ORIGINAL PAPER

Spectrophotometric determination of hydroxylamine in biological wastewater treatment processes

B. Hu^{1,2} · X. L. Tian³ · W. N. Shi⁴ · J. Q. Zhao^{2,3,5} · P. Wu^{1,2} · S. T. Mei³

Received: 28 September 2016/Revised: 16 January 2017/Accepted: 8 July 2017/Published online: 8 August 2017 © Islamic Azad University (IAU) 2017

Abstract Hydroxylamine, a very important intermediate in nitrification, has a direct relationship with the production of nitrous oxide in biological wastewater treatment processes. The spectrophotometric method taking ferric ammonium sulfate and 1, 10-phenanthroline as the oxidant and the chromogenic agent, respectively, was used to determine the concentration of hydroxylamine in biological wastewater treatment processes. The impacts of nitrite, nitrate, orthophosphate, calcium ion and trace elements on the method were examined. The results indicated that the spectrophotometric method can be used for the

Editorial responsibility: M. Abbaspour

Electronic supplementary material The online version of this article (doi:10.1007/s13762-017-1387-y) contains supplementary material, which is available to authorized users.

J. Q. Zhao jqzhao@chd.edu.cn

- ¹ School of Civil Engineering, Chang'an University, The Middle Section of the South 2nd Ring Road, Xi'an 710064, Shaanxi Province, China
- ² Key Laboratory of Water Supply and Sewage Engineering, Ministry of Housing and Urban-Rural Development, Chang'an University, The Middle Section of the South 2nd Ring Road, Xi'an 710064, Shaanxi Province, China
- ³ School of Environmental Science and Engineering, Chang'an University, The Middle Section of the South 2nd Ring Road, Xi'an 710064, Shaanxi Province, China
- ⁴ Shenyang Urban Planning Design and Research Institute, South Sanhao Street No. 1, Shenyang 110179, Liaoning Province, China
- ⁵ Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Chang'an University, The Middle Section of the South 2nd Ring Road, Xi'an 710064, Shaanxi Province, China

determination of hydroxylamine in biological wastewater treatment processes. The correlation was significant in the range of 0.02-1.00 mg N/L (y = 1.5078x - 0.0132, $R^2 = 0.9991$), and the range varied to 0.05–1.00 mg N/L when nitrite and orthophosphate presented. Nitrate, calcium ion and trace elements did not interfere with the determination of hydroxylamine nitrogen. When the concentrations of nitrite nitrogen in the samples were lower than 15.00 mg/L, nitrite had a minor interference on the method. The impacts of orthophosphate on the method were complex. When the concentrations of hydroxylamine nitrogen were higher than 0.10 mg/L, the interference of orthophosphate on the method can be ignored. However, when the concentrations of hydroxylamine nitrogen in the samples were lower than 0.10 mg/L, orthophosphate had significant impacts on the determination, and a numerical method proposed can eliminate the interference of orthophosphate. The spectrophotometric method can determine the concentration of hydroxylamine in biological wastewater treatment processes quickly and conveniently and was helpful to understand the function of NH₂OH in N₂O production in biological wastewater treatment processes.

Keywords Hydroxylamine · Determination · Interference · Nitrite · Orthophosphate

Introduction

Biological wastewater treatment system had been identified as a source for the increasing nitrous oxide (N_2O) in atmosphere (UNEP 2013.). In denitrification, the mechanism of N_2O production and loss is quite clear and uncontested. However, the mechanism of N_2O production

in nitrification is very complicated. In nitrification, ammonia (NH₃) is converted to nitrate (NO₃⁻) via hydroxylamine (NH₂OH) and nitrite (NO₂⁻). N₂O can be produced by chemical breakdown of the unstable nitrosyl radical (NOH) (Poughon et al. 2001; Lemaire et al. 2011). Meanwhile, reduction of nitric oxide (NO) produced from the oxidation of NH₂OH can also produce N₂O (Stein 2011). Besides, the electrons released from the oxidation of NH₂OH were used to sustain ammonium oxidation and satisfy the cell's reductant needs (Arp and Stein 2003). Generally speaking, NH₂OH is an important intermediate formed in oxidation of ammonia/ammonium (NH_3/NH_4^+) to nitrite (NO₂⁻) by ammonium-oxidizing bacteria (Vajrala et al. 2013), and it has a direct relationship with the production of N₂O in biological wastewater treatment processes (Kim et al. 2010).

Gas chromatography method had been successively used for the determination of NH₂OH in seawater (Bulter and Gordon 1986; Gebhardt et al. 2004) and in soils (Liu et al. 2014). Due to short-live and extremely reactive properties of NH₂OH (Liu et al. 2014), determination of NH₂OH in aqueous solution or in soil with gas chromatography method is not an easy task. Many substances can result in a significant errors in the determination, such as NO_2^- (Bremner et al. 1980), transition metal ions and complexes (Brown and Drury 1967; Bengtsson 1973; Bengtsson et al. 2002), O₂ (Adhikamsetty et al. 2008), and so on. The composition of the domestic wastewater was more complex than seawater. Orthophosphate (PO_4^{3-}) , NO2⁻, metal ions and organic matters were common in domestic wastewater. Consequently, determination of NH₂OH in biological domestic wastewater treatment processes was more difficult than that in seawater or in soil. Furthermore, as the lack of the quantitative relation between NH₂OH and N₂O, it caused great difficulties in understanding the mechanism of N₂O production in biological wastewater treatment process, especially in nitrification. More recently, with the development of nanotechnology, nanostructure-based electrochemical method achieved great developments in the determination of NH₂OH (Sadeghi et al. 2013; Moghaddam et al. 2014; Foroughi et al. 2014; Beitollahi et al. 2014; Mozloum-Ardakani et al. 2015; Rezaei et al. 2015). To the electrochemical method, NH2OH cannot be oxidized at conventional electrode materials, and the electrodes used for the determination of NH₂OH must be chemically modified in order to lower the overpotentials and increase the oxidation current response (Moghaddam et al. 2014). However, the monitoring ranges of gas chromatography method and the electrochemical method were at the level of $\mu g/L$, and the two methods were not suitable for determining milligram or larger amounts of NH₂OH. Besides, the determination procedures of the two methods were also complex.

