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Abstract In liner shipping, the objective of a shipping

company is to gain profits with a certain number of dis-

patched vessels and shipping costs depending on the

shipping line conditions and market trends. In view of the

current need to address global warming and reduce carbon

emissions, the issue of greenhouse gases produced by

shipping line operations should be considered in addition to

profits. This study applied centralized decision making

involving centralized data envelopment analysis for opti-

mal resource allocation for each shipping line in order to

achieve optimal output and undesirable output levels with

reallocation of resources while using currently available

resources. In the empirical analysis, this study sought to

verify the resource allocation model for the intra-Asia lines

of a Taiwanese shipping company by using the network

centralized data envelopment analysis. The results showed

that the proposed model provides shipping line operators

with information on the amounts by which they should

reduce undesirable outputs (carbon emissions), increase

line revenue and revenue TEU-nautical mile, and reallocate

resources. As such, the model can serve as a guide for

resource allocation in shipping lines.

Keywords Network data envelopment analysis �
Centralized decision making � Shipping liner � Resource
allocation

Introduction

The growth of the international container shipping industry

in the past decade is impressive. It now transports more

than one-third of the value of global trade and provides

more than 4.2 million jobs (World Shipping Council 2017).

Like most transportation modes, however, the shipping

industry contributes to pressure on the environment at

various spatial levels and has a heavy social and environ-

mental footprint. Environmentally motivated regulations

are likely to become the most important cost driver in the

coming years (BSR 2010). This will put more pressure on

international container shipping lines to increase sustain-

ability performance, which may necessitate reallocation of

resources. An issue of considerable importance, from both

a practical cost reduction standpoint and environmental

protection perspective, involves the reallocation of

resources or costs of a set of shipping lines in an efficient

manner.

Research has been done on resource allocation in dif-

ferent fields. According to the resource-based theory pro-

posed by Barney (1991), enterprise resources include

physical capital (factory buildings, equipment, geographic

location, and raw materials), human capital (technologies

and staff’s knowledge), and organizational capital (orga-

nizational structure and management systems). In liner

shipping, the main resources are shipping costs, human

resources, and the number of vessels. Shipping companies

aim to gain profits under a certain number of dispatched

vessels and shipping costs depending on the shipping line
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operational conditions and market tendencies. However,

when shipping costs are adapted to the shipping line

operational conditions, the proportions of allocated

resources are indeterminate. Therefore, shipping compa-

nies face the issue of how to ensure efficient resource

utilization and maximize their outputs by allocating limited

available resources across shipping lines.

Apart from general inputs and desirable outputs, unde-

sirable outputs are usually jointly produced with desirable

outputs. Desirable outputs are general outputs that an

operator desires or needs, whereas undesirable outputs

refer to outputs that are not favored by an operator, such as

pollution and noise produced during the production process

(Seiford and Zhu (2002), Guo et al. 2011 and Cherchye

et al. 2015). Due to the greenhouse effect, global climate

issues have been escalating in recent years. Environmental

hazards have been gradually affecting society. Countries

have been implementing measures aimed at sustainable

development of the environment, as well as regulations

restricting the increased greenhouse gas emissions world-

wide. Examples of such regulations are the United Nations

Framework Convention on Climate Change (UNFCCC)

and the Paris Agreement on greenhouse gases including

water vapor, carbon dioxide, methane, nitrous oxide, ozone

and some artificial chemicals such as chlorofluorocarbons

(CFCs). In recent years, CO2 emission reduction has been

taken as an important research issue in the areas of trans-

portation and logistics. Several previous studies have

investigated the greenhouse gas issues such as CO2 emis-

sion reduction in transportation, supplier selection with

environmental concerns, etc. Ketelaer et al. (2014) identi-

fied the subsectors of commercial transport with fewer

obstacles to implementing use of electric vehicles, such

that the effectiveness of CO2 reduction can be easily

achieved. As a result, Ketelaer et al. investigated the

electric vehicle market’s potential. Lee et al. (2014) indi-

cated that car sharing can positively contribute to the

environment and society, and identified the points where

car sharing is most appropriate in a small city, based on

estimates of CO2 emission reduction. Kamruzzaman et al.

(2015) estimated the CO2 emission of residents in rural

areas by using their travel behaviors, and identified the

reasons for less CO2 emission by certain groups of resi-

dents. Based on green supply chain management, Kuo et al.

(2015) developed a multi-criteria decision-making

approach for supplier selection from the perspective of

carbon management. Celik et al. (2016) also developed an

integrated multi-criteria decision-making approach which

considered the environment related factors for supplier

selection to appraise the logistics service providers.

Pollutants emitted by vessels, such as carbon dioxide

(CO2), nitrous oxide, and sulfide emissions, are considered

undesirable outputs in the maritime industry. In 2009, the

International Maritime Organization (IMO) published a

study on greenhouse gas emissions and drafted related

indices. The Maritime Environment Protection Committee

(MEPC) of the IMO proposed the Energy Efficiency

Operational Index (EEOI) to evaluate carbon emissions

during shipping, and the use of ship technologies and

operation methods to reduce greenhouse gas emissions

(Second IMO GHG study 2009). Green shipping is the

expected future tendency in container liner shipping, as it

allows energy saving and carbon reduction, while com-

plying with regulations and meeting customers and stake-

holders’ needs.

Selected undesirable outputs have differed depending on

the research subject. Most studies have determined unde-

sirable outputs by focusing on industrial manufacturing

processes (Borgheipour et al. 2017). Pollutants emitted by

vessels, such as CO2, nitrous oxide, and sulfide emissions,

are considered to be undesirable outputs in the maritime

industry. The high complexity of the notion of sustainable

development requires new method for operation analysis

and measurement of production units. A major concern is

how to improve our existing shipping lines’ operations to

better take into consideration both production performance

and ecological issues. The main problem in developing

eco-efficiency indicators is the lack of measures like mar-

ket prices for emissions. Some of these difficulties can be

overcome by using data envelopment analysis (DEA) for

efficiency measurement (Korhonen and Luptacik 2004).

