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Abstract
Long-term prediction of rainfalls is one of the most challenging tasks in stochastic hydrology owing to the highly random 
characteristics of rainfall events. In this paper, a novel approach is adopted to develop a hybrid regression model for 1-month-
ahead rainfall forecasting at two rain gauge locations (namely: Tabriz and Urmia stations), in northwest Iran. The approach 
is based on the integration of support vector regression (SVR) and firefly algorithm (FFA) that results in truthful rainfall 
forecasts. The proposed hybrid model was trained and validated using weak stationary state of monthly rainfall data obtained 
from the gauges. The efficiency results of the model were also cross-validated with those of stand-alone SVR- and genetic 
programming-based forecasting models developed as the benchmarks in this study. For both rain gauge locations, the results 
showed that the hybrid model significantly outperforms the benchmarks. With respect to the average efficiency results at 
the gauge locations, the FFA-induced improvement in the SVR forecasts was matched by an approximately 30% decrease in 
root-mean-square error and around 100% increase in Nash–Sutcliffe efficiency. Such a promising accuracy in the proposed 
model may recommend its application at monthly rainfall forecasting in the present semiarid region.

Keywords Support vector regression · Rainfall · Time series modeling · Firefly algorithm · Multigene genetic 
programming · Iran

Introduction

Accurate monthly rainfall forecast is required for a number 
of tasks in water resource management such as food produc-
tion, water allocation, and flood risk mitigation. However, 
it is one of the most scientifically and technologically chal-
lenging problems in stochastic hydrology (Mekanik et al. 
2013; Feng et al. 2014). Classic time series modeling such 
as autoregressive integrated moving average (ARIMA) 

and seasonal ARIMA (SARIMA) have been performed for 
monthly rainfall forecasting in earlier studies (e.g., Delleur 
and Kavvas 1978). Although these models are applied for 
stationary state of rainfall series, they are basically linear 
models and have a limited ability to capture highly nonlinear 
characteristics of rainfall series. Moreover, they cannot be 
used for long lead time forecasts and have limited capability 
in monthly rainfall forecasting (Nourani et al. 2009; Delleur 
and Kavvas 1978).

Nowadays, artificial intelligence (AI) methods such as 
artificial neural network (ANN), fuzzy logic (FL), support 
vector machine (SVM), and genetic programming (GP) are 
widely used for rainfall forecasting (e.g., Aksoy and Daham-
sheh 2009; Nourani et al. 2009; Wu et al. 2010; El-Shafie 
et al. 2011; Moustris et al. 2011; Abarghouei and Hosseini 
2016). In spite of desired flexibility of AI methods for time 
series forecasting, recent studies have shown that they are 
not effective methods for long-term rainfall forecasting, par-
ticularly in arid and semiarid regions. Accordingly, applica-
tion of hybrid AI models such as wavelet–ANN (Nourani 
et al. 2009), wavelet–SVM (Kisi and Cimen 2012), and 
adaptive network-based fuzzy inference system (Mekanik 
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et al. 2016) has been suggested. For example, Sivapragasam 
et al. (2001) improved SVM forecasts using singular spec-
trum analysis that decomposes original rainfall series into 
a set of high- and low-frequency components. Nasseri et al. 
(2008) and Saxena et al. (2014) optimized ANN model using 
genetic algorithm (GA) for short-term and long-term rainfall 
forecasting, respectively. Nourani et al. (2009) developed 
a wavelet–ANN coupled model for 1-month-ahead rainfall 
forecasting at Ligvanchai Catchment in Iran and reported 
that the hybrid wavelet–ANN model can accurately predict 
rainfalls in both short- and long-term basis in their study 
region. The reason behind such performance was mainly 
due to the use of wavelet-based multiscale signals that were 
utilized as the ANN input vectors. Kisi and Cimen (2012) 
investigated the performance of wavelet–SVM conjunc-
tion model for 1-day-ahead rainfall forecasting in Izmir and 
Afyon stations in Turkey and demonstrated that the conjunc-
tion method increases the forecast accuracy and performs 
better than the ad hoc SVM and ANN models. Solgi et al. 
(2014) combined wavelet transform with ANN to forecast 
daily rainfall with 1-day lead time in Verayneh station, Iran, 
and the hybrid model was compared with adaptive neuro-
fuzzy interface system (ANFIS). The results showed that 
the WA-ANN is superior to the ANFIS. More recently, a 
new optimization approach called firefly algorithm (FFA) 
algorithm was used by Yaseen et al. (2017b) to improve 
efficiency of ANFIS networks for 1-month-ahead rainfall 
forecasts in Pahang River catchment, Malaysia. The authors 
compared efficiency of their hybrid model (ANFIS-FFA) 
with that of the stand-alone ANFIS using different statistical 
indices and explained that the ANFIS-FFA outperformed the 
ANFIS and could be adopted for the simulation of monthly 
rainfall in their study region.

