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Abstract This article aims at proposing an improved sta-

tistical model for statistical downscaling of monthly pre-

cipitation using multiple linear regression (MLR). The

proposed model, namely Monthly Statistical DownScaling

Model (MSDSM), has been developed based on the general

structure of Statistical DownScaling Model (SDSM). In

order to improve the performance of the model, some

statistical modifications have been incorporated including

bias correction using variance correction factor (VCF) to

improve the computed variance pattern. We illustrate the

effectiveness of the proposed model through its application

to 288 rain gauge stations scattered in different climatic

zones of Iran. Comparison between the results of SDSM

and the proposed MSDSM has indicated superiority of the

proposed model in reproducing long-term mean and vari-

ance of monthly precipitation. We found that the weakness

of MLR method in estimating variance has been consid-

erably improved by applying VCF. We showed that the

proposed model provides a promising alternative for sta-

tistical downscaling of precipitation at monthly time scale.

An investigation of the effects of climate change in dif-

ferent climatic zones of Iran by the use of Representative

Concentration Pathways (RCPs) has shown that the most

significant change is an increase in precipitation in fall and

that the largest share of this increase belongs to arid

climate.

Keywords Climatic zones � Linear regression � Monthly

Statistical DownScaling � Representative Concentration

Pathways � Variance correction factor

Introduction

Coarse spatiotemporal resolution of general circulation

models (GCMs) is one of the major problems in using their

outputs to assess the impacts of climate change on water

resources systems (Willems and Vrac 2011). In order to

extract regional-scale meteorological variables from GCM

outputs, downscaling methods have been widely imple-

mented in climate change studies. Statistical downscaling

methods that establish statistical relationship between

large-scale atmospheric information and local-scale mete-

orological data have been used by many researchers mainly

because of the limited data they need and their computa-

tional simplicity (Wilby et al. 2002, Olsson et al. 2004,

Hessami et al. 2008, Raje and Mujumdar 2011).

Among statistical downscaling techniques, regression-

based methods have received more attention in recent years

because they are computationally less demanding, simple

to apply, and statistically efficient (Semenov et al. 1998,

Dibike and Coulibaly 2005, Hashmi et al. 2011). Regres-

sion-based methods correlate the regional-scale state of the

atmospheric variables (predictors) to the local-scale mete-

orological variables (predictands) such as precipitation,

temperature, and streamflow. The statistical models can be

calibrated and validated based on historical data, assuming

that the transfer from the predictors to the predictands does
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not significantly change even under altered climatic con-

ditions (Willems et al. 2012).

Current literature on the development and application of

statistical downscaling mostly focuses on daily or (rarely)

sub-daily time scales (Willems and Vrac 2011), whereas in

some areas particularly in arid regions, daily or sub-daily

information might not be accessible (Prudhomme et al.

2002, Sachindra et al. 2014b). Furthermore, many of the

monthly downscaling methods introduced in the literature

are focused on spatial downscaling of the climate model

outputs to relatively coarse scales (predominantly to 1/8-

degree spatial resolution), not providing any information at

finer spatial scales (Prudhomme et al. 2002, Wood et al.

2004, Tripathi et al. 2006, Anandhi et al. 2008, Maurer and

Hidalgo 2008, Ojha et al. 2010, Goyal et al. 2011, Hashmi

et al. 2013).

Applications of data mining and regression analysis tech-

niques such as artificial neural networks (ANNs) (Fistikoglu

andOkkan2010), support vectormachine (SVM) (Najafi et al.

2011), adaptive-network-based fuzzy inference system

(ANFIS) (Najafi et al. 2011), and multiple linear regression

(MLR) (Huth and Kyselý 2000, Hellstrom et al. 2001, Najafi

et al. 2011, Goly et al. 2014, Sachindra et al. 2014a) have been

reported in the literature for statistical downscaling of pre-

cipitation and temperature. Most of the proposed methods

have shown significant weakness in reproduction of monthly

precipitation variance values (Hessami et al. 2008, Nasseri

et al. 2013, Tavakol-Davani et al. 2013).

Among various statistical methods that use MLR, Sta-

tistical DownScaling Model (SDSM) has been widely used

in studies focusing on climate change impact assessment.

MLR methods in general and SDSM in specific usually

accurately estimate mean of local meteorological predic-

tands, but their performance in estimating variance and

extreme values is sometimes substantially weak (Wilby

et al. 2004, Hessami et al. 2008). Huth and Kyselý (2000)

used MLR in downscaling of monthly precipitation and

temperature. Their model showed low skill levels for

downscaling monthly precipitation. Goly et al. (2014)

compared different statistical downscaling models that use

MLR including positive coefficient regression (PCR),

stepwise regression (SR), and support vector machine

(SVM) techniques for estimating monthly precipitation

amounts. They found that the models are able to preserve

monthly mean values but not the variances. The models

they tested failed to downscale highly variable monthly

rainfalls in the wet season. Sachindra et al. (2014a)

developed two statistical models based on the MLR

method using two sets of regenerated data by National

Center for Environmental Prediction (NCEP) and HadCM3

models for downscaling monthly precipitation. They found

that both models tend to underestimate the high monthly

precipitation values.