According to the above points, it was essential to construct a simple and convenient method for the determination of NH₂OH in biological wastewater treatment process. The aims of this study were: (1) to verify the feasibility of using the spectrophotometric method to determine NH₂OH in biological domestic wastewater treatment process, (2) to examine the effects of PO_4^{3-} , NO_2^{-} , nitrate (NO_3^{-}) and trace elements on the spectrophotometric method and (3) to develop a method for eliminating the interference. The research was carried out from May 2016 to January 2017 in Chang'an University, Xi'an city, Shaanxi province, China.

Materials and methods

Principles

Under acidic condition, NH_2OH can be stabilized as NH_3OH^+ . The spectrophotometric method was based on oxidation of NH_2OH to N_2O by Fe(III) using ferric ammonium sulfate ($NH_4Fe(SO_4)_2$, FAS) as oxidation agent (Bengtsson et al. 2002):

$$\operatorname{Fe}(\operatorname{NH}_{2}\operatorname{OH})^{3+} \to \operatorname{Fe}^{2+} + \operatorname{H}_{2}\operatorname{NO}^{\cdot} + \operatorname{H}^{+}$$
(1)

$$\mathrm{Fe}^{3+} + \mathrm{H}_2\mathrm{NO}^{\cdot} \to \mathrm{Fe}^{2+} + \mathrm{HNO} + \mathrm{H}^+ \tag{2}$$

$$\mathrm{HNO} \to 0.5\mathrm{N}_{2}\mathrm{O} + 0.5\mathrm{H}_{2}\mathrm{O} \tag{3}$$

NH₂OH was determined through the formation of ferrion, a tris complex of 1, 10-phenanthroline with Fe(II). Ferrion was a red-colored octahedral complex ion and was soluble and stable in aqueous solution in the pH range of 2–9 (Adhikamsetty et al. 2008). Its molar absorption coefficient was 1.11×10^4 mol/cm at 510 nm, with no peak shift due to pH variation (Hughes et al. 1971).

Solution preparation

Stock solution of sodium nitrite (N_aNO_2) : N_aNO_2 (AR) was dried in an oven at 105 °C for 24 h, and 1.2320 g N_aNO_2 was dissolved in 1000 mL deionized water. In order to preserve the solution, 2 mL CHCl₃ was added to the solution. 1 mL stock solution of N_aNO_2 contained 250 µg NO_2^- -N.

Stock solution of hydroxylamine chloride (NH₂-OH·HCl): NH₂OH·HCl (GR) was dried in an oven at 50 °C for 24 h, and 2.4821 g NH₂OH·HCl was dissolved in 1000 mL deionized water. In order to stabilize NH₂OH, 1 mL 1 mol/L hydrochloric acid solution was added to the stock solution. The solution was preserved at 4 °C in dark. 1 mL stock solution of NH₂OH·HCl contained 500 μ g NH₂OH-N.

Standard solution of NH₂OH·HCl: The standard solution of NH₂OH·HCl was prepared by diluting 1 mL stock

solution of NH₂OH·HCl to 200 mL before each experiment. 1 mL standard solution of NH₂OH·HCl contained 2.5 µg NH₂OH-N.

Stock solution of sodium phosphate (Na₃PO₄): Na₃PO₄ (GR) was dried in an oven at 110 °C for 24 h, and 0.2645 g Na₃PO₄ was dissolved in 1000 mL deionized water. 1 mL stock solution of Na₃PO₄ contained 50 μ g PO₄³⁻-P.

Standard solution of potassium nitrate (KNO₃): KNO₃ (AR) was dried in an oven at 105 °C for 24 h, and 0.7218 g KNO₃ was dissolved in 1000 mL deionized water. In order to preserve the solution, 2 mL CHCl₃ were added to the solution. 1 mL stock solution of KNO₃ contained 100 μ g NO₃⁻-N.

Standard solution of calcium chloride (C_aCl_2): C_aCl_2 (GR) was dried in an oven at 105 °C for 24 h, and 0.1387 g C_aCl_2 was dissolved in 1000 mL deionized water. 1 mL standard solution of C_aCl_2 contained 50 µg C_a^{2+} .

1 mL concentrated hydrochloric acid was added to the solution for preservation.

Standard solution of trace elements: The standard solution of trace elements was prepared by diluting 1 mL stock solution of trace elements to 200 mL before each experiment.

Solution of ferric ammonium sulfate (FAS): 1.9287 g $NH_4F_e(SO_4)_2$ · 12H₂O (AR) was dissolved in 1000 mL 0.1 mol/L hydrochloric acid solution.

Solution of 1, 10-phenanthroline (1, 10-Phe): 1.8021 g 1,10-Phe (AR) was dissolved in 1000 mL 1 mol/L acetic acid solution.

Solution of sodium acetate and acetate (SAA): 96 mL 1.0 mol/L sodium acetate solution and 114 mL 1.0 mol/L acetic acid solution were mixed. The mixture was preserved at 4 $^{\circ}$ C in dark.

