and consequences 
of events (or actions) are not clear. That is why, the use 
of probabilistic methods for planning and scheduling is 
well justified when one knows the probability of possible 
disruptions which may lead to specific results. Due to the 
lack of such possibility, people responsible for creation of 
construction schedules use heuristic knowledge gathered 
thanks to identification of facts and finding dependencies 
between them. The rationale and conclusions of the above 
hypotheses are formulated imprecisely, often with the use 
of concepts specific to colloquial language. For example, 
the occurrence of a selected factor with a given severity 
results in extension of the given work by about 5 days or 
seven to eight working days.

Mathematical basis of the fuzzy sets theory allows 
using imprecisely determined relationships between the 
frequency and intensity of a given disturbance, and its 
effects, to determine fuzzy numbers showing the distri-
bution of possible times of performing individual works.

The existence of such a possibility (in light of the 
imperfection of the probabilistic methods of scheduling) 
has become the reason for the development of network 
model analysis methods with fuzzy durations of activi-
ties, and fuzzy scheduling and project planning methods. 
Numerous articles are devoted to this topic, and various 
authors try to model the uncertainty using fuzzy set the-
ory separately or together with other mathematical tools. 
Worth mentioning is the work of Afsordegan et al. (2016) 
which takes into account linguistic data provided by the 

decision makers without any previous aggregation. Li 
et al. (2015) suggest an interval fuzzy-robust two-stage 
stochastic-robust programming model for management 
in conditions of uncertainty. The model can enhance the 
robustness for the optimization process under fuzzy con-
straints. Some adjustments for decision making in condi-
tions of uncertainty were made by Xu et al. (2012) by 
creation of a compromise optimization model, in which 
total duration of the project is considered to be a fuzzy 
variable. In this model a fuzzy-based adaptive-hybrid 
genetic algorithm is developed to find feasible solutions 
for time–cost–environment trade-off problem for large-
scale construction projects. For various levels of project 
planning, Masmoudi and Haït (2013) developed a solving 
procedure by considering a fuzzy modeling of the work-
load inspired from the fuzzy/possibilistic approach. Ple-
bankiewicz and Karcińska (2016) suggested scheduling 
methods basing on fuzzy values of working time norms 
and employee numbers. The proposed procedure allows for 
determining a real duration of a project taking into account 
various factors affecting durations of single activities. 
Castro-Lacouture et al. (2009) analyzed the implementa-
tion of fuzzy sets in schedule planning when time, costs 
and resources were limited. Each of the above-mentioned 
models supports decision making in the applied field.

Analysis of current scheduling methods that include 
uncertainty (probabilistic methods, fuzzy sets theory 
methods) can lead to the following assumption. Due to the 
uniqueness of construction contract conditions, even for 
the most advanced predictive–reactive scheduling methods 
with use of probability (Herroelen and Leus 2005), subjec-
tive data should be used based on activity duration prob-
ability distribution. However, expert knowledge is rough 
and hypothesis related to entered data for scheduling is not 
explicit, very often with use of verbal definitions. Theory 
of fuzzy sets allows for modeling and processing of data 
which is difficult to be quantified by use of probabilistic 
or statistical methods. According to Kulejewski (2010b), 
existing methods of schedule creation with fuzzy sets 
which are presented in articles by Chanas and Zieliński 
(2001, 2002), Hapke and Słowiński (1996, 2000), Lorter-
apong and Moselhi (1996), Wang (1999, 2002, 2004), 
Slyeptsov and Tyshchuk (2003) do not provide satisfying 
results related to:

•	 calculations of latest completion times and identification 
of critical activities and paths in fuzzy model of con-
struction networks,

•	 assessment of time-constrained compliance level in case 
when activities completion time is not precisely set,

•	 transformation of fuzzy schedule to regular schedule 
with assurance of a level for imprecisely set constraints 
of completion time.
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Taking the above under the consideration, there is a need 
to develop such methods of scheduling which will include 
fuzzy modeling of imprecise planning data and which assure 
the requested level of completion time constraint which is 
set in an imprecise way.