Both short-term and long-term forecast of rainfalls are 
required to plan, operate, and optimize the activities associ-
ated with water resource systems. Each of them has their 
own benefits and applications. One-month-ahead forecast, 
as a long-term period, is beneficial for many watershed man-
agement applications such as food production, environmen-
tal protection, drought management, and optimal reservoir 
operation (Mekanik et al. 2013). However; short-term fore-
casts, with lead times of hours (up to 24 h) are necessary 
to drive hydrologic models, flood-warning systems, real-
time reservoir operation, and others. The majority of the 
aforementioned studies showed that hybrid models can be 
effectively used for short-term forecast of rainfalls. However, 
only a few studies have investigated the possible application 
of hybrid models for forecast of rainfalls on a long-term 
basis (e.g., Mekanik et al. 2013; Yaseen et al. 2017b), and 
therefore, more studies are still required to identify unpre-
dictable nature of rainfall events. The objective of this study 
is to investigate the possible application of a new hybrid 
model, namely SVR–FFA, for rainfall forecasting with 

1-month lead time at heavily localized areas. To achieve 
this objective, power of FFA optimizer has been used to 
improve the support vector regression (SVR) estimations. 
Two rain gauge stations in northwest of Iran, each having 
25 years observations, are chosen as the case studies. Per-
formance of the proposed model has been compared with 
those of the stand-alone SVR and multigene GP (MGGP) 
models developed as the benchmarks in this study. Although 
the approach adopted in constructing the proposed hybrid 
model (i.e., SVR–FFA) has been recently applied for differ-
ent hydrological forecasting problems such as solar radiation 
forecasting (Shamshirband et al. 2016), velocity estimation 
in sewer pipes (Ebtehaj and Bonakdari 2016), and field 
capacity prediction (Ghorbani et al. 2017), to the best of the 
authors’ knowledge, the potential of SVR–FFA to forecast 
monthly rainfall has never been explored so far. This study 
has been carried out partly at university of Tabriz and partly 
at Near East University in 2017.

Materials and methods

Study area and observed data

The proposed SVR–FFA model is trained and tested 
using the total monthly rainfall (TMR) data from two 
rainfall gauges, Tabriz and Urmia stations, located in a 
semiarid region, northwest of Iran (Fig. 1 left). The data 
were obtained from the Iran Meteorological Organization 
(IRIMO; www.irimo .ir). Mean annual rainfall in the study 
region is about 250 mm with a maximum rate commonly 
in spring months (March to May). Time series of 25 years 
observed TMR data (January 1990 to December 2014) at 
the rain gauge stations are presented in Fig. 1 (right). The 
geographical information of the stations and their statistical 
characteristics are presented in Table 1.