Procedure

a. Preparation of standard curve: The standard curve of NH₂OH-N was prepared in the range of 0.00–1.00 mg NH₂OH-N/L by diluting 0.00, 0.20, 0.50, 1.00, 2.00, 4.00 and 10.00 mL of the standard solution of NH₂OH·HCl to 25 mL.

Table 1 Compositions of the stock solution of trace elements

H ₃ BO ₃	150 mg/L	Z_nCl_2	150 mg/L
C _u Cl ₂	30 mg/L	$(NH_4)Mo_7O_2\cdot 4H_2O$	150 mg/L
MgSO ₄	500 mg/L	AlCl ₃	150 mg/L
$CoCl_2 \cdot 4H_2O$	150 mg/L	N _i Cl ₂	150 mg/L

b. Color development: 1.00 mL SAA, 1.00 mL FAS and 1.00 mL 1, 10 Phe were added to the 25 mL samples of NH_2OH in turn. Before the addition of each reagent, the samples were thoroughly mixed.

c. Photometric measurement: 30 min after adding color reagents to the sample, the absorbance of the sample was read at 510 nm (TU1810PC, PERSEE· Beijing, China), and the absorbance of the deionized water was set at zero. The light path was 1 cm.

During determination of NH_2OH-N in other samples, the samples were treated with the same manner as the standard curve.

Experiments

Determination of the time for color development

For determining the time for color development of the spectrophotometric method, the color development time of samples containing different concentrations of NH₂OH-N was evaluated. The concentrations of NH₂OH-N in the samples were set at 0.00, 0.02 and 0.80 mg/L, respectively.

Impact of NO_2^- on the spectrophotometric method

The concentrations of NH₂OH-N in samples were set at 0.02, 0.05, 0.10, 0.20 and 0.40 mg/L. In order to examine the impact of NO_2^- on the spectrophotometric method, NO_2^- was added to the samples. In the experiment of each concentration of NH₂OH-N, the concentrations of NO₂⁻-N in the samples were 2.00, 5.00, 10.00 and 15.00 mg/L, respectively. Each group of the experiment was conducted in triplication.

Impact of PO_4^{3-} on the spectrophotometric method

The concentrations of NH₂OH-N in samples were set at 0.02, 0.05, 0.10, 0.20 and 0.40 mg/L. In order to examine the impact of PO_4^{3-} on the spectrophotometric method, PO_4^{3-} was added to the samples. In the experiment of each concentration of NH₂OH-N, the concentrations of PO_4^{3-} -P in the samples were 1.00, 2.00, 3.00 and 4.00 mg/L, respectively. Each group of the experiment was conducted in triplication.

Elimination of the interference of PO_4^{3-} on the spectrophotometric method

In order to eliminate the interference of PO_4^{3-} on the method, extra experiments were conducted. The concentrations of NH₂OH-N in samples were set at 0.05 and 0.10 mg/L. In the experiment of each concentration of NH₂OH-N, the concentrations of PO_4^{3-} -P in the samples

were 1.00, 1.50 2.00, 2.50, 3.00, 3.50, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00 and 10.00 mg/L, respectively. Each group of experiments was conducted in triplication.

Verification

In order to verify the spectrophotometric method and the correction method proposed in this study, samples containing different concentrations of NH₂OH-N, PO_4^{3-} -P and NO_2^{-} -N were determined by the spectrophotometric method. Meanwhile, the application of the correction method for improving the accuracy of the spectrophotometric method was evaluated. The compositions of the verification samples are shown in Table 2.

Impact of NO_3^- on the spectrophotometric method

The concentrations of NH₂OH-N in samples were set at 0.05, 0.10, 0.20 and 0.40 mg/L. In order to examine the impacts of NO₃⁻ on the spectrophotometric method, NO₃⁻ was added to the samples. In the experiment of each

 Table 2 Compositions of samples for verification of the spectrophotometric method

NH ₂ OH-N concentrations in samples (mg/L)	PO ₄ ³⁻ -P concentrations in samples (mg/L)	NO ₂ N concentrations in samples (mg/L)	
0.06	1.40	_	
	2.40	-	
	3.40	-	
	3.80	-	
0.08	1.40	-	
	2.40	-	
	3.40	-	
	3.80	_	
0.05	3.00	2.00	
	3.00	5.00	
	3.00	10.00	
	3.00	15.00	
0.05	4.00	2.00	
	4.00	5.00	
	4.00	10.00	
	4.00	15.00	
0.10	3.00	2.00	
	3.00	5.00	
	3.00	10.00	
	3.00	15.00	
0.10	4.00	2.00	
	4.00	5.00	
	4.00	10.00	
	4.00	15.00	

concentration of NH₂OH-N, the concentrations of NO_3^- -N in the samples were 6.00, 10.00, 16.00 and 24.00 mg/L, respectively. Each group of the experiment was conducted in triplication.

Impacts of other matters on the spectrophotometric method

In order to examine the impacts of C_a^{2+} and trace elements on the spectrophotometric method, the C_aCl_2 solution and the trace elements solution were added to the samples. The concentrations of NH₂OH-N in samples were set at 0.05, 0.10, 0.20 and 0.40 mg/L. The compositions of the samples are shown in Table 3. Each group of the experiment was conducted in triplication.