Considering the small number of monthly data that

aggravate the limited ability of MLR methods in reproducing

variance of predictands, in this study, we utilize the main

structure of SDSM as the platform to develop a Monthly

Statistical DownScaling Model (MSDSM). We propose

application of variance correction factor (VCF) in MSDSM

for increasing accuracy of variance estimation in the monthly

statistical downscaling of precipitation. We evaluate the

performance of MSDSM through comparing its results in

downscaling precipitation in 288 rain gauge stations scattered

in different climatic zones of Iran with SDSM results. In this

paper and for the first time, the future variations of projected

precipitation under different RCP scenarios over a large part

of Iran have been estimated and presented.

‘‘Materials and methods’’ section of this paper describes

the local- and large-scale datasets utilized in this study.

Methodology section gives an overview of the proposed

methodology for downscaling. ‘‘Results and discussion’’

section thereafter presents the results of the case study, and

finally, a set of concluding remarks are presented in

‘‘Conclusion’’ section.

Materials and methods

Local dataset

Iran is located in the southwest of Asia, with a complex

orography and a wide latitudinal extent between 25�N and

40�N, resulting in high variability of precipitation in both

space and time. North and west of Iran are surrounded by

Alborz and Zagros Mountains, respectively, which play a

key role in triggering precipitation on their windward sides

and act as barriers to moisture transfer to the arid and

semiarid regions of central and eastern Iran. Southern coast

of Caspian Sea and northwestern coast of Persian Gulf are

considered as complex climatic areas due to placement

between sea and high mountains on either side. The ele-

vations range from -32 m below the sea level up to

5600 m with a national average of 1200 m (Fig. 1a).

Low precipitation and its severe fluctuations in the daily,

seasonal, and annual time scales are the intrinsic charac-

teristics of Iran’ s climates (Khalili et al. 2016). The annual

rainfall varies between 1800 mm in the north to\100 mm

in the central and eastern arid regions of Iran. Based on the

modified de Martonne climate classification, there are three

different climatic zones in Iran including humid, mediter-

ranean, and arid (Fig. 1b).

Two hundred and eighty-eight rain gauge stations scat-

tered in different climatic zones of Iran have been used to

evaluate the performance and the applicability of the pro-

posed downscaling method. Figure 1b shows the locations

of the rain gauge stations. As it can be seen, selected rain
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Fig. 1 a Topographic map of

Iran, b modified De Martonne

climate type map and the

distribution of selected rain

gauge stations
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gauge stations are scattered mostly in western, central, and

northern parts of the country, which characterize by arid to

humid climates. The number of stations in each of the three

climatic zones and the average of their statistical charac-

teristics are presented in Table 1. Iran Water Resources

Management holding company of the Ministry of Energy

provided the daily precipitation records utilized in this

study. Time series of observed precipitation in the rain

gauge stations are considered as a predictand in this study.

Selection of the rain gauge stations has been done based

on the availability of observed daily precipitation (con-

taining\30% missing values) and passing various homo-

geneity tests including Standard Normal Homogeneity Test

(SNHT), Pettitt test (PT), Buishand range (BR), and runs

tests (RTs). Outliers of precipitation time series have been

detected based on their distance from the average of the

series and replaced by a threshold (Barnett and Lewis

1974) or removed and treated as a missing data, using a

methodology developed by (Dixon 1953). After outlier

elimination, homogeneity of the time series has been

checked. If the time series of observed precipitation in a

station has been classified as non-homogenous with none or

only one test and homogenous with other tests at the sig-

nificance level of 5%, it has been classified as a homoge-

nous dataset and has been used in this study.

The reference period (1971–2005) has been partitioned

into two sets: we use the first 70% of the data (1971–1995)

to calibrate the downscaling models and the rest of the data

(1996–2005) for validation.

Large-scale datasets

In this paper, we use the output from the second-generation

Canadian Earth System Model (CanESM2). Canadian

Centre for Climate Modeling and Analysis (CCCma)

developed CanESM2 within the framework of CMIP5

(Climate Inter-comparison Project Phase 5) that con-

tributed results to the Fifth Assessment Report (AR5) of

the IPCC. In CMIP5, the historical run is forced by

observed atmospheric composition changes reflecting both

anthropogenic and natural sources, and the projections of

climate change are forced with specified emission scenar-

ios or concentrations referred to as Representative Con-

centration Pathways (RCPs) (Taylor et al. 2012).

For CMIP5, four RCPs represent a range of projections

of future population growth, technological advancements,

and societal responses. The labels for the RCPs provide a

estimate of the radiative forcing in the year 2100 relative to

preindustrial conditions (Taylor et al. 2012).

The datasets of CanESM2 are extracted for 59 grid

points over and around Iran for the period of 1971–2100.

These grids are uniformly distributed with horizontal res-

olution of roughly 2.8125�. CanESM2 includes a fourth-

generation atmospheric general circulation model

(CanCM4), a physical ocean component (OGCM4), the

Canadian Model of Ocean Carbon (CMOC), and a process-

based dynamic vegetation model, known as the Canada

Terrestrial Ecosystem Model (CTEM) (Arora and Boer

2010, 2014).