Support vector regression (SVR)

The state-of-the-art SVM (Cortes and Vapnik 1995) is a 
machine learning technique that learns through examples 
to find the best function of classifier/hyperplane to separate 
the two classes in the input space. SVMs are derived from 
the structural risk minimization principle in order to increase 
the generalization capability on the learning machine and 
decrease both the empirical risk and the confidence interval 
of the machine (Raghavendra and Deka 2014). The SVM has 
been proven to be a robust and efficient technique for both 
classification and regression problems in hydrology (e.g., 
Kisi and Cimen 2012; Nourani and Andalib 2015; Olyaie 
et al. 2017; Gizaw and Gan 2016). For the case of regression 
problem, using the sets of x and y as the input and output 

http://www.irimo.ir
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space vectors, the SVM regression (hereafter SVR) function 
is expressed as (Raghavendra and Deka, 2014):

where w is a weight vector, b is a scalar called bias term, and 
� represents a transfer function. This regression problem can 
be considered as the following convex optimization problem 
in order to get an appropriate SVR function f (x).

where �i and �∗
i
 are slack variables introduced to evaluate 

the deviation of training samples outside ε-insensitive zone 
(deviation from the observed target). The parameter C is 
regularization factor that determines the trade-off between 
the flatness of �(x) and the amount up to which the deviation 
ε can be tolerated (Sivapragasam et al. 2001).

In hydrological applications, the relationship between 
the input and output spaces is typically nonlinear. There-
fore, data correlation is found through a nonlinear mapping 
methodology that SVR maps the input space on to some 
higher-dimensional space (feature space) using a kernel 
function. Sigmoid function, polynomial function, and radial 

(1)f (x) = w × �(x) + b

(2)

min
1

2
‖w‖2 + C

n∑
i=1

(�i + �∗
i
)

yi − (w × �(xi) + b) ≤ � + �i
subject to (w × �(xi) + b) − yi ≤ � + �∗

i

�i, �
∗
i
≥ 0, i = 1, 2,… , n

basis function (RBF) are from the basic kernel functions 
commonly used by SVR (Shamshirband et al. 2016). The 
RBF (Eq. 3) is an efficient and adaptable computation for the 
purpose of optimization (Sivapragasam et al. 2001; Kazem 
et al. 2013) Accordingly, it is adopted as the kernel function 
in the present study.

 where x and xi are input space vectors and the γ is the kernel 
function parameter. It is worth mentioning that the accuracy 
of the SVR function f(x) is dependent on the selection the 
regularization factor C, the kernel parameter γ, and insen-
sitive error term ε. Hence, a large number of trials must 
be carried out in order to find the optimum combination 
of these parameters. To cope with this problem, optimal 
values of these factors are determined using the optimiza-
tion algorithm FFA in the present study. Principles of FFA 
are described in the following subsection. For details about 
SVR, the interested reader is referred to Cortes and Vapnik 
(1995).

SVR optimization using firefly algorithm (FFA)

The proposed SVR-FFA is a two-phase (i.e., simulation and 
optimization phases) hybrid model (see Fig. 2) that uses 
FFA optimizer (Yang et al. 2012) to determine optimum 

(3)K(x, xi) = exp
(
−‖‖x − xi

‖‖
2
∕2�2

)

Fig. 1  Location of the rainfall gauges used in this study (Left) and observed total monthly rainfall data at Tabriz and Urmia stations for the 
period 1990–2014 (Right)

Table 1  Geographic and 
descriptive statistics using the 
observations 1990:01–2014:12

*Coefficient of variation

Stations Latitude (°N) Longitude (°E) Elevation (MSL) Min (mm) Max (mm) Mean (mm) CV*

Tabriz 38.05 46.17 1345 0.00 1148.0 204.7 0.990
Urmia 37.40 45.03 1328 0.00 1475.0 257.2 1.110
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values of SVR parameters (C, γ, ε) for monthly rainfall fore-
casts. The FFA is rather a new optimization technique from 
swarm intelligence optimization family that inspired by the 
movement of fireflies and their flashing characteristics. In 
hydrological studies, the technique has been successfully 
implemented to improve efficiency of ANFIS (e.g., Yaseen 
et a1. 2017a, b), ANN (e.g., Deo et al. 2018) and SVM 
(e.g., Ghorbani et al. 2017) methods. In FFA, the collective 
mind-set follows often a very simple rule tested over and 
over and maintained through the collective mind-set of the 
community. The solution of an optimization problem can be 
developed by treating each individual firefly as an agent, in 
which each firefly glows in proportion to its quality but is 