Results and discussion

The determination time and the standard curve

When NH₂OH-N concentrations in the samples were 0.00, 0.02 and 0.80 mg/L, the absorbance of the samples almost not varied when the time for color development was longer than 20 min (Fig. 1), especially in the range of 20–60 min. In the chromogenic process, NH₂OH was oxidized to N₂O by Fe(III), and Fe(III) was reduced to Fe(II). Then, ferrion formed by coupling 1, 10-phenan-throline with Fe(II). The reaction of NH₂OH and Fe(III) at 30 °C was completed in 3 min (Dias et al. 1979). This process was a chemical process and did not need a very long reaction time. So, the determination time of the spectrophotometric method was set at 30 min after all reagents were added.

When the concentration of NH₂OH-N was in the range of 0.02–1.00 mg/L, there was a linear relation between the concentrations of NH₂OH-N and the absorbance (y = 1.5078x-0.0132, $R^2 = 0.9991$) without the presence of interfering substances (Fig. 2).

The monitoring ranges of the gas chromatography method (Kock and Bange 2013) and the electrochemical method ((Sadeghi et al. 2013; Moghaddam et al. 2014; Foroughi et al. 2014; Beitollahi et al. 2014; Mozloum-Ardakani et al. 2015; Rezaei et al. 2015)) were at the level of μ g/L. Compared with the gas chromatography method and the electrochemical method, the monitoring range of the spectrophotometric method was at the level of mg/L. The spectrophotometric method was more suitable for determining milligram or larger amounts of NH₂OH.

Impact of NO₂⁻ on the method

The determined NH_2OH-N concentrations of the samples containing NO_2^- are shown in Table 4.

Table 3 Compositions of samples containing C_a^{2+} and trace elements

NH ₂ OH-N concentrations of the samples (mg/L)	C _a ²⁺ concentrations in samples (mg/ L)	Volumes of the standard solution of trace elements added to the samples (mL)
0.05	2.00	1.00
	5.00	2.50
	8.00	5.00
0.10	2.00	1.00
	5.00	2.50
	8.00	5.00
0.20	2.00	1.00
	5.00	2.50
	8.00	5.00
0.40	2.00	1.00
	5.00	2.50
	8.00	5.00

When the concentrations of NH₂OH-N in the samples were 0.02 mg/L, the recoveries of NH₂OH-N were only in the range of 58.30-68.33% while NO2--N presented, and the spectrophotometric method cannot give satisfied determination results of NH2OH-N. When the concentrations of NH₂OH-N in the samples were higher than 0.05 mg/L, the spectrophotometric method can give relatively accurate results of NH₂OH-N concentrations when NO₂⁻-N concentration was lower than 15.00 mg/L. The recoveries of NH₂OH-N were in the range of 90.49–113.58%. Compared with the method which directly determined N₂O converted from NH₂OH-N (Kock and Bange 2013), the presence of NO₂⁻-N only had a minor interference with the spectrophotometric method when the concentration of NH₂OH-N in the samples was higher than 0.02 mg/L.

Fig. 1 Time for color development of samples containing different concentrations of NH₂OH-N

Under acid condition, Fe(II) can react with NO_2^- as follows (Heil et al. 2016):

$$Fe^{2+} + NO_2^- + 2H^+ \rightarrow Fe^{3+} + NO + H_2O$$
 (4)

However, from the color development process, Fe(II) coupled with 1, 10-phenanthroline to form ferrion instead of reacting with NO_2^- . The presence of NO_2^- did not affect the formation of ferrion.

It was observed that the recoveries of NH₂OH-N were decreased with the increasing NO₂⁻-N concentration, especially when the concentration of NH₂OH-N was higher than 0.02 mg/L. This phenomenon indicated other reactions related to NH₂OH and NO₂⁻ occurred in the systems resulting in the decrease in the recoveries of NH₂OH-N. As mentioned before, NH₂OH is an extremely reactive matter. Although, it can be stabilized under acid condition, NH₂-OH can react with NO₂⁻ to form hyponitrous acid (H₂N₂O₂) which can decompose to N₂O and water rapidly (Bothner-By and Friedman 1952):

$$NH_2OH + HNO_2 \rightarrow H_2N_2O_2 + H_2O$$
(5)

$$H_2N_2O_2 \rightarrow N_2O + H_2O \tag{6}$$

Based on the results obtained in our study, the above reactions maybe happen slowly. However, they were not the dominant process; otherwise, the recoveries of NH2OH-N of all samples would be much lower than the obtained values. Nevertheless, the accuracy of the spectrophotometric method was obviously affected when the concentration of NH₂OH-N was at a very low level (e.g., 0.02 mg/L). It was recommended that when using the spectrophotometric method to determine the concentration of NH₂OH-N in samples containing NO₂⁻, the determined concentration of NH₂OH-N higher than 0.05 mg/L was considered to be effective.

Fig. 2 Standard curve of the spectrophotometric method for determination of NH_2OH-N

NH ₂ OH-N concentrations in samples (mg/L)	NO ₂ ⁻ -N concentrations in samples (mg/L)	The determined NH ₂ OH-N concentrations of the samples (mg/L) (n = 3)	The recovery of NH_2OH- $N(\%)^a$
0.02	2.00	0.014 ± 0.0009	68.33
	5.00	0.012 ± 0.0009	60.80
	10.00	0.012 ± 0.0009	60.80
	15.00	0.012 ± 0.0009	58.30
0.05	2.00	0.052 ± 0.0015	103.53
	5.00	0.051 ± 0.0023	101.52
	10.00	0.048 ± 0.0009	95.51
	15.00	0.045 ± 0.0009	90.49
0.10	2.00	0.113 ± 0.0017	112.92
	5.00	0.111 ± 0.0031	111.42
	10.00	0.108 ± 0.0048	108.41
	15.00	0.105 ± 0.0061	104.90
0.20	2.00	0.227 ± 0.0048	113.36
	5.00	0.224 ± 0.0063	111.85
	10.00	0.220 ± 0.0030	110.10
	15.00	0.216 ± 0.0038	108.10
0.40	2.00	0.454 ± 0.0038	113.58
	5.00	0.448 ± 0.0076	112.07
	10.00	0.442 ± 0.0061	110.57
	15.00	0.439 ± 0.0083	109.82