We used CanESM2 model projections for RCPs 2.6, 4.5,

and 8.5 to project the future climate conditions

(2006–2100), while 35 years (1971–2005) of reanalysis

data from National Centers for Environmental Prediction/

National Center for Atmospheric Research (NCEP/NCAR)

was used as the models predictors in the reference period

(Kalnay et al. 1996). These daily datasets were been

extracted from Canadian Climate Data and Scenarios

(CCDS) website (http://ccds-dscc.ec.gc.ca) at daily time

scale. In order to make a fair comparison between the

results of the proposed monthly model (MSDSM) and the

daily model (SDSM), these daily datasets were converted

into monthly data and used in the monthly model. These

datasets contain twenty-six different atmospheric variables

as listed in Table 2.

Methodology

Statistical Downscaling Model (SDSM)

The proposed model, MSDSM, has been developed based

on the existing SDSM model in the MATLAB environ-

ment; thus, we first describe the platform of SDSM in this

section of the paper.

Multiple linear regression downscaling model

(MLRDM) is the mathematical base of SDSM software

(Wilby et al. 2002). SDSM outputs are the average of

several weather ensembles that are the results of applying

Table 1 Basic characteristics

of the rain gauge stations used

in this study

Climatic zone Number of stations Statistical characteristics of monthly precipitation

Mean (mm) Max (mm) Variance

Humid 35 54.3 360.11 4376.27

Mediterranean 172 31 215.45 1625.35

Arid 81 17.91 192.49 1100.38

Total 288 29.66 223.42 1758.07
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linear regression models with stochastic terms of bias

correction. Because of the linear structure of SDSM, pre-

diction selection is usually handled through linear (and/or

partial) correlation analysis between a predictand and

predictors. The weights of the predictors are calculated via

simple least square or dual simplex methods.

SDSM contains two separate sub-models: one to deter-

mine the occurrence of conditional meteorological vari-

ables (discrete variables) including precipitation, and the

other one to estimate the amount of conditional and/or

unconditional variables (continuous variables) such as

temperature or evaporation. Comprehensive description

about SDSM and its modules can be found in Wilby et al.

(1999), Wilby et al. (2002). The general platform of SDSM

is shown in Fig. 2. The major steps when utilizing SDSM

are as follows:

1. Feature selection SDSM provides statistical analysis

tools for selecting the best predictor(s). In SDSM,

predictors should have acceptable unconditional and

conditional correlations with the predictand. In addi-

tion, partial correlation, P value and explained vari-

ance of the predictors can be checked while using

SDSM.

2. Amount and occurrence modeling MLR is utilized to

simulate the occurrence or estimate the amounts of

climatic variables. This model can be calibrated by two

different methods, namely ordinary least square and

dual simplex methods. An autoregressive term can also

be added to this model. For conditional meteorological

variables such as precipitation, for each day in an

ensemble, a uniformly distributed random number

between 0 and 1 is generated. If the generated random

number is less than the output of the occurrence model

in that day, the event occurs. Otherwise, it does not

occur. Utilizing SDSM, different conditional or

unconditional models can be calibrated for each of

the 12 months of the year.

3. Bias correction and variance inflation In SDSM, bias

correction (b in Eq. (1)) and variance inflation factor

(VIF in Eq. (2)) actions can be applied on the results of

each of the monthly models to achieve accept-

able ensemble results both in the calibration and in

the validation periods (Hessami et al. 2008):

b ¼ Meanobs �Meanmod ð1Þ

VIF ¼ 12 Varobs � Varmodð Þ
Ste2

ð2Þ

where Meanobs and Meanmod are the mean values of the

observed and modeled predictand, respectively. Varobs and

Varmod are the variances of observed and modeled pre-

dictands for the calibration period and Ste is the standard

error in the same period. b - 1 is added to the amount of

predictand in each day, and H(VIF/12) is multiplied to the

standard deviation of modeling error. While the down-

scaling model is calibrated using NCEP dataset, in esti-

mating VIF and bias correction, variables with the

subscript mod are estimated using downscaling model

outputs based on GCM simulations. This approach allows

the modeler to take into account the bias of GCM results in

the downscaling process (Nasseri et al. 2013, Tavakol-

Davani et al. 2013).

Finally, in order to achieve a single downscaled time

series from all projected ensembles, their arithmetic mean

is calculated. In this study, we use SDSM reproduced in

MATLAB environment (Nasseri et al. 2013, Tavakol-Da-

vani et al. 2013).

Proposed methodology for MSDSM application

We modified SDSM platform to make it applicable to

monthly time scale and added some statistical post-

Table 2 NCEP predictors

No. Predictor Abbreviation

1 Mean sea-level pressure mslp

2 Surface geostrophic air flow velocity p1__f

3 Surface zonal velocity p1__u

4 Surface meridional velocity p1__v

5 Surface vorticity p1__z

6 Surface wind direction p1th

7 Surface divergence p1zh

8 500 hPa geostrophic air flow velocity p5_f

9 500 hPa zonal velocity p5_u

10 500 hPa meridional velocity p5_v

11 500 hPa vorticity p5_z

12 500 hPa wind direction p5th

13 500 hPa divergence p5zh

14 850 hPa geostrophic air flow velocity p8_f

15 850 hPa zonal velocity p8_u

16 850 hPa meridional velocity p8_v

17 850 hPa vorticity p8_z

18 850 hPa wind direction p8th

19 850 hPa divergence p8zh

20 500 hPa geopotential height p500

21 850 hPa geopotential height p850

22 Total precipitation prcp

23 Specific humidity at 500 hPa s500

24 Specific humidity at 850 hPa s850

25 Near-surface specific humidity shum

26 Mean temperature at 2 m temp
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processing tools, which are introduced in the following

sections of the paper.