attracted to the brightest firefly, regardless of its gender. This 
makes exploration within the search space more efficient 
than conventional search methods for most of the optimiza-
tion problems under the presumption of swarm intelligence 
(Yaseen et a1. 2017a). Fireflies are attracted toward light 
so that the entire swarm moves toward the brightest (the 
most attractive) firefly. Thus, the attractiveness of a firefly 
is directly relative to its brightness, and therefore, fireflies 
come together more closely around the brightest firefly (i.e., 
optimal solution). The algorithm in FFA is formulated by 
developing the objective function and the variation of the 
light intensity. The Cartesian distance between any two fire-
flies xi and xj (i.e., rij), their light intensity at distance r (i.e., 

Fig. 2  Schematic structure of the proposed SVR–FFA model
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I(r)), and attractiveness β at distance r (i.e., β (r)) are math-
ematically expressed as (Yang et al. 2012):

where γ* is the light absorption coefficient, I0 is the initial 
light intensity of a firefly, and β0 is the attractiveness at the 
distances r = 0. The next movement of firefly i can be rep-
resented as:

where α is coefficient of randomization having a value is 
between 0 and 1 and εi is the random vector that is com-
monly derived from a Gaussian distribution (Yang et al. 
2012).

Multigene genetic programming (MGGP)

GP (Koza 1992) is a generalization for genetic algorithm 
(GA). Since in GA one can manipulate chromosomes that 
represent binary, integer, or real numbers, it is possible to 
create chromosomes, which represent computer programs, 
that conduct evolutionary operations, and thus, they would 
get a program, which solves a particular problem. Among 

(4)rij =
‖‖‖xi + xj

‖‖‖ =

√√√√
d∑

k=1

xi,k − xj,k

(5)I(r) = IO exp(−r2)

(6)�(r) = �O exp(−�∗r2)

(7)xi+1
i

= xi + Δxi

(8)Δxi = �0e
�∗.r2 (xj − xi) + ��i

environmentalists, GP is frequently used as a self-structuring 
AI technique to generate alternative programs to identify the 
underlying system of a environmental process (e.g., Dan-
andeh Mehr et al. 2014b; Shirani Faradonbeh et al. 2016). 
Three major evolutionary operations that conduct GP from 
initial population of random programs (GP trees) to a set of 
desired programs are: reproduction, crossover, and muta-
tion. Reproduction is copying an existing population into 
the new population without alteration. Crossover is replac-
ing chromosomes between desirable parents to produce two 
offspring and mutation is replacing a randomly selected 
node (function or terminal) or chromosomes with another 
node/chromosomes from the initial population (Danandeh 
Mehr and Nourani 2017). Figure 3 illustrates an example of 
crossover and mutation operators to generate two offspring. 
The dashed lines in the parents represent the crossover point 
selected randomly. The third offspring in the figure shows a 
mutated tree in which a terminal node in the first offspring 
(i.e., x1) has been selected randomly and replaced with a new 
terminal node (i.e., x2). The add3, mult3, and sqrt, in the fig-
ure, respectively, denote addition with tree argument, mul-
tiplication with three arguments, and root square functions.