Table 4 Determined NH₂OH-N concentrations of the samples containing different NO_2^- -N concentrations

Table 5 Determined NH₂OH-N concentrations of the samples containing different PO_4^{3-} -P concentrations

NH ₂ OH-N concentrations in samples (mg/L)	PO ₄ ^{5–} -P concentrations in samples (mg/L)	The determined NH ₂ OH-N concentrations (mg/ L) $(n = 3)$	The recoveries of NH ₂ OH- N (%) ^a
0.02	1.00	0.013 ± 0.0009	65.82
	2.00	0.009 ± 0.0009	43.26
	3.00	0.007 ± 0.0009	35.74
	4.00	0.005 ± 0.0000	25.71
0.05	1.00	0.046 ± 0.0015	91.50
	2.00	0.043 ± 0.0022	86.48
	3.00	0.039 ± 0.0009	78.46
	4.00	0.037 ± 0.0015	73.45
0.10	1.00	0.103 ± 0.0040	102.90
	2.00	0.097 ± 0.0000	96.88
	3.00	0.091 ± 0.0038	91.37
	4.00	0.086 ± 0.0040	86.35
0.20	1.00	0.211 ± 0.0069	105.59
	2.00	0.204 ± 0.0066	101.83
	3.00	0.199 ± 0.0125	99.32
	4.00	0.190 ± 0.0046	94.81
0.40	1.00	0.423 ± 0.0128	105.68
	2.00	0.406 ± 0.0023	101.42
	3.00	0.399 ± 0.0086	99.67
	4.00	0.394 ± 0.0140	98.54

 $^{\rm a}\,$ The recovery of NH_2OH-N was calculated based on the data before rounding

Impact of PO_4^{3-} on the spectrophotometric method

The determined NH₂OH-N concentrations of the samples containing PO_4^{3-} are shown in Table 5.

It was observed that the recoveries of NH₂OH-N were decreased with the increasing of $PO_4^{3-}-P$ concentrations. When the concentrations of NH₂OH-N in the samples were higher than 0.20 mg/L, PO₄³⁻-P almost had no impacts on NH₂OH-N determination by the spectrophotometric method. When the concentration of NH2OH-N in the samples was 0.10 mg/L, the existence of PO_4^{3-} -P had minor impacts on NH₂OH-N determination by the spectrophotometric method. The recoveries of NH₂OH-N were in the range of 86.35-102.90%. However, when the concentrations of NH₂OH-N in the samples were lower than 0.05 mg/L, there were big errors between the actual concentrations and the determined concentrations of NH2OH-N. The recoveries of NH₂OH-N were only in the range of 25.71–91.50%. The errors caused by $PO_4^{3-}-P$ were increased with the increasing $PO_4^{3-}-P$ concentrations. Overall, when the concentrations of NH₂OH-N in the samples were lower than 0.10 mg/L, the existence of

 $^{\rm a}$ The recoveries of NH_2OH-N were calculated based on the data before rounding

 PO_4^{3-} interfered with the determination of the spectrophotometric method.

In the spectrophotometric method, NH₂OH was oxidized to N₂O by Fe(III) in FAS; meanwhile, Fe(III) was reduced to Fe(II). When samples contained PO₄³⁻, Fe(III) and Fe(II) reacted with PO₄³⁻ and formed precipitate (Galal-Gorchev and Stumm 1963; Ghassemi and Rcht 1971). In the spectrophotometric method, the formation of the precipitate was prevented by the low pH value (~4.5). However, due to the reaction between Fe(III)/Fe(II) and PO₄³⁻, when the concentration of NH₂OH-N in the samples was lower than 0.10 mg/L, the accuracy of the spectrophotometric method was affected. 0.10 mg/L of NH₂OH-N in samples seemed to be the threshold concentration for the spectrophotometric method.

Numerical method for eliminating the interference of PO_4^{3-}

In order to eliminate the impact of PO_4^{3-} on the spectrophotometric method, the interferences of different PO_4^{3-} -P concentrations on the method were examined

when the concentrations of NH_2OH-N were 0.05 and 0.10 mg/L, respectively.

When the concentrations of NH₂OH-N were 0.05 and 0.10 mg/L, the determined NH₂OH-N concentrations were decreased with the increasing PO_4^{3-} -P concentrations (Fig. 3). When the concentration of PO_4^{3-} -P in the samples was 10.00 mg/L, the recoveries of NH₂OH-N were only 42.37 and 63.80%, while the concentrations of NH₂OH-N were 0.05 and 0.10 mg/L, respectively. PO_4^{3-} seriously interfered with the spectrophotometric method (Table 6).

In order to eliminate the interference of PO_4^{3-} , a numerical method was proposed. Steps of the numerical method were as follows:

Step 1 was the normalization. The recoveries of NH_{2} -OH-N in the samples containing different concentrations of PO_4^{3-} -P were divided with the corresponding concentrations of PO_4^{3-} -P.