Variance correction factor (VCF)

Downscaling methods developed based on MLR have a

tendency to underestimate variance (Fowler et al. 2007).

The results of the previous studies have shown that even by

applying VIF, SDSM performance in reproducing long-

term variance can still be poor (Hessami et al. 2008,

Hashmi et al. 2011). Therefore, in order to improve the

consistency between variance of the model results and the

observed records of predictand, we used variance correc-

tion factor (VCF) inspired by the work of Chen et al.

(2013). VCF is a type of bias correction approach in which

it is assumed that the model biases stay constant over time,

and the relationship between the probability distributions

of the observed and modeled predictands is the same for

the reference and the future periods.

When applying VCF, in order to calculate the relation-

ship between the probability distributions of the observed

and modeled predictands, values are compared based on

the exceedance probabilities. In other words, variance

correction factors are obtained per month after sorting the

observed monthly predictand, and the model results in the

reference period in descending order:

u pð Þ ¼ Qobs pð Þ
Qmod pð Þ ð3Þ

where u(p), Qobs(p), and Qmod(p) are VCF, observed and

modeled monthly predictand values, respectively, all

associated with the exceedance probability p. p for each

value is calculated based on Weibull statistical distribution

as follows:

p kð Þ ¼ k

nþ 1
ð4Þ

where k is the rank of each value after sorting the data in

descending order and n is the sample size. The procedure is

the same in order to apply the obtained variance correction

factors to the modeled distribution in the future period.

That is, after calculating exceedance probability for

monthly predictand in the future period, the corresponding

factors are applied to them.

When the lengths of the reference and future periods are

different, the factors estimated for the closest empirical

exceedance probability are applied to the future predic-

tions. Suppose that the reference and future periods contain

nr and nf values in a month, respectively, VCF for any

value in the future period is selected such that the following

equation for all integer values of kr (the rank number in the

reference period) in the range of 1 B kr B nr is minimized:

z ¼ kr

nr þ 1
� kf

nf þ 1

�
�
�
�

�
�
�
�

ð5Þ

where kf is the rank number of the future monthly

predictand.

k-fold cross-validation The historical records of predic-

tands are limited in many meteorological stations. Con-

sidering the low number of available monthly records

compared with daily records, it is not reasonable to set

aside a part of dataset in order to perform validation. To

Set model 
structure

Select 
predictors

Select 
predictors

NCEP 
data

NCEP 
data

Select 
predictand

Select 
predictand

Station 
data

Station 
data

Calibrate 
model

Calibrate 
model

Downscale 
predictand
Downscale 
predictand

GCM 
predictors

GCM 
predictors

NCEP 
predictors

NCEP 
predictors

Scenario 
generation
Scenario 

generation
Weather 

generation
Weather 

generation

Fig. 2 SDSM structure (after Wilby et al. 2002)
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address this issue, k-fold cross-validation technique has

been utilized in this study for application of MSDSM.

A typical validation is a statistical method for evaluating

the performance of a model by dividing the dataset into two

mutually exclusive subsets that one is used to calibrate a

model and the other is utilized to validate the model

(Kohavi 1995, Refaeilzadeh et al. 2009). In typical cross-

validation, the calibration and validation subsets must

crossover in successive rounds.

One of the popular approaches of cross-validation is k-

fold approach in which the dataset is randomly split into

k segments (the folds) of approximately equal size. Sub-

sequently, the model is calibrated and validated k times

such that each time a different fold of the data is left out for

validation, whereas the remaining k - 1 folds are used for

calibration; thus, each of the k segments is used exactly

once as the validation dataset. In the proposed model,

k value is optional and can be set between two and the

number of years of available data records. When k is equal

to the number of years of observation, the k-fold cross-

validation is exactly the same as leave-one-out cross-vali-

dation, which has been widely used when limited data are

available (Refaeilzadeh et al. 2009).

Selection of the predictors Three main branches of fea-

ture selection (or selection of predictors, here in this

manuscript) are embedded-, wrapper-, and filter-based

approaches (Tan et al. 2006). The wrapper- and filter-based

methods are the most well-known procedures in the realm

of feature selection (Guyon and Elisseeff 2003). To select

the suitable subsets of the probable inputs, wrapper meth-

ods evaluate the model performance for nearly all possible

subsets of input variables based on their calibration per-

formance (Liu and Yu 2005).