Several advancements for the classic GP (i.e., monolithic 
GP) such as linear GP, gene expression programming, mul-
tigene GP, and fixed length gene GP have been suggested in 
recent studies. In parallel, successful implementations of these 
methods in hydrology have been reported (e.g., Hashmi et al. 
2011; Uyumaz et al. 2014; Akbari-Alashti et al. 2015; Danan-
deh Mehr and Demirel 2016; Ravansalar et al. 2017). MGGP 
(Searson 2015) is one of the most recent advancements of GP 
that linearly combines low-depth GP trees in order to improve 
fitness of the classic GP. In MGGP, predictand variable is 

Fig. 3  An example of crossover and mutation operators acting on GP trees called parents. The dashed lines represent the crossover points in the 
parents
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computed by the weighted outcome of each gene in the multi-
gene chromosome plus a constant value called irregular term 
(bias). For example, a pseudo-linear MGGP chromosome 
shown in Fig. 4 predicts the predictand variable Y using three 
genes comprising three input variables X1, X2, and X3. Math-
ematically, this chromosome can be expressed as:

where d0 is bias term and d1, d2, and d3 are the gene weights 
(i.e., regression coefficients) that are typically determined 
using ordinary least-squares method. Therefore, it can be 
inferred that the MGGP employs the power of classical lin-
ear regression method to capture nonlinear behavior of the 
phenomenon of interest. For details on the theory and appli-
cations of MGGP, interested readers are referred to Searson 
(2015).

Efficiency criteria

Nash–Sutcliffe efficiency (NSE) and root-mean-square error 
(RMSE) have been used as the efficiency criteria in this study. 
These are statistical indices used in the majority of hydrologi-
cal modeling studies (e.g., Danandeh Mehr et al. 2014a, 2015; 
Jalalkamali et al. 2015). The NSE (Eq. 10) is a normalized 
statistic that determines the relative magnitude of estimation 
error against the variance of observed data. It indicates how 
well the predicted and observed data fits the 1:1 line. The 
RMSE (Eq. 11) is a quadratic scoring rule which represents 
the average magnitude of the error. The error is the difference 
of predicted value from the corresponding predictand. Higher 
values for NSE (one for the perfect model) and lower values 
for RMSE (zero for the perfect model) stand for more efficient 
models

(9)
Y = d

0
+ d

1
× 5.25(X

1
− X

2
) + d

2
× (X
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− X
2
(X

3
− X
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3
) + d
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× ((X

1
− X

3
) + X

2
)

(10)NSE = 1 −

n∑
i=1

�
Xobs
i

− X
pre

i

�2

n∑
i=1

�
Xobs
i

− Xobs
mean

�2

where Xobs
i

 = observed value of X (here monthly rainfall), 
X
pre

i
 = predicted value Xobs

mean
 = mean value of observed data, 

and n is the number of observed data.
In addition to these measures, Taylor diagram (Taylor 

2001) was considered to examine concurrently the rela-
tive importance of multiple aspects such as the correlation 
coefficient between observed and predicted rainfall, root-
mean-square centered difference and standard deviation. 
Importantly, Taylor diagram can highlight the goodness 
of different models compared to the observations within 
the same visual graph and, therefore, will complement the 
validity of the statistical metrics outlined in Eqs. (10) and 
(11).

Development of prediction scenarios

Identification of optimal lags (i.e., dominant input space vec-
tors) is an important task in time series forecasting using 
any machine learning techniques. Optimal set of lags may 
lead a technique to create a parsimonious model. In contrast, 
insufficient or redundant lags will produce poorly perform-
ing or highly complex models (Danandeh Mehr and Nourani 
2017). Autocorrelation function (ACF) and/or partial auto-
correlation function (PACF) of time series is commonly used 
in identification of optimal lag for a time series forecasting 
model. Figure 5 shows the ACF, PACF, and the correspond-
ing 95% confidence bands of TMR time series for the lag 
range of 0–50 months in Tabriz and Urmia rainfall gauge 
stations. The figure shows that the ACFs in both stations 
contain an oscillating pattern. They have the appearance of 
a sinusoidal function with a 12-month period (i.e., annual 
periodicity). This means that monthly rainfall at the stations 
is more correlated with its previous year amount than that 
of previous months. Such year-to-year serial dependent of 