However, liner shipping services cannot be stored, and

output consumption may be substantially different from

output production. For example, the available capacity of a

vessel assigned to a shipping line may not be fully utilized

(i.e., not all capacity is used), which means the available

capacity is not the same as the service that is actually

utilized. Traditional black-box DEA models are unable to

examine the efficiency of the production and consumption

divisions (or processes) independently or the impact of the

production process on consumption and overall shipping

line operations. Such an analysis is essential in order to

understand the specific processes which contribute to

inefficiencies in shipping lines. Network DEA (NDEA)

models go beyond the traditional black-box model and

allow computation of divisional efficiencies in addition to

the overall operational efficiency for shipping line opera-

tions (Färe and Grosskopf 2000). A main advantage of

DEA is that it does not require any prior assumptions on

the underlying functional relationships between inputs and

outputs. In primary DEA or NDEA models, the major goal

was evaluating the efficiency of the decision-making units

(DMUs). Since resource allocation is an important issue in

the management of corporations, recently, Golany (1988),

Thanassoulis and Dyson (1992) and Athanassopoulos

(1995, 1996, 1998 have introduced models for assessing
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targets and allocating resources based on the DEA

approach. Most of the previous studies applied the black-

box centralized data envelopment analysis (CDEA) models

to optimize the resource utilization of all DMUs across the

total entity, which implies that each DMU produces its

services using identical technology. To accommodate non-

storable characteristics of liner shipping, and assuming that

the role of a shipping company is to possess and provide

each shipping line with resources, this paper reviews the

involved factors and proposes a two-stage network CDEA

(NCDEA) model by integrating the two-stage NDEA and

CDEA of resource allocation for internal lines of a ship-

ping company in Taiwan in the period of 2013.

Although DEA has been applied in some studies to

analyze operating performance of internal lines of ship-

ping companies, it has rarely been used for resource

allocation. The contributions of this study to the literature

are, firstly, that it proposes a two-stage NCDEA model

which combines network DEA and CDEA to build a

model of resource allocation for internal lines of a ship-

ping company. Secondly, in the shipping industry, carbon

emissions, which are a kind of undesirable output, are

non-separable from energy resource consumptions. Car-

bon emission reductions are proportional to energy

reductions. Thus, emission resistance in a two-stage pro-

duction system is imposed on the two-stage NCDEA

model. Thirdly, lines of a shipping company cannot be

investigated in the same manner as general liner shipping

performance, in which all inputs are seen as specific

inputs leading to the production of shipping line final

outputs. In the proposed model, not only were carbon

emissions in shipping lines considered to be undesirable

outputs, but shared inputs are also shared among lines of

a shipping company, since some input items are not able

to be specifically attributed to each shipping line. Without

separating shared and specific inputs, measuring liner

shipping performance is not reasonable. Thus, inputs in

this study were divided into three types, namely shared,

specific, and energy inputs. Shared inputs refer to

resources shared by shipping lines which cannot be

identified as being used by one specific line. Specific

inputs refer to resources that can be classified as used by

a specific line. Energy inputs are ones related to unde-

sirable outputs.

The remaining sections of this study are organized as

follows. ‘‘Literature review’’ section presents the literature

discussion. ‘‘Preliminaries’’ section introduces basic two-

stage NDEA and CDEA approaches. ‘‘Two-stage NCDEA

resource allocation model’’ section explains the proposed

two-stage NCDEA model of resource allocation in ship-

ping lines. ‘‘An empirical illustration using data from a

Taiwanese liner shippingcompany’’ section presents an

empirical analysis of Asian lines of a Taiwanese shipping

company. Conclusions of this study and suggestions are

given in ‘‘Conclusion’’ section.

Literature review

Conventionally, managers find it difficult to assess perfor-

mance when multiple inputs and multiple outputs are

involved, especially when the relationships between the

inputs and outputs have trade-offs between each other

(Sueyoshi et al. 2009). DEA is a mathematical programming

approach for evaluating the relative efficiency which uses

multiple inputs to produce multiple outputs. The DEA

approach is well suited to helping management examine the

performance of individual DMUs. In recent years, DEA has

been used to evaluate activities as varied as innovation risk

management in production systems (Arabshahi and Fazlol-

lahtabar 2017), as well as efficiency and effectiveness in

railways (Perelman and Pestieau 1988; Yu and Lin 2008),

airports (Oum and Yu 2004; Yu and Hsu 2012), public

transportation (Viton 1997; Karlaftis 2004) and sea ports

(Cullinane et al. 2006). In the shipping liner industry, Seok’s

(1996) study on the financial operating performance of

shipping companies analyzed such financial indicators as

operating costs, operating revenue, total assets, long-term

liabilities, retained earnings, return on sales, return on

equity, and return on assets. Panayides et al. (2011) mea-

sured the relative market and operating efficiency of com-

panies in the dry bulk, wet bulk and container shipping

industries by using both DEA and stochastic frontier anal-

ysis models. Bang et al. (2012) investigated the impact of

strategic and operational management on efficiency per-

formance by using a two-stage DEA model. The results of

the analysis provided container shipping companies with

information on the managerial and strategic implications of

how managerial options influence operational and financial

performance. Gutiérrez et al. (2013) also applied the two-

stage DEA model to measure the efficiency of major inter-

national container shipping lines (CSLs) and evaluate the

effects of the global economic crisis on CSLs. Although the

use of DEA to measure the relative efficiency of container

shipping lines is increasing rapidly, most DEA studies

related to container shipping have been undertaken with

firm-level data, which measures the overall performance of

the units of observation. Their black-box DEA models only

reflect the underlying technology and knowledge of the

relationship between the inputs and final outputs.

It is worth noting that, since transportation services

cannot be stored, output consumption may be substantially

different from output production. Inspired by Fielding

(1987), some recent studies have essentially distinguished

efficiency from effectiveness under an input–intermediate

product–consumption scheme to completely elucidate the
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non-storable commodities production process (e.g., Yu

2008). According to Hwang and Kao (2006), in a black-

box-based DEA model, all inputs go through the ‘‘black-

box’’ production process, resulting in final outputs. Anal-

ysis of such ‘‘black-box’’ performance can demonstrate the

overall performance of each DMU, while failing to

examine performance at each production stage in the

overall production process. Due to the fact that the capacity

provided by a shipping line will be lost if it is not used by

customers, this study employed two-stage network NDEA

based on the transportation industry performance evalua-

tion framework (Fielding 1987), which includes production

efficiency, service effectiveness and operational efficiency

(Yu 2008). Omrani and Keshavarz (2016) illustrated a

supply chain network of a shipping company with the input

and output variables associated with each member of the

supply chain, in which the relational NDEA models are

used for measuring the performance of a supply chain and

its members. In the traditional DEA or NDEA models, each

DMU is projected independently, in either an input-ori-

ented or output-oriented fashion. However, operations in

large organizations with a centralized decision-making

environment like shipping companies usually involve the

participation of more than one individual shipping line,

each contributing a part of the total production.

In liner shipping, resources of a shipping company

include shipping costs, human resources, and the number of

vessels. The modern shipping industry is characterized by a

trend toward larger vessels and development of shipping

strategic alliances. Despite the increased efficiency of lar-

ger vessels and alliances, shipping companies spend a great

amount of resources in acquiring them, which can lead to

losses due to diseconomies of scale if the market supply is

greater than the demand. Moreover, due to resource scar-

city and, thus, lack of resources that could be used, it is

very important for a shipping company to allocate resource

inputs wisely across its lines and ensure their efficient use.