Filter-based techniques are model-free approaches that

utilize statistical indicators to find the existing dependen-

cies between the probable input and output variables. The

linear correlation coefficient is a popular criterion for

measuring dependencies in these techniques. It has been

shown that effectiveness of linear correlation coefficient in

detecting the relationship between predictors and predic-

tand is mostly linked to the interaction of noise and data

transformation during the procedure of feature selection, so

it is not recommended for feature selection in real non-

linear systems (Battiti 1994). Mutual Information (MI)

index is another filter-based method for feature selection. It

is a dimensionless statistical indicator and describes the

reduction in amount of uncertainty in estimation of one

parameter when another is available (Liu et al. 2009). This

statistical indicator is a robust and nonlinear approach and

recently has been found to be an appropriate statistical

criterion in feature or predictor selection problems in

hydrology (Füssel et al. 2003, Bowden et al. 2005a, b, May

et al. 2008a, b, Jeong et al. 2012, Nasseri et al. 2013, Fu

et al. 2016). Achieving the best subset of input predictors in

downscaling problems is complicated and challenging

because of the large number of meteorological predictors

while considering the interactions of model parameters and

its structure. In this study, we selected the filter-based

feature selection approach using MI indicator for choosing

the best predictors for the proposed downscaling model.

Performance evaluation

We illustrate the effectiveness of the presented approach

through a comparison between MSDSM and SDSM results.

For this purpose, at first, the daily outputs of SDSM have

been converted into monthly time scale, and then, the

performance of the models has been evaluated by com-

paring their results with observed data in the validation

period.

The performance of the models in estimating monthly

mean and monthly variance is assessed using the following

equation:

h ¼
P12

m¼1 YSDSM
m � Yobs

m

� ��
�

�
�

P12
m¼1 YMSDSM

m � Yobs
m

� ��
�

�
�

ð6Þ

where m is the month number (m = 1, …, 12), Ym
SDSM and

Ym
MSDSM are the modeled values by SDSM and MSDSM,

respectively, and Ym
obs is the observed value for either

monthly mean or monthly variance in each station. The

closer h is to one, the model performance are more similar.

A significantly larger than one value for h implies superi-

ority of MSDSM over SDSM.

For further assessment of the models’ performances, the

results of the models have been compared based on abso-

lute relative error (RE) in estimating monthly mean and

monthly variance values:

REm ¼
Ymod
m � Yobs

m

� ��
�

�
�

Yobs
m

ð7Þ

where m is the month number (m = 1, …, 12), Ym
mod is the

modeled value and Ym
obs is the observed value for either

monthly mean or monthly variance. After calculating RE

for both monthly mean and monthly variance in all months,

error improvement (EI) is calculated by the following

equation:

EIm ¼ RESDSM
m � REMSDSM

m ð8Þ

Positive EI indicates better performance of MSDSM and

negative EI implies that SDSM works better.
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Results and discussion

To apply SDSM and MSDSM models, selection of

appropriate predictors from the pool of meteorological

predictors is the first step. For this purpose, the average MI

index values have been calculated for all combinations of

predictors and precipitation to select suitable predictors

from all grid boxes (i.e., 26 9 59 MI values for each sta-

tion). In order to pick out different predictors, the first five

dissimilar predictors with highest MI values have been

selected for each rain gauge station. MI values have been

calculated based on daily time scale of the available dataset

without considering any time lag.

Table 3 shows the top six selected predictors in different

climatic zones. The numbers in this table represent the

percentage of stations (located in a specific climatic zone)

in which each predictor has been selected. The most

selected among the predictors are 500 hPa geopotential

height, total precipitation, near-surface specific humidity,

850 hPa meridional velocity, 500 hPa geostrophic air flow

velocity, and 2 m mean temperature. It can be seen from

the table that the selected variables are consistent and do

not change significantly between different climates. It

should be mentioned, although the proposed model is

applicable to all meteorological variables, here we just

present and discuss the downscaling results for

precipitation.

As mentioned earlier, to evaluate the performance of

MSDSM and compare its results with SDSM, the same

datasets have been used for both models with different time

resolutions. The daily time series of predictors and pre-

cipitation (predictand) have been used in SDSM applica-

tion, and then, the downscaled values obtained from SDSM

have been converted to monthly values in order to be

compared with MSDSM outputs. The monthly time series

of predictors and precipitation (predictand) have been used

in MSDSM application. The number of generated ensem-

bles in each downscaling simulation is set to 100, and mean

values of the ensembles are presented. It should be noted,

since cross-validation cannot be done by SDSM, we have

not used this ability in MSDSM at the first part of this

section. Thus, the first set of results (i.e., Figs. 3, 4;

Table 4) are outputs of the models in the validation period

(1996–2005). In this set of results, VCF has been applied to

MSDSM outputs. Nonetheless, in the second part (i.e.,

Figs. 5, 6; Table 5), we have investigated the effectiveness

of VCF method by comparing the results of MSDSM

before and after applying VCF. It enables us to use the

cross-validation technique, and thus, these results have

been obtained using the whole reference period

(1971–2005).