Step 2 was the fitting. The concentrations of PO_4^{3-} -P and the normalized recoveries of NH₂OH-N were set as the X and Y axes, respectively, for plotting; then, the power function was used to fit the data (Fig. 1 in Supplementary Materials). The mean values of the scaling factor and the exponent of the power function under six experiments were 0.9166 \pm 0.0514 (n = 6) and -1.1715 ± 0.0448 (n = 6). Consequently, the correction function for the following step was determined as:

$$y = 0.9166x^{-1.1715} \tag{7}$$

where *x* represented the PO_4^{3-} -P concentration in samples, mg/L, and *y* represented the normalized recovery of NH₂-OH-N under different PO_4^{3-} -P concentrations.

Step 3 was the correction. The correction procedure included three sub-steps: (1) concentrations of PO_4^{3-} -P and NH₂OH-N in samples were determined. The PO_4^{3-} -P concentration was determined according to the standard method (APHA 1998). Based on the determined PO_4^{3-} -P

Fig. 3 Determined NH₂OH-N concentrations in samples containing different PO_4^{3-} -P concentrations

Table 6 Determined NH₂OH-N concentrations of samples containing different PO_4^{3-} -P concentrations

NH ₂ OH-N concentrations in samples (mg/L)	PO ₄ ³⁻ -P concentrations in samples (mg/L)	The determined NH ₂ OH-N concentrations (mg/L) $(n = 3)$	The recoveries of NH ₂ OH-N (%)
0.05	1.00	0.043 ± 0.0023	86.48
	1.50	0.041 ± 0.0017	81.47
	2.00	0.038 ± 0.0026	76.46
	2.50	0.036 ± 0.0031	72.45
	3.00	0.035 ± 0.0031	69.44
	3.50	0.033 ± 0.0023	65.43
	4.00	0.032 ± 0.0026	64.43
	5.00	0.032 ± 0.0038	63.42
	6.00	0.029 ± 0.0040	58.41
	7.00	0.028 ± 0.0030	55.40
	8.00	0.024 ± 0.0017	47.38
	9.00	0.023 ± 0.0023	45.38
	10.00	0.021 ± 0.0035	42.37
0.10	1.00	0.095 ± 0.0000	95.38
	1.50	0.093 ± 0.0009	93.37
	2.00	0.088 ± 0.0000	87.86
	2.50	0.086 ± 0.0009	85.85
	3.00	0.083 ± 0.0015	83.35
	3.50	0.080 ± 0.0000	80.34
	4.00	0.078 ± 0.0009	78.33
	5.00	0.077 ± 0.0011	77.36
	6.00	0.076 ± 0.0046	76.33
	7.00	0.073 ± 0.0063	73.32
	8.00	0.068 ± 0.0031	67.81
	9.00	0.067 ± 0.0040	66.80
	10.00	0.064 ± 0.0052	63.80

concentration, the normalized recovery of NH₂OH-N can be ascertained via Eq. (7); (2) the normalized recovery was revised by multiplying the determined PO_4^{3-} -P concentration; (3) the determined NH₂OH-N concentration was divided by the normalized recovery in sub-step (2). As a result, the NH₂OH-N concentration in sample can be determined eventually.

Verification of the correction method

In order to verify the availability of the correction method proposed in this study, two conditions were verified. The first condition was samples contained PO_4^{3-} -P except for NH₂OH-N, and the second condition was samples contained PO_4^{3-} -P, NO_2^{-} -N and NH₂OH-N. The determined NH₂OH-N concentrations in samples before and after correction are shown in Table 7.

NH ₂ OH-N concentrations in samples (mg/L)	$PO_4^{3-}-P$ concentrations in samples (mg/L)	NO ₂ ⁻ -N concentrations in samples (mg/L)	The determined concentrations of NH ₂ OH-N (mg/L)	The recovery before the correction (%)	The correction concentrations of NH ₂ OH-N (mg/L)	The recovery after correction (%)
0.06	1.40	_	0.055	91.67	0.064	105.95
	2.40	-	0.050	83.33	0.063	105.64
	3.40	-	0.046	76.67	0.062	103.18
	3.80	-	0.046	76.67	0.063	105.16
0.08	1.40	-	0.079	98.75	0.091	114.13
	2.40	-	0.071	88.75	0.090	112.51
	3.40	-	0.065	81.25	0.087	109.34
	3.80	-	0.065	81.25	0.089	111.45
0.05	3.00	2.00	0.040	80.00	0.053	105.37
	3.00	5.00	0.035	70.00	0.046	92.20
	3.00	10.00	0.038	76.00	0.050	100.11
	3.00	15.00	0.032	64.00	0.042	84.30
0.05	4.00	2.00	0.035	70.00	0.048	96.87
	4.00	5.00	0.029	58.00	0.040	80.26
	4.00	10.00	0.029	58.00	0.040	80.26
	4.00	15.00	0.028	56.00	0.039	77.49
0.10	3.00	2.00	0.097	97.00	0.128	127.77
	3.00	5.00	0.094	94.00	0.124	123.82
	3.00	10.00	0.089	89.00	0.117	117.23
	3.00	15.00	0.082	82.00	0.108	108.01
0.10	4.00	2.00	0.094	94.00	0.130	130.08
	4.00	5.00	0.086	86.00	0.119	119.01
	4.00	10.00	0.083	83.00	0.115	114.86
	4.00	15.00	0.077	77.00	0.107	106.55

Table 7 Determined NH₂OH-N concentrations in samples before and after the correction

When samples only contained $PO_4^{3-}-P$ except for NH₂OH-N, the numerical correction for the results obtained by the spectrophotometric method was very effective. The accuracy of the spectrophotometric method was improved obviously after the numerical correction. When the NH₂OH-N concentration in the sample was 0.06 mg/L and the PO_4^{3-} -P concentrations varied in the range of 1.40-3.80 mg/L, the determined NH₂OH-N concentrations were in the range of 0.046–0.055 mg/L, and the recoveries were in the range of 76.67-91.67%. After correction by the numerical method, the determined NH₂OH-N concentrations were in the range of 0.062–0.064 mg/L, and the recoveries were in the range of 103.18–105.95%. The similar results were achieved when the concentration of NH₂OH-N in the samples was 0.08 mg/L. However, when PO_4^{3-} and NO_2^{-} simultaneously existed in the samples containing NH2OH-N, the situation was more complicated.