In the traditional DEA model, each operating unit could

estimate its own individual targets. However, this decen-

tralized scenario is presumably inappropriate for a cen-

tralized organization in which a centralized decision-maker

(DM) wishes to optimize the performance of the system of

units as a whole. The local managers may accordingly

focus on different principles for decision-making such as

individual goals and strategies which might not be optimal

for a centralized DM. There have been some previous

approaches in the literature that handle the DMUs in a joint

manner (Golany et al. 1993; Golany and Tamir 1995;

Athanassopoulos 1995, 1998; Kumar and Sinha 1999;

Beasley 2003). One drawback of their approach, apart from

the heuristic or ad hoc character and the fact that they are

complex or have additional restrictions, is that no one has

developed an appropriate incentives system which is a

simple, intuitive, general centralized resource allocation

model and which can encourage the local management of

each unit to act in a way which aims at a global objective of

minimizing total input consumption (or maximizing total

output production) for the organization as a whole.

CDEA suggests that a centralized DM owns or super-

vises all DMUs and provides them with resources; the DM’s

goal is to seek the optimization of resource utilization of all

DMUs in an organization. After Lozano et al. (2004) first

introduced the concept of CDEA, which optimizes the total

resource consumption across the total entity, a number of

studies about CDEA applications for resource allocation

have been published (Lozano and Villa 2004, 2005;

Korhonen and Syrjänen 2004; Asmild et al. 2009; Lozano

et al. 2011; Fang 2013; Yu et al. 2013; Mar-Molinero et al.

2014; Chang et al. 2015; Fang 2013; Fang and Li 2015).

Furthermore, carbon emissions in shipping have attracted

increased attention from the IMO and countries all over the

world, and regulations have been introduced with regard to

greenhouse gas emissions. Lozano et al. (2009) established

a CDEA model for resource allocation which treated envi-

ronmental hazards as undesirable outputs. Li et al. (et al.

2013) examined the input reduction, desirable output

reduction and undesirable output reduction in a multiple

objective CDEA model. Tohidi et al. (2014) proposed

CDEA models to assess the overall efficiency of a system

consisting of DMUs when DMUs produce desirable and

undesirable outputs. Wu et al. (2013) further considered

both the desirable and undesirable outputs in allocating the

given resources in the next period. However, the previous

studies did not consider impacts of the relationship between

carbon emissions and energy inputs on the production

process, or production heterogeneity in the presence of two-

stage production processes.

Materials and methods

Preliminaries

Two-stage NDEA approach

It is assumed that there are NDMUs to be evaluated in terms

of I inputs, S intermediate outputs, R desirable outputs and

T undesirable outputs. Let xij(i = 1, 2, …, I), zsj(s = 1,

2, …, S), yrj(r = 1, 2, …, R)and utj(t = 1, 2, …, T) repre-

sent the input of the production process, intermediate outputs

produced by the production process and used as inputs for

the service process, and desirable output and undesirable

output values produced by the service process of

DMUjj(j = 1, 2, …, N), respectively.

The overall efficiency of DMU k can be estimated by

the following slack-based measure (SBM) DEA model:
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where sik
-, srk

?, and stk
b- are input, desirable output and

undesirable output slacks, respectively, while kj and lj are
the intensity variables associated with production and

service technologies, respectively, for each DMU.

A DMU is considered to be efficient overall when qk is

equivalent to 1 and it has zero input, desirable output and

undesirable output slacks. Otherwise, the DMU is called

inefficient. If the underlying technology is variable returns

to scale (VRS) for both production and service tech-

nologies, we could impose the constraint
P

j=1
N kj = 1

and
P

j=1
N lj = 1 on the production and service tech-

nology, respectively, in Model (1–8) to obtain the VRS

model. Figure 1 illustrates such a scheme for transport

service evaluation in which three performance measures

are identified.

Centralized DEA based on a one-stage DEA

approach

Let us consider a set of N DMUs, with each DMU con-

suming I inputs to produce R outputs. j, j
0
= 1, 2, …, N is

the index for the DMUs; i = 1, 2, …, I is the index for

inputs that need to be reallocated; r = 1, 2, …, R is the

index for outputs that need to be increased; and

f = 1, 2, …, F is the index for unadjustable inputs. Fur-

thermore, xij is the amount of adjustable input i consumed

by DMUj; yrj is the quantity of output r produced by

DMUj; and xfj is the amount of unadjustable input f con-

sumed by DMUj. It is assumed that there are units under

control by a centralized decision-maker. The central deci-

sion-maker aims to reallocate the adjustable inputs to all of

the units operating under the central unit in such a way that

the total outputs will be maximized. The centralized

resource-allocation model based on a one-stage DEA

approach is formulated as the following linear program:

Phase I: Maximum expansion of outputs

max
XR

r¼1

/r ð9Þ

Xn

r¼1

Xn

j¼1

kðIÞ
jj
xij �

XN

j0¼1

xij0 ; i ¼ 1; . . .; I; ð10Þ

XN

j¼1

kðIÞ
jj0
xij � xij0 ; j

0 ¼ 1; . . .;N; i ¼ 1; . . .; I; ð11Þ

Xn

j¼1

kðIÞ
jj0
xfj � xfj0 ; j

0 ¼ 1; . . .;N; f ¼ 1; . . .;F; ð12Þ

XN

j0¼1

XN

j¼1

kðIÞjj0 yrj �/r

Xn

j0¼1

yrj0 ; r ¼ 1; . . .;R; ð13Þ

Xn

j¼1

kðIÞjj0 yrj � yrj0 ;r ¼ 1; . . .;R; j0 ¼ 1; . . .;N ð14Þ

Xn

j¼1

kðIÞjj0 ¼ 1; j0 ¼ 1; . . .;N ð15Þ

kðIÞjj0 � 0; 8j ¼ 1; . . .;N; 8j0 ¼ 1; . . .;N; ð16Þ

Fig. 1 The structure of a two-stage network production process
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/r [ 0; 8r ¼ 1; . . .;R; ð17Þ

where /r is the radial expansion rate of the output r; and

the kðIÞ
1j0
; kðIÞ

2j0
; . . .; kðIÞ

Nj0

� �
vector represents the intensity

variables that project DMU j
0
onto the production frontier

in Phase I.

The objective function associated with Eq. (13) seeks

to find the maximum expansion of outputs. Equa-

tion (10) guarantees that the total projected input con-

sumption is less than the observed ones. Equation (11)

and (12) guarantee that each observed adjustable and

unadjustable input i and f consumed by each DMU j
0
fall

in the input possibility set. Equation (14) guarantees the

observed output quantities of the DMU j
0
for each output

r fall in the output possibility set. If VRS over the ref-

erence technology is assumed, Eq. (15) can be imposed

on this model (Fig. 2).