The percentage of the stations in which calculated h
values (for monthly mean and monthly variance) in the

validation period are larger than 1.10 or smaller than 0.90

is presented in Fig. 3. If h falls in [0.90, 1.10], the results of
the models are considered to be relatively similar. It is

apparent from Fig. 3a that MSDSM performs significantly

better in simulating monthly mean in each of the three

different climatic zones. In particular, h is larger than 1.10

in more than 70% of the stations located in the arid climate

zone. For the majority of the stations (about 63%), h is

larger than 1.10, while it is smaller than 0.90 for only 21%

of the stations which indicates the superiority of MSDSM

in simulating monthly mean of the precipitation. Averaged

h of monthly mean for all of the stations is 1.40 (Table 4).

It can be concluded from Fig. 3b that SDSM is better in

simulating variance in stations located in humid and

mediterranean climates, while MSDSM performs better in

the stations located in the arid region. In total, the number

of stations in which h is smaller than 0.90 is approximately

the same as the number of stations in which h is larger than

1.10 (about 40%). It is worth mentioning that very large

values of h have been observed for some of the stations

such that the average h of monthly variance is still about

1.0 in the regions with humid and mediterranean climates,

whereas it is larger than 2 in the arid climate zone

(Table 4).

We estimated the error improvements (EIs) for all the

stations and calculated their average based on the different

climatic zones (Fig. 4). In this figure, the primary axis is EI

in monthly mean and the secondary axis is EI in monthly

variance. The EIs in monthly mean are slightly negative

only in April to July for the stations located in the humid

climate zone, in June for the stations located in the

mediterranean climate zone, and in October for the stations

located in arid climate zone. When EI is averaged for all of

the 288 stations, it is marginally negative only in October

(Fig. 4d). These results again emphasize on the noticeably

better performance of MSDSM in estimating monthly

mean.

The EIs in monthly variance are highly variable from

month to month in each of the three climatic zones. In the

Table 3 The top six selected predictors in different climatic zones

(the numbers are the percentage of stations in which the predictor has

been selected)

Humid Mediterranean Arid

Predictors % Predictors % Predictors %

p500 64.5 p500 69.8 p500 84.0

p8_v 61.3 prcp 69.8 prcp 81.5

prcp 45.2 shum 52.3 shum 71.6

shum 45.2 p8_v 48.3 s850 50.6

temp 45.2 p5_f 45.3 p8_v 48.1

mslp 41.9 temp 43.6 p5_f 37.0
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humid climate zone, SDSM demonstrates a better perfor-

mance, while in the mediterranean and arid climates, we

can see a better consistency of MSDSM results with the

observed monthly variance particularly in March and April.

In Fig. 4d, the average values of EIs in monthly variance

for all stations are negative only in October and June,

revealing the superiority of MSDSM.

Overall, Figs. 3 and 4 and Table 4 show that MSDSM

has been able to improve or sustain the SDSM’s level of

accuracy in reproducing mean and variance of the precip-

itation observed in rain gauge station scattered in various

climatic zones. VCF application in MSDSM has been

helpful in keeping the variance of the downscaled monthly

series close to daily downscaled precipitation series

obtained from SDSM. In order to evaluate the effectiveness

of VCF method, we have compared the results of MSDSM

before and after applying VCF using Eq. 6. When h is

larger than 1.10, it demonstrates the positive effect of VCF

method, and when it is smaller than 0.90, it indicates the

probable adverse effect of VCF modification factor. It is

worth mentioning again that in this part of the paper, the

cross-validation ability of MSDSM has been used and

leave-one-out cross-validation has been carried out.

It is apparent from Fig. 5a that h is smaller than 0.90 in

more than 60% of the stations in each of the three climates.

h is[1.10 in only 10% of all of the 288 stations so that its

overall average is 0.83 (Table 5). It means that the per-

formance of MSDSM in estimating mean values is better

before applying VCF method. This point was pre-

dictable because MLR methods have a high ability to

simulate the long-term mean of the predictands.

The significant effect of VCF on the model performance

has been in simulating monthly variance. In all of the

stations in each of the three climates zones, h values are

considerably larger than 1.10 (Fig. 5b). The average of h
for all of the stations is 5.95, while we see the highest value

of h in the humid climate zone (Table 5), where the vari-

ances of observed monthly precipitation are high (see

Table 1). It demonstrates the significant improvement of

MSDSM in regenerating monthly variance values after

applying VCF method.

The average of EI values for each of the climatic zones

is presented in Fig. 6. In this figure, positive EI indicates

the better performance of MSDSM after applying VCF,

while negative EI implies that MSDSM works better

without VCF. We see approximately the same pattern in all

climates. After applying VCF, the error of the model in

estimating monthly mean increases slightly while its per-

formance in simulating monthly variance has improved

significantly. The smallest negative values of EI in monthly

mean (down to -7) occur simultaneously with the highest

values of EI in monthly variance (up to 80) between May

and October. The significant difference between the orders

of magnitude of the primary and secondary axes in Fig. 6

shows that significant improvement of variance estimation

with VCF-enabled MSDSM has been achieved by much

lower reduction in accuracy of mean estimation in months

with little precipitation. It also implies that without VCF

application, MSDSM is not a suitable tool for downscaling

of monthly precipitation.