(11)
RMSE =

�����
n∑
i=1

(Xobs
i

− X
pre

i
)2

n

Fig. 4  An example of a multigene chromosome involving three genes with maximum depth of four. The mult3 function node denotes multiplica-
tion with three arguments
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monthly rainfall values has been also shown in earlier studies 
(Delleur and Kavvas 1978; Aksoy and Dahamsheh 2009). 
In addition, PACFs show more correlation between the cur-
rent month rainfall and its antecedent values at lag-1, lag-
11, lag-12, and lag-24, respectively. Therefore, 1-, 11-, 12-, 
and 24-month lags have been selected as the extent of lag 
implemented for 1-month-ahead rainfall forecasting in the 
present study.

where Rt represents monthly rainfall at the present time 
month t. The indices t-1 and t-11 are referred to as 1-month 
and 11-month lags and so on. The �t is bias (noise) term.

(12)Rt = f
(
Rt−1,Rt−11,Rt−12,Rt−24, �t

)

Results and discussion

In system identification process using AI methods, before 
data mining itself, a data preprocessing approach is com-
monly applied to make input/output variables dimensionless 
and put them within a certain range. Moreover, certain types 
of data preprocessing methods can remove nonstationary 
features of data. The type of data preprocessing approach 
suggested by Delleur and Kavvas (1978) was applied in this 
study. To this end, the benchmarks (i.e., SVR and MGGP) 
and SVR–FFA models were trained and verified using TMR 
series after the series were square-root-transformed and then 

Fig. 5  ACF and PACF of TMR 
samples in Tabriz and Urmia 
stations
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standardized so that they have zero mean and unit variance. 
It has been shown that subtracting the monthly means essen-
tially removes the trend in the mean and variance and yields 
a time series having weak stationary states which is satisfied 
for practical purposes (Delleur and Kavvas 1978). After data 
preprocessing, the first step in developing SVR, MGGP, and 
SVR–FFA models is to determine the range of training and 
unseen testing data sets. The TMR series includes 25-year 
observations (see Fig. 1b). The first 2 years (i.e., 1990–1991) 
at each gauge have been considered as the years required 
to generate necessary lags for the time series (see Eq. 12). 
Therefore, the observations from January 1993 to December 
2011 were selected for training the models. After creating 
the best models at each gauge, separately, the models were 
tested using the holdout TMR series at the testing period 
2012–2014.

To obtain the best MGGP model and suitable values for 
SVR parameters (C, ε, γ) at each station, the RMSE is used 
as the fitness function. In addition to TMR series, to attain 
the best MMGP model, a set of random constants in the 
range of [− 2, 2] were chosen as members of the terminal set 
in this study. Neglecting the potential complexity of evolved 
models, effect of various primitive functions is tested in 
order to find the best-fitted MMGP model. This step has 
been accomplished by trial-and-error method, and the results 
showed that beside the basic arithmetic operations (+, −,  × , 
and /), trigonometric (including sin, cos, and tan) and power 

functions play an important role in MGGP model. These 
functions were, therefore, considered as the other members 
of function set for MGGP runs. The other parameters/meth-
ods used for MGGP setup are given in Table 2. As shown 
in the table, the mutation transform has been applied with 
relatively high rate. The reason behind is the fact that the 
MGGP is dealing with very complex and nonlinear datasets, 
and the searching algorithm tends to converge very fast. To 
cope the problem, choosing such high mutation rate, new 
genetic materials are tried to bring in population set at each 
generation. Accordingly, MGGP could achieve a population 
diversity as much as possible.

As previously mentioned, in both SVR and SVR–FFA 
models, the RBF was used as the kernel function. The initial 
values of SVR and kernel parameters (i.e., C, ε and γ) for the 
best stand-alone SVR model were obtained by grid search 
approach in the training data set as suggested by Ghorbani 
et al. (2017). The approach tries to find an appropriate value 
for each parameter across a specific range in regard to RMSE 
at training period. This approach suggested that the SVR 
models with the parameters of (150.095, 0.091, and 50.270) 
and (0.775, 0.128, and 3.215) performed well for Tabriz and 
Urmia stations, respectively. As previously described, these 
parameters were subjected to be optimized using FFA in 
the SVR–FFA model. Accordingly, the optimal values of 
the parameters were estimated to be (76.47, 1.3, and 24.27) 
and (10.56, 0.8, and 6.49) in Tabriz and Urmia stations, 
respectively.