Phase II: Resource allocation

max ¼
XN
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� �
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XN

j¼1

kðIIÞ
jj0

xij ¼
XN
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� �
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0 ¼ 1; . . .;N; i ¼ 1; . . .; I;

 !
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XN

j0¼1
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XN

j00¼1

s�ij0 ; i ¼ 1; . . .; I; ð21Þ

Xn

j¼1

kðIIÞ
jj0

xfj � xfj0 ; j
0 ¼ 1; . . .;N; f ¼ 1; . . .;F; ð22Þ

XN

j0¼1

XN

j¼1

kðIIÞ
jj0

yrj ¼ /�
r

XN

j0¼1

yrj0 ; r ¼ 1; . . .;R; ð23Þ

Xn

j¼1

kðIIÞ
jj0

yrj � yrj0 ; j
0 ¼ 1; . . .;N; r ¼ 1; . . .;R; ð24Þ

Xn

j¼1

kðIIÞ
jj0

¼ 1; j0 ¼ 1; . . .;N; ð25Þ

kðIIÞ
jj0

� 0; 8j; j0 ¼ 1; . . .;N; ð26Þ

sþij0 ; s
�
ij0 are integers; 8j0 ¼ 1; . . .;N; 8i ¼ 1; . . .; I ð27Þ

where sþij0 is the transfer-in slack with respect to the input i

for DMUj0 ; s�ij0 is the transfer-out slack associated with

input i for DMUj0 ; and kðIIÞ
1j0

; kðIIÞ
2j0

; . . .; kðIIÞ
Nj0

� �
represents the

intensity variables for DMU j
0
in Phase II.

The objective function indicates that the maximal total

input can be reduced and that the minimal total input can

be transferred for all the DMUs, and /r
* is obtained from

the optimal output r scalar value of Model (10–17).

Equations (19) and (20) associated with Eq. (21) seek to

reduce the total input consumption of all the DMUs as

Fig. 2 The structure of

resource reallocation based on

CDEA approach
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much as possible, in which Eq. (21) implies that the total

amount of each adjustable input will be reduced after

resource reallocation. Equation (24) guarantees the

observed output quantities of the DMU j
0
for each output

r fall in the output possibility set.

Two-stage NCDEA resource allocation model

In order to examine resource allocation in each line of a

company based on characteristics of the liner shipping

industry, this study integrated CDEA and a two-stage

network production model to construct a two-stage network

CDEA model. The objective function and constraints of the

model were imposed according to characteristics of inputs

and outputs in order to reflect the actual operating situation

of the company. Unlike traditional two-phase CDEA pro-

posed by Lozano et al. (2004), in which the optimal

resource allocation solution is solved in two separate

phases, this study not only opens the ‘‘black-box’’ to form a

two-stage production process, but also solves the resource

allocation solution using a single-phase NCDEA algorithm.

Resources were reallocated for each sub-production pro-

cess in each shipping line based on the multiple objectives

of maximizing desirable outputs and minimizing undesir-

able outputs. The resource allocation concept of liner

shipping services is demonstrated in Fig. 3. The first stage

(production process) regards the relationship between

resource inputs by a shipping company to provide service

capacity. Service capacity in the first stage was set as fixed

intermediate outputs in view of the difficulty associated

with changing an established short-term liner shipping

schedule. These intermediate outputs were used as inputs in

the second stage (service process), the outputs of which

were divided into two types, desirable and undesirable.

Shared inputs are also shared among lines of the target

shipping company.

Consider a set of N lines, with each line

j(j = 1, 2, …, N) characterized by a production process of

consuming I1 shared inputs xi2j; ði1 ¼ 1; 2; . . .; I1Þ, I2
specific inputs xi2j; ði2 ¼ 1; 2; . . .; I2Þ and I3 energy inputs

xi3j; ði3 ¼ 1; 2; . . .; I3Þ to produce S intermediate outputs

zst, (s = 1, 2, …, S), and those intermediate outputs used

as inputs to yield R desirable outputs yrj, (r = 1, 2, …, R)

and T undesirable outputs utj, (t = 1, 2, …, T). Some

portion ai1j of the shared input is allocated to the jth line.

(Note that ai1j � 0;
PN

j¼1 ai1j ¼ 1.) In the proposed model,

ai1j is a decision variable which must be determined.

Fig. 3 The structure of resource reallocation based on two-stage NCDEA approach
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Moreover, shipping lines can be inbound and outbound

and, thus, have different requirements. Consideration of

inbound and outbound shipping lines as homogeneous

DMUs would lead to biases in the analysis. Therefore,

inbound and outbound shipping lines were considered as

different DMUs in the analysis. In this study, shipping lines

were divided into inbound and outbound lines. With the

emphasis on the two directions, there is a need to provide a

performance measurement tool with way-based informa-

tion as part of the aggregate efficiency score. For notational

purposes, let j1(j1 = 1, 2, …, N1) and j2(j2 = 1, 2, …, N2)

denote the index of outbound and inbound lines, respec-

tively, where N = N1 ? N2(j = 1, 2, …, N).

In the model, the optimal distribution ratio of shared

inputs was determined as a decision variable of the

model. The Pi1lower and Pi1upper are lower and upper

bounds, respectively, defined by any restrictions imposed

on distribution ratios. Specific inputs refer to resources

used by a specific shipping line. Their reallocation was

determined using the non-radial DEA approach. Energy

inputs are ones related to undesirable outputs with a weak

disposability assumption. Due to such a relationship, their

reduction was considered to be proportional to that of

undesirable outputs, based on which the optimal reduction

ratio was calculated. Due to the presence of outbound and

inbound shipping lines, failure to distinguish between

them can lead to biased analytical results. Therefore,

outbound and inbound shipping lines were analyzed as

different DMUs, and a two-stage NCDEA model was

constructed. For resource allocation of lines under control

by a central decision-maker, we solve the following linear

program.