Figure 7 shows average share of monthly precipitation

in all rain gauge stations in the three climate zones. As it

can be seen in this figure, between May and October,

approximately 21, 19, and 9% of the total precipitation

occur in humid, mediterranean, and arid climate zones,

respectively. This implies much bigger share of precipita-

tion in the months of January through April and December

in which Fig. 6 shows that the accuracy of mean estima-

tions by MSDSM with and without VCF has been almost

the same.

We have also investigated the effects of climate change

on precipitation in different climatic zones of the study
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area. For this purpose, RCP scenarios have been down-

scaled on the stations using MSDSM for the 2011–2040

period. Change in mean values from reference period

(1971–2005) to future period (2011–2040) (D) is calculated
using the following equation:

D ¼ Ymod � Yobs

Yobs
ð9Þ

where Ymod is the downscaled value (2011–2040) and Yobs
is the observed value (1971–2005) for the monthly mean

precipitation. Since climate change is expected to impose

various impacts on different seasons, we calculated the

average of D for each season (Table 6). It can be seen in

the table that all the scenarios show a decrease in winter

precipitation in all of the climatic zones. The changes in

spring precipitation are not significant, while we see a

considerable increase in the summer precipitation in the

arid climate zone (up to 27%). The most significant

increase in precipitation occurs in fall, and the largest share

of this increase belongs to arid climate which is in accor-

dance with the reported results in (Karandish et al. 2016).

They used the outputs of 15 GCMs under three SRES

scenarios of A1B, A2, and B1 and analyzed the seasonal

precipitation in different climatic zones in Iran. They also

showed that the lowest change occurs in humid regions,

which supports the results of this study as well (Table 6).

For further investigation of the variations in the spatial

distribution of precipitation, the calculated D are used and

interpolated by inverse distance weighting (IDW) method

(Fig. 8). Although the density of rain gauge stations, par-

ticularly in central and eastern regions, is not enough for

interpolation at ungauged regions, the maps generated by

IDW method can still be informative. As expected, Fig. 8

shows a decrease in winter precipitation in all the climates

except in southwest. In RCP 2.6, the highest decrease has

occurred in the arid climate, while in RCP 8.5, it is the

mediterranean climate that experiences the main reduction.

In comparison with the other seasons, changes in winter

precipitation show the highest variations under different sce-

narios so that their spatial correlation is\0.7. Conversely, in

summer, the changes under RCPs 4.5 and 8.5 demonstrate the

highest spatial correlation (0.97). We see a decrease in spring

precipitation in the southern coast of Caspian Sea under all

scenarios. The same thing is happening in summer precipitation

in northwest. It is apparent from the figure that the whole

country is experiencingmore precipitation in fall season so that

the highest increase has occurred in arid climate under RCP 4.5

scenario. Changes in winter precipitation under RCP 2.6 and in

fall precipitation under RCP 8.5 show the highest negative

spatial correlation (-0.35),which represent the opposite effects

of climate change in different seasons.

Conclusion

In this paper, a statistical method has been proposed for

improving monthly downscaling of precipitation. The

results of the proposed model, namely MSDSM, in 288 rain

bFig. 4 Averaged EI in monthly mean and monthly variance for

comparing results of SDSM and MSDSM (with VCF) for the stations

located in the zones with a humid, b mediterranean, c arid climates,

and d in total for the validation period

Table 4 Averaged h for all of the stations in different climatic zones

in the validation period

Variable Zone

Humid Mediterranean Arid Total

Mean 1.24 1.35 1.58 1.40

Variance 1.02 1.06 2.08 1.35
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gauge stations in Iran have been compared with the results

of SDSM. It was found that MSDSM (with applying VCF)

has a satisfactory performance in downscaling monthly

precipitation, and it can be a useful alternative to the other

downscaling models such as SDSM in monthly time res-

olution. More accurate estimation of monthly mean by

MSDSM in 63% of all stations in the three climate zones

and 70% of the stations located in arid climate zone have

shown superiority of MSDSM (with VCF) over SDSM.

Monthly mean values have been estimated less accurately

in just 21% of the rain gauge stations.

MSDSM (with VCF) that uses k-fold cross-validation

has also performed significantly better than the original

MSDSM. After applying VCF, the results indicate a slight

error increase in estimating monthly mean in the months of

May through October in which \9–21% of the annual

precipitation occurs in various climate zones. In the rest of

the months, the performance of MSDSM model, with and

without VCF, has been almost the same in mean estima-

tion. The reduction in relative error of variance estimation

in various months in the results of MSDSM, when VCF has

been applied, has been between 40 and 80%. Overall, the

results show that MSDSM when combined with VCF

application can be a suitable replacement for SDSM. In

other words, in studies in which monthly time resolution is

enough for assessing climate change impacts, combination

of MSDSM and VCF can be used as a suitable downscaling

technique.