When the NH₂OH-N concentration was 0.10 mg/L, and the PO_4^{3-} -P concentrations were 3.00 and 4.00 mg/L, respectively, the recoveries of NH₂OH-N obtained by the

spectrophotometric method were higher than 83.00% when the concentration of NO_2^{-} -N in the sample was lower than 10.00 mg/L. After correction by the numerical method, the recoveries were improved to an extremely high level, and unfortunately, the errors of the spectrophotometric method were also improved. Under these situations, the spectrophotometric method can be used to determine the concentration of NH₂OH-N directly.

When the NH₂OH-N and PO₄³⁻-P concentrations were 0.05 mg/L and 3.00 mg/L, respectively, the recoveries of NH₂OH-N obtained by the spectrophotometric method were in the range of 64.00–80.00% when the NO₂⁻-N concentrations varied in the range of 2.00–15.00 mg/L. After correction by the numerical method, the recoveries of NH₂OH-N were improved to 84.30–105.37%. When the NH₂OH-N and PO₄³⁻-P concentrations were 0.05 mg/L and 4.00 mg/L, respectively, the recoveries of NH₂OH-N obtained by the spectrophotometric method were in the range of 56.00–70.00% when the NO₂⁻-N concentrations varied in the range of 2.00–15.00 mg/L.

improved to 77.49–96.87%. Under these conditions, the recoveries of NH_2OH-N obtained by the spectrophotometric method were improved obviously by the numerical method proposed in this study.

Compared with the gas chromatography method (Gebhardt et al. 2004; Kock and Bange 2013) and other spectrophotometric method for NH₂OH determination (Kolasa and Wardencki 1974; Dias et al. 1979), the method proposed in this study was suitable for determining milligram amounts of NH₂OH-N in aqueous solution. There was a linear relation between the concentrations of NH₂OH-N and the absorbance, while the concentration of NH2OH-N was in the range of 0.02–1.00 mg/L. When NO_2^{-} and PO_4^{3-} presented in samples, the linear range varied to 0.05-1.00 mg/L. The side reactions of dissolved NO2⁻ can result in significant errors in the NH2OH determination by the gas chromatography method (Kock and Bange 2013). However, when NO_2^{-} -N concentration was lower than 15 mg/L, the spectrophotometric method can obtain relatively accurate results. The presence of NO₂⁻ did not cause significant errors for the NH₂OH determination. The presence of PO_4^{3-} can result in a significant error in the NH₂OH determination when the NH2OH-N concentration was lower than 0.10 mg/L. The numerical method proposed in this study can improve the accuracy of the spectrophotometric method significantly.

However, each method had its applicable scope, and the spectrophotometric method was no exception. If the concentration of NH₂OH-N in samples was extremely low, and the concentrations of NO₂⁻-N and PO₄³⁻-P in samples were high, the spectrophotometric method was probably not a good choice for the determination of NH₂OH-N. It was noteworthy that if the concentration of NH₂OH-N in samples was high enough (e.g., 0.4 mg/L), NO₂⁻ and PO₄³⁻ did not interfere with the spectrophotometric method.

Impacts of other matters on the spectrophotometric method

The impacts of NO_3^- , C_a^{2+} and trace elements are shown in Table 1 and Table 2 in Supplementary Materials.

When the NO₃⁻-N concentration varied in the range of 6.00–24.00 mg/L, the recovery of NH₂OH-N under four conditions was in the range of 104.40–111.85%. When the C_a^{2+} concentration varied in the range of 2.00–8.00 mg/L and volume of the standard solution of trace elements added to the samples varied in the range of 1.00–5.00 mL, the recoveries of NH₂OH-N under the four conditions were in the range of 98.31–112.55%. NO₃⁻, C_a^{2+} and trace elements did not interfere with the determination of NH₂OH-N by the spectrophotometric method.

Conclusion

The spectrophotometric method taking ferric ammonium sulfate and 1, 10-phenanthroline as the oxidant and the chromogenic agent, respectively, can be used to determine the NH_2OH-N concentration in biological wastewater treatment processes quickly and conveniently.

- 1. When the concentrations of NH_2OH-N in the samples were higher than 0.05 mg/L, the spectrophotometric method can give relatively accurate results when $NO_2^{-}-N$ concentration was lower than 15.00 mg/L.
- 2. NO_3^- , C_a^{2+} and trace elements did not interfere with the method.
- 3. The impact of PO_4^{3-} on the method was complicated. The interference of PO_4^{3-} on the method can be eliminated by the numerical method proposed in this study.

The determination method proposed was helpful to understand the quantitative relationship between NH_2OH and N_2O emission and reveal the function of NH_2OH in N_2O production in biological wastewater treatment processes.