Max
1

R

XR

r¼1

PN

k¼1

y0rk

PN

j¼1

yrj

� 1

T

XT

t¼1

PN

k¼1

ek utk

PN

j¼1

utj

� 1

I1

XI1

i1¼1

PN

k¼1

x0i1k

PN

j¼1

xi1k

þ 1

I2

XI2

i2¼1

PN

k¼1

x0i2k

PN

j¼1

xi2k

0

B
B
B
@

1

C
C
C
A

ð28Þ

s.t. Stage 1: production process (Shared inputs)

XN1

k1¼1

XN1

j1¼1

k1j1k1a
1
i1j1

xi1

0

@

1

A�
XN1

k1¼1

x0i1k1 ; i1 ¼ 1; 2; . . .; I1 ð29Þ

XN2

k2¼1

XN2

j2¼1

k2j2k2a
2
i1j2

xi1

0

@

1

A�
XN2

k2¼1

x0i1k2 ; i1 ¼ 1; 2; . . .; I1

ð30Þ

XN1

j1¼1

a1i1j1 ¼ a1; i1 ¼ 1; 2; . . .; I1 ð31Þ

XN2

j2¼1

a2i1j2 ¼ a2; i1 ¼ 1; 2; . . .; I1 ð32Þ

a1 þ a2 ¼ 1; ð33Þ

p1i1j1lower � a1i1j1 � p1i1j1upper ; i1 ¼ 1; 2; . . .; I1;

j1 ¼ 1; 2; . . .;N1 ð34Þ

p2i1j2lower � a2i1j1 � p2i1j2upper ; i1 ¼ 1; 2; . . .; I1;

j2 ¼ 1; 2; . . .;N2 ð35Þ

(Specific inputs)

XN1

j1¼1

k1j1k1xi2j1 � x0i2k1 ; i2 ¼ 1; 2; . . .; I2; k
1 ¼ 1; . . .;N1

ð36Þ

XN2

j2¼1

k2j2k2xi2j2 � x0i2k2 ; i2 ¼ 1; 2; . . .; I2; k
2 ¼ 1; . . .;N2

ð37Þ

(Energy inputs)

XN1

j1¼1

k1j1k1xi3j1 � ek1xi3k1 ; i3 ¼ 1; 2; . . .; I3; k
1 ¼ 1; . . .;N1

ð38Þ

XN2

j2¼1

k2j2k2xi3j2 � ek2xi3k2 ; i3 ¼ 1; 2; . . .; I3; k
2 ¼ 1; . . .;N2

ð39Þ

(Intermediate products)

XN1

j1¼1

k1j1k1zsj1 ¼
XN1

j1¼1

l1j1k1zsj1 ; s ¼ 1; 2; . . .; S; k1 ¼ 1; . . .;N1

ð40Þ

XN2

j2¼1

k2j2k2zsj2 ¼
XN2

j2¼1

l2j2k2zsj2 ; s ¼ 1; 2; . . .; S; k2 ¼ 1; . . .;N2

ð41Þ

Stage 2: service process (Desirable outputs)

XN1

j1¼1

l1j1k1yrj1 � y0rk1 ; r ¼ 1; 2; . . .;R; k1 ¼ 1; . . .;N1 ð42Þ

XN2

j2¼1

l2j2k2yrj2 � y0rk2 ; r ¼ 1; 2; . . .;R; k2 ¼ 1; . . .;N2 ð43Þ
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y0rk � yrk; r ¼ 1; 2; . . .;Rk ¼ 1; . . .;N ð44Þ

(Undesirable outputs)

XN1

j1¼1

l1j1k1utj1 � ek1utk1 ; t ¼ 1; 2; . . .; T ; k1 ¼ 1; . . .;N1

ð45Þ

XN2

j2¼1

l2j2k2utj2 � ek2utk2 ;t ¼ 1; 2; . . .; T; k2 ¼ 1; . . .;N2 ð46Þ

ek � 1; t ¼ 1; 2; . . .; T; k ¼ 1; . . .;N ð47Þ

(Available inputs)

XN1

k1¼1

x0i1k1 � g1i1 ;i1 ¼ 1; 2; . . .; I1 ð48Þ

XN2

k2¼1

x0i1k2 � g2i1 ;i1 ¼ 1; 2; . . .; I1 ð49Þ

XN

k¼1

x0i2k � gi2 ;i2 ¼ 1; 2; . . .; I2 ð50Þ

XN

k¼1

ekxi3k � gi3 ;i3 ¼ 1; 2; . . .; I3 ð51Þ

x0i1k; x
0
i2k
; x0i3k; y

0
rkai1j; ek; kjk; ljk � 0 ð52Þ

where x0i1k,x
0
i2k
, x0i3k and y0rk represent shared input, specific

input and energy input, and desirable output of the kth line

after allocation. k1k, ���, kNk and l1k, ���, lNk denote inten-

sive variables of the kth line in stage 1 and stage 2,

respectively. ek denotes the environmental efficiency value

of the kth line.

The objective function (28) seeks to maximize the aver-

age ratio of desirable outputs (ratio between the assigned and

observed values) and minimizes the average ratio of unde-

sirable outputs (ratio between the assigned and observed

values) simultaneously. In stage 1, inputs were divided into

three types, namely shared inputs, specific inputs, and energy

inputs. Shared inputs are factors of production shared by

lines, and the specific amount for each line cannot be

determined. This study used the model for their allocation,

and established upper and lower boundaries to ensure their

utilization in each line. Specific inputs are inputs used by a

specific line. Based on the approach of Guo et al. (2011) and

Maghbouli et al. (2014) for processing energy inputs and

undesirable outputs, undesirable outputs are characterized

by weak disposability, and are directly correlated with

energy inputs. Therefore, resource allocation with regard to

energy inputs was conducted based on the environmental

efficiency values (ek) and affected distribution of undesirable

outputs. Intermediate products of stage 1 served as inputs in

stage 2. Based on liner shipping operating characteristics,

service capacities did not change after establishing the

shipping schedule. Thus, outputs of Stage 1 were fixed and

did not change. Outputs of stage 2 included desirable and

undesirable outputs of the model.

Constraint (29) introduces a shared input efficiency

frontier for outbound shipping lines, which cannot exceed

the total amount of shared input resources in outbound

shipping lines after allocation. Constraint (30) introduces a

shared input efficiency frontier for inbound shipping lines,

which cannot exceed the total amount of shared input

resources in inbound shipping lines after allocation. Con-

straint (31) is the distribution ratio of shared input i1 in each

outbound line; its total a value is equal to a1. Constraint (32)
is the distribution ratio of shared input i1 in each inbound

line; its total a value is equal to a1. Constraint (33) guar-
antees that the total distribution ratio of shared input i1 in

outbound and inbound lines is equal to 1. Constraint (34)

introduces restrictions for the distribution ratio of shared

input i1 in each outbound line. Constraint (35) introduces

restrictions for the distribution ratio of shared input i1 in

each inbound line. Constraints (36) and (37) guarantee that

specific input boundaries cannot be higher than the total

amount of specific inputs in all lines after allocation for

outbound and inbound lines, respectively. Constraints (38)

and (39) involve energy input boundary constraints for

outbound and inbound lines, respectively. As there is a

direct correlation between energy inputs and undesirable

outputs, ek is environmental efficiency value. Allocation

results were obtained by multiplying ek by the observed

energy input value. Constraints (40) and (41) involve

intermediate outputs for outbound and inbound lines,

respectively. The transportation industry is characterized by

perishability of its services. Once established, a short-term

liner shipping schedule is difficult to change. Therefore,

outputs of stage 1 become fixed inputs in stage 2.

