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Abstract Accurate estimates of wildfire probability and

production of distribution maps are the first important steps

in wildfire management and risk assessment. In this study,

geographical information system (GIS)-automated tech-

niques were integrated with the quantitative data-driven

evidential belief function (EBF) model to predict spatial

pattern of wildfire probability in a part of the Hyrcanian

ecoregion, northern Iran. The historical fire events were

identified using earlier reports and MODIS hot spot product

as well as by carrying out multiple field surveys. Using the

GIS-based EBF model, the relationships among existing

fire events and various predictor variables predisposing fire

ignition were analyzed. Model results were used to produce

a distribution map of wildfire probability. The derived

probability map revealed that zones of moderate, high, and

very high probability covered nearly 60% of the landscape.

Further, the probability map clearly demonstrated that the

probability of a fire was strongly dependent upon human

infrastructure and associated activities. By comparing the

probability map and the historical fire events, a satisfactory

spatial agreement between the five probability levels and

fire density was observed. The probability map was further

validated by receiver operating characteristic using both

success rate and prediction rate curves. The validation

results confirmed the effectiveness of the GIS-based EBF

model that achieved AUC values of 84.14 and 81.03% for

success and prediction rates, respectively.

Keywords Natural hazard � Forest fire � Fire ignition �
Probability mapping

Introduction

Wildfires play an important role as a natural disturbance

across the world.Wildfires threaten human life and property,

affect ecological processes and functions, and can alter the

structure of ecosystems (Stephens et al. 2013). Over the past

decade, substantial global increases in number and severity

of wildfires have been reported (Parisien et al. 2016; Jaafari

et al. 2017a). The relative likelihood of wildfire occurrence

and its spread are strongly affected by various variables that

can be grouped under four main categories: climate, vege-

tation, topography, and human activities. Climate variables

(e.g., temperature, rainfall, wind, and evapotranspiration)

exert both direct and indirect influences on fire ignitability

(Parisien et al. 2012). Vegetation (i.e., land cover) effects on

fire ignition and spread through fuel characteristics such as

type, load, and moisture content (Adab et al. 2013, 2015).

The effect of topographic variables (e.g., slope, aspect, and

elevation) on fire activity is largely indirect (Parisien et al.

2012). Topography exerts its effect on fire mainly by influ-

encing patterns in ignitions, vegetation, local climate, and

human accessibility. Humans affect the spatial pattern and

frequency of fire by providing ignition sources and altering

natural vegetation in ways that may either promote or limit

fire (Parisien et al. 2016).
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The probability that a fire occurs is mostly estimated by

investigating the spatial relationship between the predictor

variables and historical fire locations of a given landscape

(Syphard et al. 2008; Oliveira et al. 2012; Adab et al. 2013;

Tien Bui et al. 2016; Abdi et al. 2016). Chuvieco and Con-

galton (1989) were probably the first authors to clearly

introduce and articulate the use of geo-environmental data and

a statistical model (logistic regression) for fire probability

mapping.This approach inspired a growing streamof research

on wildfire modeling that the variety of works published by

different modelers demonstrates its vitality (e.g., Syphard

et al. 2008; Martı́nez et al. 2009; Oliveira et al. 2012; Pour-

ghasemi 2016; Eskandari and Chuvieco 2015; Abdi et al.

2016). Other popular methods with large number of applica-

tions are classification and regression tree models (e.g.,

Lozano et al. 2008), MaxEnt algorithm (e.g., Parisien et al.

2012; Arpaci et al. 2014; Chen et al. 2015), neural networks

(e.g., Satir et al. 2016), frequency ratio (Pourtaghi et al. 2015);

Shannon’s entropy (Pourtaghi et al. 2015), weights of evi-

dence approach (e.g.,Dickson et al. 2006; Jaafari et al. 2017a),

random forests (e.g., Oliveira et al. 2012; Arpaci et al. 2014;

Guo et al. 2016; Pourtaghi et al. 2016), fuzzy systems (e.g.,

Pourghasemi et al. 2016; Tien Bui et al. 2017), support vector

machines (Tien Bui et al. 2016), Bayesian modeling (e.g.,

Silva et al. 2015), and evidential belief function (EBF)