Basic concepts of fuzzy sets theory and uncertainty 
modeling

The following information includes only a part of fuzzy sets 
theory, which is directly connected to this article. The area 
considered in the fuzzy sets theory is a certain non-empty 
space X, which is a non-fuzzy set. In this space, a certain 
set A is fuzzy if elements x ∈ X belong that set with some 
grade of membership μ (Rutkowski 2006). A fuzzy number 
is a fuzzy set A ⊆ R , whose membership function �A(x) is at 
least segmentally continuous, and fuzzy set A is convex and 
normalized. The sum and maximum of two fuzzy numbers 
Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) can be calculated 
using the following equations (Dubois and Prade 1978):

In turn, α-cuts of a fuzzy set A ⊆ X are such non-fuzzy 
set A� (Rutkowski 2006):

Each non-fuzzy set A� can be presented in the interval 
notation [a�

L
, a�

U
] in the following manner:

To compare fuzzy numbers, one can use terms like degree 
of necessity N(Z) and degree of possibility �(Z) for occur-
rence of a specified event Z (Dubois and Prade 1992). Rela-
tions between degrees of necessity and possibility are as 
follows:

where (¬Z) is an event opposite to event Z, �Z(x) is a mem-
bership function Z.

Basic concepts of fuzzy network modeling analysis

In the fuzzy network, modeling analysis durations of single 
activities are fuzzy numbers. Figure 1 shows an example of 
modeling activity duration as trapezoidal number.

Fuzzy critical path method (FCPM) is used for most pro-
jects. The principles of this method are like the conventional 

(1)Ã⊕ B̃ = (a1 + b1,… , a4 + b4)

(2)max{Ã, B̃} = (max{a1, b1},… , max{a4, b4})

(3)A� =
{
x ∈ X ∶ �A(x) ≥ �

}
, ∀�∈[0,1]

(4)a�
L
= inf

x∈R
(A�), a�

U
= sup

x∈R

(A�)

(5)N(Z) = inf
x∉Z

(1 − �Z(x)) = 1 −�(¬Z)

(6)�(Z) = sup
x∈Z

(�Z(x)) = 1 − N(¬Z)

critical path method (CPM) (Soltani and Haji 2007). The 
length of the longest network path (in terms of duration) 
is a so-called critical path of the project. It is important to 
note that there are many flaws of determining a critical path. 
Many articles were devoted to this subject. In order to deter-
mine critical path with fuzzy activities’ durations, authors 
use various methods of ranking fuzzy numbers (Elizabet 
and Sujatha 2013; Chandra and Kumar 2014; Shankar et al. 
2010a, b). The described methods have some flaws. First of 
all, in a case that there are multiple critical paths there is a 
problem in selecting one of the alternative critical durations. 
Furthermore, in previously proposed algorithms an activity 
can have different durations if it is located on several paths, 
which is a major flow of solution. Moreover, there are some 
problems in determining slack.

It seems that the key aspect of fuzzy project planning is 
calculating finish time of the whole project. In this regard, 
Huang, Oh and Pedrycz (2013) propose three fuzzy pro-
gramming models for estimating the overall completion 
time of project. The proposed models are handled through 
techniques that combine mechanisms of fuzzy simulation 
and genetic optimization. In this setting, fuzzy simulation 
is exploited to estimate the value of uncertain functions. 
Khalilzadeh et al. (2017) develop an algorithm for project 
scheduling with fuzzy time and resources. This algorithm 
first calculates the latest start times of activities under fuzzy 
environment and then constructs a feasible schedule by using 
the parallel scheduling method. Taking into consideration 
above-mentioned flaws, the author of this article is sticking 
only to the basic formulas and concepts useful for solving 
the network models presented later in this article.