With regard to constraints in stage 2, constraints (42)

and (43) determine that allocated desirable outputs should

at least exceed the original amount of desirable outputs for

outbound and inbound lines, respectively. Constraint (44)

guarantees that the amount of allocated desirable outputs is

larger than the original one.

Constraints (45) and (46) involve undesirable output

boundaries for outbound and inbound lines, respectively.

The environmental efficiency value of ek is less than or

equal to one. Constraint (47) introduces restrictions for

undesirable outputs; the amount of undesirable outputs

after allocation is less than or equal to the one before.

Constraint (48) determines that the amount of reallocated

shared input resources in outbound lines does not exceed

the total amount of a given level of g1i1 . Constraint (49)

determines that the amount of reallocated shared input
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resources in inbound lines does not exceed the total amount

of a given level of g2i1 . Constraint (50) determines that the

amount of reallocated specific input resources does not

exceed the total amount of a given level of gi2 . Constraint

(51) determines that the amount of reallocated energy input

resources does not exceed the total amount of a given level

of gi3 . Constraint (52) introduces non-negative restrictions

on decision variables.

An empirical illustration using data
from a Taiwanese liner shipping company

Selection of decision-making units

Chang et al. (2011) proposed to follow operating charac-

teristics of the shipping industry and differentiate outbound

and inbound shipping lines; data obtained from such

analysis would be better able to assist in decision-making

at the management level. In the shipping industry, inbound

and outbound shipping lines differ greatly in terms of

single-direction freight traffic, cargo lifting, transferring

capacity, and the number of empty containers, meaning

that the two groups of DMUs face different needs. How-

ever, DEA assumes homogeneity in its analysis subjects,

suggesting that comparison subjects must have similar

production characteristics. Estimation of performance in

both inbound and outbound shipping lines can provide

decision-making information that can be referred to by

managers for operation adjustments and that indicates how

to improve the operational efficiency of a company.

However, due to limitations associated with actual data

collection and operating characteristics of shipping lines,

for instance frequent changes in shipping line operations,

data should be collected over a relatively short period.

Therefore, this study analyzed data collected from one

season of a shipping company’s fixed lines.

DMUs in this study were lines of a Taiwanese liner

shipping company. The range of shipping line operations of

this company spans the entire world. There are Asian,

European, and American lines. Homogeneity between lines

should be considered in their comparison. This study ana-

lyzed Asian shipping lines due to their high density, as well

as high concentration of ports. European and American lines

of the investigated company were excluded from the analy-

sis. Among Asian shipping lines, joint venture lines with

expired contracts and leases were excluded. As some lines

had been operating for less than one year, collection and

analysis of data from one year were not possible. After

arranging the data provided by the company, its Asian

shipping lines operating in the fourth quarter of the year 2013

were chosen for analysis. As requirements may differ for

inbound and outbound shipping lines, analysis was con-

ducted separately for inbound and outbound Asian lines.

Results and discussion

Data

A two-stage NCDEA model was developed in this study. Its

empirical analysis was conducted using data provided by a

shipping company in Taiwan. Appropriate input and output

variables were selected to be included in the model after

reviewing related literature and interviewing shipping

industry operators. The production process regards the

relationship between resources input by a shipping com-

pany to provide service capacity (intermediate products). A

total of six variables were selected as production process

inputs. Inputs were divided into shared, specific, and energy

inputs. As seen from Table 1, shared inputs included sea-

farers’ remuneration (SR) and empty container reposition-

ing costs (ECRC); specific inputs included vessel capacity

(VC),1 cargo handling costs (CHC), and other costs (OC);

and energy input is fuel costs (FC). Outputs in the pro-

duction process were available twenty-foot equivalent unit

(TEU)-nautical miles (ATNM) and the number of destina-

tion ports (DP) in each shipping line, where ATNM is the

sum of the products obtained by multiplying the number of

TEUs carried on each ship by the shipping distance. In the

service process, the use of liner shipping services provided

by the first stage produces two types of outputs, desirable

outputs (Y), which include line revenue (LR) and revenue

TEU-nautical miles (RTNM), and undesirable outputs (W),

which include carbon emissions (CE).

With regard to carbon emissions, the IMO has established

the Energy Efficiency Design Index (EEDI) for new ships to

manage pollutants produced by vessels. EEDI introduces

measures to improve the energy efficiency of ships and

provides design improvements for seven types of ships in

terms of environmental costs (CO2 emissions) per ship. The

IMO has also proposed the Ship Energy Efficiency Man-

agement plan (SEEMP), which introduces standards for

already operating international ships. With regard to oper-

ating management, the Energy Efficiency Operational Index

(EEOI) was developed to measure actual efficiency of each

transportation unit in terms of CO2 emissions. Currently,

EEOI is not a mandatory index but can serve as a reference in

SEEMP (Second IMO GHG study 2009).

Apart from EEDI and EEOI formulas, carbon emissions

can be measured by other means. Leonardi and Browne

1 It is more reasonable to take into account vessel size and weight of

shipment to represent the capital variable. In this paper, the capital

variable is proxied by the number of vessels, due to unavailability of

data on vessel size and weight of shipment.
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(2010) estimated carbon emissions of container ships and

bulk carriers by measuring the consumed heavy oil volume,

and proposed emission and conversion factors to calculate

carbon emissions of passenger ships. As this study did not

aim to discuss methods to calculate carbon emissions in the

shipping industry, it mainly used data provided by the

company because the company has its own set of carbon

emission calculation methods. The calculation Eq. (4.1)

incorporates the number of TEUs and mileage of a ship-

ping line. Each shipping line has a different CO2 emission

factor, which can result in different CO2 emission values.

In this study, the obtained carbon emission values were an

undesirable output. Due to the undesirable output feature, it

is reasonable to reduce the amount of undesirable output

related to the environmental efficiency values obtained in

the model.2 Due to the relation between a shipping line’s

carbon emissions and fuel costs, fuel allocation was

obtained by multiplying environmental efficiency values

by the observed carbon emission values; these were

the results of distribution of carbon emissions in shipping

lines.

CO2 EmissionðAÞ ¼ CO2 Emission Factor� Distance

� Cargo Weight ð53Þ

The case company studied in this paper generally

determines the shipping line design for one year.