In projecting precipitation variations in the future using

different RCPs, we found that the lowest change occurs in

humid regions, while the most significant increase takes

place in fall and the largest share of this increase belongs to

arid climate (Table 6). We also see the highest negative

bFig. 6 Averaged EI in monthly mean and monthly variance for

comparing results of MSDSM with and without application of VCF

for the stations located in the zones with a humid, b mediterranean,

c arid climates, and d in total for the reference period

Table 5 Averaged h for all of the stations in different climatic zones

in the reference period

Variable Zone

Humid Mediterranean Arid Total

Mean 0.82 0.85 0.80 0.83

Variance 6.54 5.82 5.99 5.95
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Fig. 7 Average share of

monthly precipitation in rain

gauge station in the three

climate zones

Table 6 Values of D in different seasons in each of the climatic zones under RCP scenarios

Zone DJF MAM JJA SON

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Humid -0.07 -0.06 -0.11 0.04 0.01 0.02 0.03 0.03 0.02 0.13 0.07 0.02

Mediterranean -0.10 -0.08 -0.15 0.04 0.05 0.07 0.04 0.06 0.04 0.39 0.37 0.22

Arid -0.15 -0.04 -0.11 0.05 0.00 0.07 0.25 0.29 0.27 0.72 0.78 0.67

Total -0.11 -0.07 -0.13 0.04 0.03 0.06 0.09 0.11 0.10 0.46 0.46 0.33
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spatial correlation (-0.35) between changes in winter

precipitation under RCP 2.6 and in fall precipitation under

RCP 8.5 which represent the opposite effects of climate

change in different seasons (Fig. 8).

MSDSM is an unconditional model, so it is applicable

for downscaling of all meteorological variables including

temperature, evaporation, and streamflow, and there is no

restriction for using MSDSM for other variables. Future

RCP 2.6 RCP 4.5 RCP 8.5

DJF

MA
M

JJA

SON

Fig. 8 Change in mean seasonal precipitation between reference period (1971–2005) and future scenarios (2011–2040) (D)
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studies can focus on assessing MSDSM performance in

downscaling other meteorological variables. Furthermore,

the results of the paper confirmed that the choice of the

downscaling method introduces additional uncertainty.

Future work might consider the assessment of uncertainties

in MSDSM and SDSM structures and outputs.
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Huth R, Kyselý J (2000) Constructing site-specific climate change

scenarios on a monthly scale using statistical downscaling.

Theoret Appl Climatol 66:13–27

Jeong D, St-Hilaire A, Ouarda T, Gachon P (2012) Comparison of

transfer functions in statistical downscaling models for daily

temperature and precipitation over Canada. Stoch Env Res Risk

Assess 26:633–653

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L,

Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR

40-year reanalysis project. Bull Am Meteor Soc 77:437–471

Karandish F, Mousavi SS, Tabari H (2016) Climate change impact on

precipitation and cardinal temperatures in different climatic

zones in Iran: analyzing the probable effects on cereal water-use

efficiency. Stoch Environ Res Risk Assess. doi:10.1007/s00477-

016-1355-y

Khalili K, Tahoudi MN, Mirabbasi R, Ahmadi F (2016) Investigation

of spatial and temporal variability of precipitation in Iran over

the last half century. Stoch Env Res Risk Assess 30:1205–1221

Kohavi R (1995) A study of cross-validation and bootstrap for

accuracy estimation and model selection. IJCAI 14:1137–1145

Liu H, Yu L (2005) Toward integrating feature selection algorithms

for classification and clustering. IEEE Trans Knowl Data Eng

17:491–502

Liu H, Sun J, Liu L, Zhang H (2009) Feature selection with dynamic

mutual information. Pattern Recogn 42:1330–1339

Maurer EP, Hidalgo HG (2008) Utility of daily vs. monthly large-

scale climate data: an intercomparison of two statistical down-

scaling methods. Hydrol Earth Syst Sci 12:551–563

May RJ, Dandy GC, Maier HR, Nixon JB (2008a) Application of

partial mutual information variable selection to ANN forecasting

of water quality in water distribution systems. Environ Model

Softw 23:1289–1299

May RJ, Maier HR, Dandy GC, Fernando TG (2008b) Non-linear

variable selection for artificial neural networks using partial

mutual information. Environ Model Softw 23:1312–1326

Najafi M, Moradkhani H, Wherry S (2011) Statistical downscaling of

precipitation using machine learning with optimal predictor

selection. J Hydrol Eng 16:650–664

Nasseri M, Tavakol-Davani H, Zahraie B (2013) Performance

assessment of different data mining methods in statistical

downscaling of daily precipitation. J Hydrol 492:1–14

Ojha C, Goyal MK, Adeloye A (2010) Downscaling of precipitation

for lake catchment in arid region in India using linear multiple

regression and neural networks. Open Hydrol J 4:122–136

Olsson J, Uvo C, Jinno K, Kawamura A, Nishiyama K, Koreeda N,

Nakashima T, Morita O (2004) Neural networks for rainfall

forecasting by atmospheric downscaling. J Hydrol Eng 9:1–12

Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global

climate models for flood frequency analysis: where are we now?

Hydrol Process 16:1137–1150

Raje D, Mujumdar P (2011) A comparison of three methods for

downscaling daily precipitation in the Punjab region. Hydrol

Process 25:3575–3589

Int. J. Environ. Sci. Technol. (2018) 15:1897–1912 1911

123

http://dx.doi.org/10.1007/s00477-016-1355-y
http://dx.doi.org/10.1007/s00477-016-1355-y


Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In: Liu L,
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