(Pourghasemi 2016). These methods that have taken advan-

tage of Remote Sensing and Geographical Information Sys-

tem (GIS) techniques enable the delineation of locationsprone

tofire ignitionand the development of spatially explicit hazard

mitigation plans. However, each method has its inherent

advantages and limitations. For instance, while input process,

calculations, and output process are very simple and easy to

understand in the frequency ratio, Shannon’s entropy, and

EBFmodels (Pourtaghi et al. 2015; Pourghasemi 2016), other

models (e.g., fuzzy systems, neural networks, and support

vector machines) require the conversion of data to ASCII or

other formats that is too time-consuming for large amount of

data. Further, these models (i.e., fuzzy systems, neural net-

works, and support vector machines) need an appropriate

calibration and optimization of the parameters to achieve the

maximum level of predictive ability, but computation com-

plexity and the lack of available computing power usually

prevent the modelers from proper exploring this issue (Ro-

drigues and de la Riva 2014; Pourghasemi et al. 2016; Tien

Bui et al. 2016; Satir et al. 2016). On the other hand, the

random forests model that was shown to be superior to

MaxEnt algorithm (Arpaci et al. 2014), support vector

machines (Rodrigues and de la Riva 2014), and logistic

regression (Rodrigues and de la Riva 2014; Guo et al. 2016)

achieved a lower predictive ability than boosted regression

tree, generalized additive model in the comparative study

conducted by Pourtaghi et al. (2016). From the literature

reviewed, it can be concluded that, despite much effort to

identify the best modeling approach, it is still unclear which

approach should be employed for wildfire modeling.

This study was aimed to evaluate the predictive ability

of a GIS-EBF model for wildfire probability modeling. The

model exploits information obtained from an inventory

map of historical fire locations and a wide range of pre-

dictor variables to predict where wildfires may occur in the

future. Density graph and receiver operating characteristics

(ROC) methods were utilized for the assessment and val-

idation of the wildfire probability map. The proposed

scheme is illustrated via a case study that was conducted

during 2015–2016 in the eastern part of the Hyrcanian

ecoregion, Iran. Since this is a prototype study performed

in one of the characteristic fire susceptible regions of

northern Iran, the findings can be utilized for regions that

show similar environmental characteristics.

Characteristics of the study area

The study area encompasses 10,552 km2 of the Hyrcanian

ecoregion in northern Iran (Fig. 1). The area is characterized by

several land cover types, i.e., forest, rangeland, farmland, and

orchard that exhibit quite a range of vegetation. This area

generally contains gently sloping areas, but the southeastern

zone which is covered by deciduous forests is steep. The ele-

vation gradients of the study area vary between -117 and

2455 m,whereas about 60%of the area is less than 300 m. The

area has a relatively semi-desert climate due to the topographic

features (the Alborz mountain ranges), distance from the Cas-

pian Sea, and proximity to desert areas in south of Turk-

menistan. The mean annual precipitation and temperature are

recorded to be 210 mm and 16 �C, while the average annual
evapotranspiration is about 1980 mm. The area has experi-

enced extensive fire activity both historically and in recent

years (Fig. 2). Although fire activity has changed through time

according to climate, human population, and land use changes,

it typically extends from June until December with a single

modal seasonal distribution that peaks in July and August.

Materials and methods

Geospatial database

Wildfire inventory map

An inventory map of historical fire events is the main com-

ponent of every geospatial database constructed for wildfire

probability modeling (Adab et al. 2013; Arpaci et al. 2014;

Chen et al. 2015; Pourtaghi et al. 2016; Jaafari et al. 2017a).

The wildfire inventory map for the study area was compiled

using documentations from the administrative office of
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Fig. 1 Location of study area with fire event locations

Fig. 2 Examples of wildfire events in the study area (photographs by: Aboutaleb Nadri and Mahmoud Hazini)
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natural resources of the Golestan Province, national reports,

and the MODIS hot spot product (http://earthdata.nasa.gov/

firms). Multiple field surveys and screening processes were

conducted to remove records with inaccurate locations (e.g.,

records with zero as the fire detection time or a crown fire type

without any associated burn area in forests) and blank records

that did not contain any information. Finally, a total of 772 fire

events (1162 fire pixels) from the period of 2002–2014 were

verified formodeling purpose (Fig. 1). The fire locationswere

randomly divided into two subsets: Seventy percent of the

locations (540 fires comprising 813 fire pixels) were retained

for training the probabilitymodel, and the remaining locations

(232 fires comprising 349 fire pixels) were set aside for model

validation (Pourghasemi 2016; Pourtaghi et al. 2016; Jaafari

et al. 2017a).

Predictor variables

The second component of the geospatial database for wildfire

probability modeling is the set of predictor variables that have

been directly or indirectly related to fire occurrence in previous

studies as reported in the literature (e.g., Rollins et al. 2004;

Syphard et al. 2008; Martı́nez et al. 2009; Oliveira et al. 2012;

Adab et al. 2013; Tien Bui et al. 2016; Abdi et al. 2016; Nunes

et al. 2016; Jaafari et al. 2017a). These variables are: slope

degree, aspect, elevation, plan curvature, topographic wetness

index (TWI), topographic roughness index (TRI), temperature,

rainfall, evapotranspiration, land use/cover (LULC), soil type,

and proximity to roads, rivers, and settlements. To assess pos-

sible multicollinearity among the variables, variance inflation

factors (VIF) and tolerance (Hair et al. 2006; Liao and Valliant

2012) were computed. Since threshold values of VIF and tol-

erance (VIF\5 and tolerance [0.2) indicated that slope

degree and TWI had a significant linear relationship with other

variables (Table 1), these variables were excluded for further

analysis and model building.