However, due to the rapid change in shipping line

operations, said company may slightly adjust the shipping

lines to respond to market changes. As a result, it is difficult

to obtain data from shipping lines operating for one quarter

without changes in shipping lines. For the sake of

homogeneity of DMUs, this study analyzed data of Asian

shipping lines as of the fourth quarter of 2013. The selected

shipping lines had their own vessels and operated through

the entire fourth quarter without any interruptions. Shipping

lines which engaged in joint operations with other shipping

companies were excluded from the analysis. As a result,

seven shipping lines with complete data and own vessels

were the basis for the analysis. After dividing shipping lines

into inbound and outbound lines, 14 shipping lines were

derived from the original sample of seven lines. A summary

of the descriptive statistics related to the shipping line input

and output variables for the 14 Asian shipping lines of a

Taiwanese shipping company is presented in Table 1.

Empirical analysis

In this study, data of inbound and outbound shipping line

operations in the fourth quarter of 2013 were analyzed

separately using the proposed model to allocate the existing

resources of shipping lines. In this model, the outbound

shipping ratio had its individual upper and lower bounds,

with the total distribution ai1j1 equal to 1. The inbound

shipping ratio had its individual upper and lower bounds,

with the total distribution ai1j2 equal to 1. To ensure that

shared inputs are allocated to all shipping lines, the ratio of

shared inputs per line was calculated by dividing the

observed shared input values by the total amount of shared

input resources. The smallest ratio value was set as the a
lower bound, and 110% of the largest ratio value was set as

the a upper bound. Lower and upper bounds were different

Table 1 Descriptive statistics

of input and output variables
Variable Mean SD Maximum Minimum

Shared inputs

SR (thousand USD) 44.65 44.91 132.76 0.00

ECRC (thousand USD) 398.52 156.92 725.43 191.02

Specific inputs

VC (ten TEUs) 1085.42 438.56 1820.00 520.00

CHC (thousand USD) 1630.60 758.06 2889.58 647.20

OC (thousand USD) 2483.44 1097.05 3966.61 1078.70

Environmental input

FC (thousand USD) 1715.88 810.03 2729.90 739.73

Intermediate products

ATNM (thousand TEU-nautical miles) 65317.42 34957.92 122431.40 25351.80

DP (number of ports) 6.00 2.42 10.00 4.00

Desirable outputs

LR (thousand USD) 5514.80 2815.57 10285.25 2617.07

RTNM (thousand TEU-nautical miles) 64023.04 39454.77 168744.14 20650.86

Undesirable outputs

CE (thousand kilograms) 5363.37 3676.72 15823.14 1731.06

2 We assume that fuel costs are proportional to the number of TEUs

and mileage of a shipping line.
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for each case. The only energy input that was consistently

distributed across outbound and inbound shipping lines

from the very beginning was fuel costs, meaning that fuel

expenses in outbound and inbound shipping lines were the

same. However, after allocation based on the environ-

mental efficiency values, outbound and inbound lines need

not be similar in their fuel costs. ATNM and DP were

intermediate outputs in the production process. The trans-

portation industry is characterized by perishability of its

services. Once established, a short-term liner shipping

schedule is difficult to change. Therefore, intermediate

outputs of the production process were set as a fixed link

between the production and services processes. Moreover,

as shipping line data are non-public information, this study

used the pre- and post-allocation difference values to rep-

resent reduction or increase in inputs and outputs of ship-

ping lines after their allocation. No change in resources

after their allocation was indicated by the value of 0.00,

whereas the increase and reduction in resources were

indicated by positive and negative values, respectively.

Results of this study showed that the model’s optimal

value was 1.016, meaning that in the fourth quarter of

2013, the average rate of the total of line revenues and

revenue TEU-nautical miles in outbound and inbound

shipping lines was greater than the one of carbon emissions

by 1.016 after resource reallocation. Allocation results are

provided in Table 2. The results show that there is room to

reduce the total VC by 0.91 TEU, fuel oil costs by

US$2,505,000, and carbon emissions by 12,560,000 kilo-

grams, as well as room to increase line revenues by

US$111,730,600 and revenue TEU-nautical miles by

224,180,000 TEU-nautical miles.

Allocation results of Stage 1 inputs and Stage 2 are

demonstrated using bar charts in Figs. 4a, b and 5a, b.

Allocation results are explained separately for outbound (N

direction) and inbound (S direction) shipping lines. In

general, a comparison of the shipping lines was compli-

cated due to their division into outbound and inbound lines.

Resource allocation showed how currently operating

shipping lines should adjust their inputs to gain more

revenues and achieve more RTEU-nautical miles. With

regard to deduction of shared inputs, input resources were

reduced in outbound lines A and F without affecting their

original revenues and RTEU-nautical miles. Inputs were

reduced in outbound lines C and E, while their revenues

and RTEU-nautical miles were increased. In outbound line

B, the vessel capacity and other costs were increased,

whereas cargo handling and fuel costs were reduced,

resulting in higher line revenues and more RTEU-nautical

miles. In outbound lines D and G, the vessel capacity,

cargo handling costs, and other costs were increased,

whereas fuel costs were reduced, resulting in higher line

revenues and more RTEU-nautical miles. With regard to T
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inbound lines, in inbound lines A and B, the vessel capacity

was increased, whereas cargo handling costs and other

costs were reduced, resulting in higher line revenues and

more RTEU-nautical miles. In inbound line C, the vessel

capacity, cargo handling costs, and other costs were

reduced, whereas fuel costs were not, resulting in higher

line revenues and longer RTEU-nautical miles. In inbound

lines D, E, and G, the vessel capacity, cargo handling costs,

and other costs were increased without reducing fuel costs,

resulting in higher line revenues and more RTEU-nautical

miles. In F line, the vessel capacity and fuel costs were

reduced and cargo handling costs and other costs were

increased without affecting their original revenues and

RTEU-nautical miles.

With regard to inputs and outputs in outbound lines,

seafarers’ remuneration was most increased (by

US$135,000) in outbound line B and most reduced (by

US$117,300) in outbound line A. Empty container repo-

sitioning costs were most increased (by US$581,800) in

outbound line B and most reduced (by US$262,900) in

outbound line G. The vessel capacity was most increased

(by 1331.75 TEUs) in outbound line G and most reduced

(by 2627.35) in outbound line C. Cargo handling costs

were most increased (by US$362,400) in outbound line G

and most reduced (by US$1,279,600) in outbound line A.

Other costs were most increased (by US$1,054,900) in

outbound line D and most reduced (by US$1,652,100) in

outbound line A. Fuel costs and carbon emissions were

adjusted based on environmental efficiency ek values and

were most reduced in outbound lines A, B, E, and F. Line

revenues were most increased (by US$18,447,800) in

outbound line G. RTEU-nautical miles was most increased

(by 34,680,000 TEU-nautical miles) in outbound line D. A

possible reason for the increase in line revenues and rev-

enue TEU-nautical miles was the increased vessel capacity.