Acknowledgements This work was supported by the Shaanxi Province Science & Technology Development Program (Grant No.: 2014K15-03-02); National Training Programs of Innovation and Entrepreneurship for Undergraduates (Grant No.: 201610710081); the Special Fund for Basic Scientific Research of Central Colleges, Chang'an University (Grant No.: 310829163406; 310828171004).

References

- Adhikamsetty PK, Gollapalli NR, Jonnalagadda SB (2008) Complexation kinetics of Fe²⁺ with 1,10-phenanthroline forming ferroin in acidic solutions. Int J Chem Kinet 40(8):515–523
- APHA (1998) Standard methods for examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC
- Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38(6):471–495
- Beitollahi H, Tajik S, Mohammadi SZ, Baghayeri M (2014) Voltammetric determination of hydroxylamine in water samples using a 1-benzyl-4-4ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube-modified glassy carbon electrode. Ionics 20(4):571–579
- Bengtsson G (1973) Kinetics and mechanism of reaction between vanadium (V) and hydroxylamine within hydrogen ion concentration range 0.005–0.2 m. Acta Chem Scand 27:3053–3060
- Bengtsson G, Fronnaeu L, Bengtsson-Kloo L (2002) The kinetics and mechanisms of oxidation of hydroxylamine by iron (III). J Chem Soc Dalton Trans 12:2548–2552
- Bothner-By A, Friedman L (1952) The reaction of nitrous acid with hydroxylamine. J Chem Phys 20(3):459–462
- Bremner JM, Blackmer AM, Waring SA (1980) Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils. Soil Biol Biochem 12(3):263–269

- Brown LL, Drury JS (1967) Nitrogen isotope effects in reduction of nitrate, nitrite and hydroxylamine to ammonia. I. In sodium hydroxide solution with FeII. J Chem Phys 46:2833–2837
- Bulter JH, Gordon LI (1986) An improved gas chromatographic method for the measurement of hydroxylamine in marine and fresh waters. Mar Chem 19(3):229–243
- Dias F, Olojola AS, Jaselskis B (1979) Spectrophotometric determination of micro amount of hydrazine and hydroxylamine alone and in the presence of each other. Talanta 26(1):47–49
- Foroughi MM, Beitollahi H, Tajik S, Parvan H (2014) Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode: application to determination of hydroxylamine in water samples. Int J Electrochem Sci 9(6):2955–2965
- Galal-Gorchev H, Stumm W (1963) The reaction of ferric iron with ortho-phosphate. J Inorg Nucl Chem 25(5):567–574
- Gebhardt S, Walter S, Nausch G, Bgange HW (2004) Hydroxylamine (NH₂OH) in the Baltic Sea. Biogeosci Discuss 1(1):709–724
- Ghassemi M, Rcht HL (1971) Phosphate precipitation with ferous iron. U. S. Environmental Protection Agency, Washington, DC
- Heil J, Vereecken H, Brüggemann N (2016) A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. Eur J Soil Sci 67(1):23–39
- Hughes MH, Nikclin HG, Shrinmanker K (1971) Autoxidation of hydroxylamine in alkaline solutions. 2. Kinetics acid dissociation constant of hydroxylamine. J Chem Soc A Inorg Phys Theor 22:3485–3487
- Kim SW, Miyahara M, Fushinobu S, Wakagi T, Shoun H (2010) Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria. Biores Technol 101(11):3958–3963
- Kock A, Bange HW (2013) Nitrite removal improves hydroxylamine analysis in aqueous solution by conversion with iron (III). Environ Chem 10(1):64–71
- Kolasa T, Wardencki W (1974) Quantitative determination of hydroxylamine. Talanta 21(8):845–857
- Lemaire R, Chauzy J, Veuillet F, Dimassimo R, Sorensen K, Deleris S (2011) Advanced control system to reduce N₂O emission and

improve performance of an SBR treating N-rich effluent via nitrite pathway. In: Proceeding of the Water Environment Federation, WEFTEC 2011, 6480, USA

- Liu SR, Verrechken H, Brüggemann N (2014) A highly sensitive method for the determination of hydroxylamine in soils. Geoderma 232–234:117–122
- Moghaddam HM, Beitollahi H, Tajik S, Malakootian M, Maleh HK (2014) Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor. Environ Monit Assess 186(11):7431–7441
- Mozloum-Ardakani M, Khoshroo A, Hosseinzadeh L (2015) Simultaneous determination of hydrazine and hydroxylamine based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens Actuators B Chem 214:132–137
- Poughon L, Dussap CG, Gros JB (2001) Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnol Bioeng 72(4):416–433
- Rezaei B, Ensafi AA, Jamsshidi-mofrad E (2015) A sensitive electrochemical sensor for hydroxylamine determination: using multiwall carbon nanotube paste electrode (MWCNTPE) and promazine hydrochloride as homogenous mediator. Sens Actuators B Chem 211:138–145
- Sadeghi R, Karimi-Maleh H, Khalilzadeh MA, Beiotollahi H, Ranjbarha Z, Zanousi MBP (2013) A new strategy for determination of hydroxylamine and phenol in water and waste water samples using modified nanosensor. Environ Sci Pollut Res 20(9):6584–6593
- Stein LY (2011) Surveying N_2O-producing pathways in bacteria. Methods Enzymol 486:131–152
- UNEP (2013) Drawing down N_2O to protect climate and the ozone layer. A UNEP Synthesis Report. United Nations Environment Programme (UNEP), Kenya
- Vajrala N, Martens-Habbena W, Sayavedra-Soto LA, Schauer A, Bottomley PJ, Stahl DA, Arp DJ (2013) Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. PNAS 110(3):1006–1011