A comprehensive comparison among the efficiency 
results of the best evolved MGGP, SVR, and SVR–FFA 
models at each station is presented in Table 3. According to 
the results, the SVR–FFA provides better fit than both SVR 
and MGGP models in both Tabriz and Urmia stations. The 
FFA-induced improvement in SVR predictions was matched 
by an approximately 30% decrease in regard to RMSE and 
100% increase in regard to NSE. This is due to the depend-
ency of the optimal solution of SVR in finding the suitable 
parameters for kernel function. The performance of the 
MGGP model is comparable with SVR–FFA in Tabriz sta-
tion, and it is superior to stand-alone SVR in both stations. 
But the proposed FFA–SVR model is still superior to the 
benchmark models in both stations.

Table 2  Parameter setting for the MGGP runs

Parameter Value

Population size (chromosome) 1000
Mutation rate % 25
Crossover rate % 95
Reproduction rate % 20
Maximum genes (trees) 5
Max tree depth 6
Max nodes per tree Infinitive
Number of random constance Infinitive
Initialization Ramped half and half
Selection method Fitness proportionate

Table 3  Goodness-of-fit results 
of the best MGGP, SVR, and 
SVR–FFA models for monthly 
rainfall forecasting at Tabriz and 
Urmia rain gauge stations

Rain gauge station Model Training Testing

RMSE (mm) NSE RMSE (mm) NSE

Tabriz MGGP 156.4 0.428 145.0 0.410
SVR 168.9 0.333 170.4 0.183
SVR–FFA 120.6 0.661 122.8 0.593

Urmia MGGP 221.0 0.392 247.9 0.272
SVR 231.9 0.331 276.6 0.097
SVR–FFA 165.5 0.659 206.9 0.493
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To spatial assessment of the models’ performance, the 
efficiency results of each model at different locations were 
compared. The results show that all the models provide more 
truthful predictions in Tabriz station. For example, the NSE 
values of the SVR–FFA models in Tabriz and Urmia stations 
are 0.593 and 0.493, respectively. This means that TMR pre-
diction in Tabriz station is perhaps easier than Urmia sta-
tion. The reason behind might be related to the more limited 
range of rainfall amounts in Tabriz station as shown by the 
relatively lower coefficient of variation in this station (see 
Table 1).

In order to further investigate performance of the models, 
the observed and predicted monthly rainfall time series at 
the testing period are shown in Fig. 6. The figure also shows 
comparative scatter plots between the results obtained by the 
SVR–FFA model and the measured values during the testing 
period. According to the time series plots, all the models 
more or less are capable to capture the oscillating pattern of 
the observed rainfall events. The SVR–FFA model is more 
efficient in finding both local and global maxima compared 
to the benchmarks. This result is consistent with previous 
studies (e.g., Shamshirband et al. 2016) that justify the 

importance of FFA optimization in providing a better cali-
bration for SVR model. Although the proposed SVR–FFA 
model significantly improved SVR forecasts and the results 
are better than those of the MGGP models, the scatter plots 
illustrates that the obtaining results are not at the desired 
level of accuracy. There is still room for more studies to 
develop more precise models for long-term rainfall forecast-
ing in the study region.