While modeling a course of the project using a single-
point fuzzy network with finish-to-start dependencies 
between activities, earliest starting times and finish times of 
individual activities can be determined based on the depend-
encies similar to those used in the classic CPM method 
(Chanas and Kamburowski (1981):

(7)�ESj = max
i∈Prec{(j)}

{
�ESj ⊕ D̃i

}

Fig. 1   An example of using a trapezoidal fuzzy number for activity 
duration modeling
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where ẼSj-fuzzy early start time for activity j, Prec{(j)}-set 
of j activity predecessors, ẼFj-fuzzy early finish time for 
activity j, Dj-fuzzy duration of activity j.

Adding fuzzy numbers can be done according to 
Eq. (1). The maximum of fuzzy numbers is determined 
using Eq. (2).

Fuzzy duration of a project can be calculated in the fol-
lowing manner (Lorterapong and Moselhi 1996):

Assessing the compliance with the fuzzy time 
constraint

According to Dubois et al. (2003) and Zadeh (1999), to 
assess the compliance with the fuzzy time constraint one 
should estimate the degree of necessity and the degree of 
possibility of the relationship T̃ ≤ T̃D , where fuzzy number 
T̃  models the estimated construction project makespan and 
fuzzy number T̃D models the fuzzy time constraint. The 
shapes of these fuzzy numbers are shown in Fig. 2.

It should be noticed that the assessment of the possibil-
ity degree of the relation T̃ ≤ T̃D is not complementary to 
the assessment of the degree of occurrence of the opposite 
relation. This means that 𝛱(T̃ ≤ T̃D) need not be equal to 
1 −𝛱(T̃ ≥ T̃D) . For this reason, there is a search in the 
literature for a synthetic indicator, having (in line with 
the intuition of the planner) the property of complementa-
rity. Such a property characterizes a schedule performance 
measure, introduced by Wang (2002) as the schedule risk:

where β is a coefficient, characterizing the level of opti-
mism. It should be noticed that using Eq. (10), the planners 
at different levels of optimism are not unanimous in their 
assessment of the level to meet the fuzzy constraint on the 
construction project makespan.

(8)�EFj =
�ESj ⊕ Dj, j = 1,… , J

(9)T̃ = �EFj

(10)SR = 𝛽𝛱(T̃ > T̃D) + (1 − 𝛽)N(T̃ > T̃D)

Probabilistic assessment of the compliance 
with the fuzzy time constraint

The main idea of the described below method for compli-
ance assessment with the fuzzy time constraint is to use the 
concept of �-cuts of fuzzy numbers T̃  and T̃

D
 to designate 

interval numbers T� and T�
D
 . Those interval numbers are fur-

ther compared with the use of the probabilistic measure and 
probability P(T𝛼 > T𝛼

D
) is calculated. By the aggregation of 

probability P(T𝛼 > T𝛼
D
) calculated for the finite number of 

�-cuts of fuzzy numbers T̃  and T̃
D
 , probability P(T̃ > T̃D) 

is obtained. The probability that the planned construction 
project makespan is no longer than the project makespan 
preferred by the client is:

Figure 3 depicts an example of interval numbers T� and 
T�
D
 designation for some �-cut of fuzzy numbers T̃  and T̃

D
 . 

Choosing a real number t in the interval T� and a real num-
ber td in the interval T�

D
 , one will receive a pair of real num-

bers (t, td). Figure 3 shows that a real number t may take a 
value from one of the subintervals T�

(1)
= [t�

L
, t�

dL
], 

T�
(2)

= [t�
dL
, t�

dU
] or T�

(3)
= [t�

dU
, t�

U
], whereas, a real number td 

will always take value from the subinterval [t�
dL
, t�

dU
] . As a 

result, there may be one of the events Zq such that 
Zq = (t ∈ T�

(q)
, td ∈ T�

D
), q = 1, 2, 3. The events t ∈ T�

(q)
 and 

td ∈ T�
D
 are independent, because:

The probability P(td ∈ T�
D
) = 1. The probability 

P(t ∈ T�
(q)
) can be assessed geometrically, comparing the 

length of the subinterval T�
(q)

 and the length of the subinterval 

T� . On this basis, one obtains:

(11)P(T̃ ≤ T̃D) = 1 − P(T̃ > T̃D)

(12)P(Zq) = P(t ∈ T�
(q)
)P(td ∈ T�

D
)

(13)

P(Z1) =
t�
dL
− t�

L

t�
U
− t�

L

; P(Z2) =
t�
dU

− t�
dL

t�
U
− t�

L

; P(Z3) =
t�
dU

− t�
dL

t�
U
− t�

L

Fig. 2   Fuzzy numbers T̃  and T̃
D

Fig. 3   Example of designation of interval numbers T� and T�
D
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The probability that a real number t chosen from the 
interval [t�

L
, t�

U
] proves to be greater than the real number td 

chosen from the interval [t�
dL
, t�

dU
] is the conditional probabil-

ity P(T𝛼 > T𝛼
D

|||Zq ) . An event Z2 is selected as a real number 

t and a real number td from the same subinterval 
T�
(2)

= [t�
dL
, t�

dU
] . It can therefore be assumed that when the 

event Z2 will occur, the probability that the chosen real num-
ber t will be greater than the chosen real number td, is 
P(T𝛼 > T𝛼

D
||Z2 ) = 0, 5. In the case of occurrence of the event 

Z1, a real number t will be always lower than a real number 
td. Therefore, P(T𝛼 > T𝛼

D
|Z1) = 0. Finally, if the event Z3 will 

occur, a real number t will be always greater than a real 
number td. Therefore, P(T𝛼 > T𝛼

D
||Z3 ) = 1.

The total probability that in the case shown in Fig. 3, a 
real number t chosen from the interval T� will be greater 
than the real number td chosen from the interval T�

D
 is:

In a similar way, one can calculate the probability 
P(T𝛼 > T𝛼

D
) for other cases than the one shown in Fig. 3. 

By aggregating the probability P(T𝛼 > T𝛼
D
) , calculated for 

the finite number of α-cuts of fuzzy numbers T̃  and T̃
D
 , one 

can obtain:

where i is the index of the given α-cut.

Results and discussion

Numerical example

The scope of an exemplary construction project covers the 
finishing works in 6 buildings. Duration of activities is mod-
eled in the form of trapezoidal fuzzy numbers. The network 
model is shown in Fig. 4. Fuzzy durations of works (in work-
ing days) and the planned earliest dates of the execution of 

(14)

P(T𝛼 > T𝛼
D
) =

∑

q

P(Zq)P(T
𝛼 > T𝛼

D

|||Zq ) = 0, 5
t𝛼
dU

− t𝛼
dL

t𝛼
U
− t𝛼

L

+
t𝛼
U
− t𝛼

dU

t𝛼
U
− t𝛼

L

.

(15)P(T̃ > T̃D) =

∑
i 𝛼iP(T

𝛼i > T
𝛼i
D
)

∑
i 𝛼i

works calculated on the base of Eqs. (7) and (8) are given 
in Table 1.

Suppose that the project due time is 25 working days from 
the date of commencement of works. The delay results in 
payment of liquidated damages by the contractor for the cus-
tomer, but if the construction makespan will be greater than 
30 working days, the client will withdraw from the contract 
due to the fault of the contractor. This constraint for the con-
struction project makespan is modeled by the fuzzy number 
T̃

D
= (25, 25, 25, 30) . The fuzzy schedule with early time for 

each activity and time constraints is presented in Fig. 5.
To determine the probability P(T̃ ≤ T̃D) , one can intro-

duce �-cuts of numbers T̃  and T̃
D
 on the levels varying from 

� = 0, 1 to � = 1, 0 , with the grading for example at 0,1. 
For individual �-cuts, one can determine the probability 
P(T𝛼i > T

𝛼i
D
) using Eq.  (14). Then, aggregate the results 

using Eq. (15). Finally, using the Eq. (11), one can deter-
mine the probability of compliance of the planned project 
makespan with the fuzzy time constraint. In this example, 
P(T̃ ≤ T̃D) = 0, 75.