With regard to inputs and outputs in inbound lines,

seafarers’ remuneration was most increased (by

US$131,600) in inbound line B and most reduced (by

US$113,900) in inbound line A. Empty container reposi-

tioning costs were most increased (by US$581,300) in

inbound line F and most reduced (by US$350,500) in

inbound line B. The vessel capacity was most increased (by

2997.20 TEU) in inbound line B and most reduced (by

2591.20 TEU) in F line. Cargo handling costs were most

increased (by US$1,714,400) in inbound line E and most

reduced (by US$881,900) in inbound line A. Other costs

were most increased (by US$952,400) in inbound line F

and most reduced (by US$958,200) in inbound line A. Fuel

costs and carbon emissions were adjusted based on envi-

ronmental efficiency ek values and were most reduced in

inbound lines A and F. Line revenues were most increased

(by US$14,168,700) in inbound line G. RTEU-nautical

miles was most increased (by 46,530,000 TEU-nautical

Fig. 4 2013 Fourth-quarter case: a Stage 1 specific input changes,

b Stage 1 shared and environmental input changes. Note: Dif.

represents difference between resources before and after reallocation

Fig. 5 2013 Fourth-quarter case: a Stage 2 desirable output changes,

b Stage 2 undesirable output changes. Note: Dif. represents difference

between resources before and after reallocation
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miles) in inbound line B. A possible reason for the increase

in line revenues and revenue TEU-nautical miles was the

increased vessel capacity.

Overall, during the fourth quarter of 2013, outbound and

inbound shipping lines faced different needs despite being

a part of one shipping line. Their resource allocation was

also different. In outbound lines, input resources were

reduced in A and F lines without affecting line revenues

and revenue TEU-nautical miles. In outbound line B, the

vessel capacity and other costs were increased, whereas

cargo handling and fuel costs were reduced, resulting in

higher line revenues and more revenue TEU-nautical miles.

Inputs were reduced in outbound lines C and E, while their

line revenues and revenue TEU-nautical miles were

increased. In outbound lines D and G, the vessel capacity,

cargo handling costs, and other costs were increased,

whereas fuel costs were reduced, resulting in higher line

revenues and more revenue TEU-nautical miles. With

regard to deduction of shared inputs in inbound lines, in A

and B lines, the vessel capacity was increased, whereas

cargo handling costs and other costs were reduced, result-

ing in higher line revenues and more revenue TEU-nautical

miles. In inbound line C, the shipping berth capacity, cargo

handling costs, and other costs were reduced, whereas fuel

costs were not, resulting in higher line revenues and more

revenue TEU-nautical miles. In inbound lines D, E, and G,

the vessel capacity, cargo handling costs, and other costs

were increased without reducing fuel costs, resulting in

higher line revenues and more revenue TEU-nautical miles.

In inbound line F, the vessel capacity and fuel oil costs

were reduced and cargo handling costs and other costs

were increased without affecting their original revenues

and revenue TEU-nautical miles. With regard to carbon

emissions, they were effectively reduced in outbound lines

A, B, E, and F. Among inbound lines, only A and F lines

required carbon emissions to be reduced. Thus, it can be

seen that shipping lines face different needs. Their resource

allocation methods and carbon emission reduction are also

different. Therefore, shipping companies can allocate

resources across shipping lines according to their needs

based on the current shipping operating situation.

Discussion and implications

The empirical results of this analysis that uses the proposed

two-stage CNDEA model to allocate the existing resources

of the inbound and outbound shipping line operations

provide significant implications for theory and practice. In

addition, apart from making key contributions to resource

allocation among shipping lines of a shipping company,

treatment of the inbound and outbound shipping lines as

different DMUs in the study provides a strong basis for

further research in the area. The results obtained from the

application of both the inbound and outbound shipping

lines were different. As intended, this serves as evidence

that outbound and inbound shipping lines faced different

needs despite being parts of one shipping line. Their

resource allocation was also different.

The above-outlined example of a shipping company

with multiple lines can properly be modeled in the context

of the principal agent framework in general and that of

short-run resource allocation in particular. Shipping lines

under different external environments are given different

shipping line operations in terms of how, e.g., the central

management can take actions, make decisions and allocate

resources to deliver expected services to customers. This

places emphasis on how the proposed two-stage NCDEA

resource allocation model as a vehicle allocates resources

among shipping lines of a shipping company in one season.

It is easy to apply the proposed model to the consecutive

period’s resource allocation.3 The proposed resource allo-

cation model is a non-oriented efficiency model, that is, the

objective function is concerned with both maximizing

average shipping line output efficiency and minimizing

input efficiency. Plainly, one could conceive of circum-

stances in which one can only reallocate resources at a

given level of outputs, for example, an input orientation

(minimize total input). In addition, if the quantity of some

input items is not easy to change, one can also allocate

some reallocatable inputs. Moreover, this model can also

be modified to a more complex one in which common

inputs are shared among not only production processes of

routes, but also both their production and service processes.

Conclusion

Very few studies have investigated the use of a shipping

company’s internal data for resource allocation in the

company’s shipping lines. The one-stage black-box-based

DEA model has been the main analysis tool applied in the

evaluation of liner shipping efficiency, but cannot provide

an in-depth analysis of performance at each production

process stage. This study used a two-stage network CDEA

model to allocate resources in lines of a Taiwanese ship-

ping company based on operating data from the fourth

quarter of 2013. Apart from investigating the actual uti-

lization of resources by the company and resource alloca-

tion aimed at optimal outputs, the model considered

undesirable outputs in order to comply with international

carbon emission restrictions. Furthermore, various transfers

3 Due to lack of space, the results obtained by applying the proposed

model in the monthly data of Asian shipping lines of 2013 are not

reported in this paper, but can be obtained from the authors upon

request.
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of resources were made. A shipping company can inde-

pendently allocate resources according to the determined

amount of input resources. Resource allocation results

obtained in the model in this study can provide a reference

for shipping companies in their future operations.

Limitations in this study included resource restrictions.

Seafarers’ remuneration was used for human resource

allocation in shipping lines. However, international ship

regulations include minimum safe manning requirements

for vessels. Therefore, reduction of seafarers’ remuneration

through resource allocation may not reflect the actual

human resource situation. Therefore, actual human

resource data should be collected for future evaluation of

human resources in shipping lines. Moreover, as the

research subject in this study was shipping lines self-op-

erated by a shipping company and joint shipping lines were

not examined, it is suggested that future studies include

joint shipping lines in the research. In resource allocation

across self- and jointly operated shipping lines, mode

DMUs can be incorporated into the model, which better

corresponds to the actual operating situation in shipping

companies and can provide them with suggestions

regarding resource allocation.
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