Further to the common performance evaluation criteria, 
Taylor diagrams were depicted to summarize the overall 
performance of the models by identifying the pattern cor-
relations, variability, and RMSE between the models and 
observed data. Figure 7 shows the Taylor diagrams of the 
TMR results of both the observed and three models for both 
training and testing sets. The modeling results in Tabriz sta-
tion (Fig. 7a) indicates the pattern correlation of the fore-
casts with the observations lies in the range 0.55–0.85 and 
0.35–0.65 at training and testing period, respectively. The 
models usually demonstrate lower performance in the train-
ing and higher performance in the testing period. The SVR 
and SVR–FFA exhibit the lowest and highest pattern cor-
relation for training and testing periods, respectively. The 

Fig. 6  Observed and predicted total monthly rainfall: a Tabriz station and b Urmia station. The scatter plots were given only for the SVR–FFA 
model
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variability in the MGGP is larger compared to the other 
model forecasts. On the other hand, the SVR results in 
the highest RMSE in both training at testing periods. As 
expected, the SVR–FFA forecasts in Urmia station reveal 
a fairly good agreement of the model estimations with the 
observations (Fig. 7b). The model has the highest pattern 
correlation (about 0.86 and 0.75 at training and testing 

periods, respectively) as well as the lowest normalized 
RMSE (about 0.60 and 0.85 at training and testing periods, 
respectively). Similar to the MGGP results in Tabriz sta-
tion, it is clear that the MGGP forecasts have the closest 
variation with the observations, most likely because of the 
high mutation rate that brings new genetic materials at each 
generation and the MGGP can achieve a population diversity 

Fig. 7  Normalized Taylor diagrams displaying differences within pattern statistics of prediction models and observations at a Tabriz station and 
b Urmia station
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adequately. With respect to the results of Taylor diagrams at 
both stations, it can be said that SVR–FFA gives more con-
sistent forecasts in terms of pattern correlation and RMSE. 
However, MGGP achieves generally better variability with 
regard to that of observed data.

Conclusion

In this study, the potential of SVR, MGGP, and newly devel-
oped SVR–FFA models were investigated to forecast TMR 
amounts in two rain gauges located in a semiarid region, 
Iran. The models were constructed for 1-month-ahead fore-
casting scenarios at each gauge so that 1-, 11-, 12-, and 
24-month lags of observed monthly rainfall time series 
were used as input variables for modeling. To cope with 
the nonstationary feature of the observed TMR series, the 
original rainfall datasets were transformed using square root 
function and then standardized so that they have zero mean 
and unit variance.

Referring to the efficiency results of the SVR–FFA 
model, it can be inferred that the proposed model has higher 
ability than SVR and MGGP models to capture nonlinear 
feature of monthly rainfalls in the present region. Indeed, 
utilization of the FFA as an add-in optimizer in SVR model 
led to a significant improvement in the predictive accuracy, 
presumably owing to the optimal values of SVR parameters 
attained in the hybrid model. These results are in accord 
with earlier studies that demonstrate FFA may enhance fea-
ture extraction capability of other data-driven techniques 
(e.g., Yaseen et al. 2017a, b; Deo et al. 2018).

Returning to the literature, it should be reminded that 
neither stand-alone ANN (Aksoy and Dahamsheh 2009) nor 
SVR (Feng et al. 2014) was able to forecast monthly rainfalls 
with a desired level of accuracy in semiarid to arid regions. 
These results emphasize the complexity of monthly rainfall 
forecasting in arid regions. In spite of the higher accuracy 
of the SVR–FFA model, there is clearly room for more 
research on long-term forecasts of rainfalls, particularly in 
arid regions. The reason behind may rely on intermittent 
structure of the rainfall sequences as well as the high non-
stationary feature of monthly rainfall series.

This study was limited to (1) 1-month-ahead forecast-
ing scenario, (2) observations from semiarid region; and 
(3) weak stationary conditions of observed monthly rain-
fall series. To more efficiently use of rainfall predictions 
for many water resource applications, one way for future 
investigation could be examining the ability of SVR–FFA 
model to forecast monthly rainfall magnitudes in other cli-
matic regions. Moreover, efficiency of the adopted method 
could be investigated for rainfall forecasts with higher lead 
times. From the standpoint of model improvement, future 

studies would also consider the effect of various data pre-
processing approaches such as wavelet decomposition on the 
efficiency of SVR–FFA- or MGGP-based monthly rainfall 
prediction models.
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