The correctness of the result can be checked by simula-
tion. For this purpose, one can generate random �-cuts of 
fuzzy numbers T̃j , modeling durations of individual works. 
Then for every generated �-cut, determine the lower limit t�

jL
 

and the upper limit t�
jU

 of an interval T�
j
. Also, one can gener-

ate random values of coefficients �j , characterizing the risk 
attitude of a planner. On this basis, it is possible to determine 
the duration of each activity tj:

Then, for each simulation, one should determine the 
earliest start and finish dates for the individual activities 
and for the whole project (project start date was set to 
zero). In a similar manner, one can determine the value 
of the time constraint in each simulation. After the pre-
scribed number of simulations, one should determine 
the relative frequency of cases in which the duration 
of the project does not exceed the project time limit, in 

(16)tj = �jt
�
jL
+ (1 − �j)t

�
jU
.

Fig. 4   Network model of exemplary construction project

Table 1   Fuzzy durations of works and the planned earliest dates of 
the execution of works

Activity Fuzzy duration Earliest start Earliest finish

Start (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
1 (2, 4, 6, 8) (0, 0, 0, 0) (2, 4, 6, 8)
2 (3, 4, 5, 6) (2, 4, 6, 8) (5, 8, 11, 14)
3 (4, 7, 8, 11) (2, 4, 6, 8) (6,11,14,19)
4 (6, 7, 8, 9) (6, 11, 14, 19) (12, 18, 22, 28)
5 (4, 5, 7, 8) (6, 11, 14, 19) (10, 16, 21, 27)
6 (2, 3, 4, 5) (12, 18, 22, 28) (14, 21, 26, 33)
Finish (0, 0, 0, 0) (14, 21, 26, 33) (14, 21, 26, 33)
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accordance with customer preferences. This leads to the 
determination of the probability P(T̃ ≤ T̃D) . In this exam-
ple, after 100,000 simulations, P(T̃ ≤ T̃D) = 0, 75. The 
probability P(T𝛼i > T

𝛼i
D
) , determined analytically for the 

chosen �-cuts of fuzzy numbers T̃ = (14, 21, 26, 33) and 
T̃D = (25, 25, 25, 30) , is given in Table 2.

The results of simulations for the determination of the 
probability P(T̃ ≤ T̃D) are shown in Fig. 6.

The results show the compliance of the assessment using 
the presented method and the simulation method.

Conclusion

The sound literature sources recommend to use the ele-
ments of fuzzy sets theory for assessing the compliance 
of the planned project makespan with the fuzzy time con-
straint. In some cases, such an evaluation may not lead to 
indicating the timing option, which provides a higher level 
to meet the time constraints of construction in accordance 
with client preferences. As a tool to assist decision mak-
ing in such cases, this article presents a method combin-
ing elements of fuzzy set theory and probability theory. 
In contrast to the method of assessing the risk of schedule 
with the measures of necessity and possibility, the presented 
method enables the direct determination of the probability of 
meeting the fuzzy time constraint. The numerical example 
shows the compliance of the assessment using the presented 
method and the simulation method. This confirms the cor-
rectness of the assumptions of the presented method, which 
allows for its use for the formulation and resolving schedule 

Fig. 5   The fuzzy project sched-
ule with time constraints

Table 2   The probability 
P(T𝛼

i > T
𝛼
i

D
)

�
i P(T𝛼

i > T
𝛼
i

D
)

0,1 0,286889
0,2 0,283904
0,3 0,280355
0,4 0,276063
0,5 0,270771
0,6 0,26408
0,7 0,255353
0,8 0,243494
0,9 0,226445
1,0 0,19985
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optimization problems in the case of imprecisely formulated 
schedule input data.
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