Maps of the variables were constructed using available data

from the study area. Specifically, topographic variables (i.e.,

aspect, elevation, plan curvature, andTRI)were extracted from

a digital elevation model (DEM) with 30 9 30 m pixel size,

which were obtained from ASTER Global DEMExplorer tool

of United States Geological Survey (http://earthexplorer.usgs.

gov). The climate variables (i.e., temperature, rainfall, and

evapotranspiration)were calculated as the 20-yearmean for the

months from June throughDecember using data obtained from

the meteorological stations for the study area. The maps of soil

type and LULCwere extracted from state maps on a 1:100,000

scale. Road networks and settlements areas were digitalized

from Google Earth images and co-registered with other maps,

and then the proximity maps were produced by buffering set-

tlements areas and road segments slopes in the study area.River

networks extracted from the DEM, and then the map of prox-

imity to rivers was produced by buffering river sections. All

calculations and generations of predictor variables were per-

formed in ArcGIS 9.3 and SAGA GIS 2.1 for a 30 9 30 m

pixel size.

In the final step, all thematic maps were classified into

different classes based on suggestions found in the litera-

ture (e.g., Pourghasemi 2016; Pourtaghi et al. 2016) that

were further informed by field surveys and studying the

study area (Jaafari et al. 2017a) (Fig. 3).

Evidential belief function (EBF)

EBF, also known as Dempster–Shafer theory, is a mathemati-

cal-based model for reasoning with uncertainty, with under-

stood connections to other frameworks such as probability,

possibility, and imprecise probability theories. Originally

introduced by Dempster (1967a, b) in the context of statistical

inference, the method was later developed by Shafer (1976)

into a general framework for modeling epistemic uncertainty.

Over the last years, the EBFmodel has been frequently used in

scientific studies, most often in the domain of environmental

studies (e.g., Rahmati and Melesse 2016) and hazard assess-

ment (e.g.,Althuwaynee et al. 2014;Pourghasemi2016;Regmi

and Poudel 2016). This model has the capability to handle

heterogeneous and incomplete datasets and represents a flexi-

ble framework to accept uncertainty and combine beliefs from

multiple sources of evidence (Thiam 2005). The EBF model

includes degree of belief (Bel), degree of disbelief (Dis), degree

of uncertainty (Unc), and degree of plausibility (Pls) that are

confined in range of 0–1 (Carranza et al. 2008; Naghibi et al.

2016). In this model, Bel and Pls represent the lower and upper

probability of the generalized Bayesian theory. The difference

between Pls andBel is Unc, which represents the doubt that the

Table 1 Multicollinearity diagnosis statistics for variables

Variable Collinearity statistics

Tolerance VIF

Slope 0.182 5.494

Aspect 0.991 1.009

Altitude 0.279 4.014

Plan curvature 0.859 1.164

TWI 0.188 5.305

TRI 0.455 2.198

Temperature 0.201 4.981

Rainfall 0.816 1.225

Evapotranspiration 0.534 1.872

LULC 0.550 1.819

Soil type 0.684 1.462

Proximity to rivers 0.951 1.052

Proximity to roads 0.849 1.178

Proximity to settlements 0.582 1.719

Excluded variables are shown in bold
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evidence supports a proposition (Carranza et al. 2005). TheUnc

values are always positive because theminimumpossible value

for Pls is equal to Bel. Dis is a degree of disbelief in evidence

with respect to the proposition (Gorum and Carranza 2015),

which is equal to 1 - Pls (or 1 - Unc - Bel). Therefore,

Bel ? Unc ? Dis for evidencewith respect to any proposition

is always equal to 1 (i.e., maximum probability) (Gorum and

Carranza 2015; Naghibi et al. 2016). The schematic represen-

tation of these combinations is shown in Fig. 4.

In spatial pattern analysis of wildfire probability based

on the EBF model, a structure of discernment can be

defined as follows:

m : 2H ¼ /;FP; �FP;Hf g With H ¼ FP; �FPf g ð1Þ

where FP class pixels affected by fire ignition, �FP class

pixels not affected by fire ignition, / is empty set.

The function m: 2H ? [0,1] is called a basic probability

assignment when:

mð/Þ ¼ 0 ð2Þ

and
X

A�H

mðLÞ ¼ 1 ð3Þ

where L is a subset of H. The function m is considered as a

measure of belief committed to each possibility (Walley

1987). Based on mass function, belief (B) function can be

calculated as follows:

kðFPÞBij
¼

N A\Bijf g
NðAÞ

NðBijÞ�N A\Bijf g
NðCÞ�NðAijÞ

ð4Þ

mðFPÞBij
¼

kðFPÞBijP
kðFPÞBij

ð5Þ

where N A \ Bij

� �
density of fire pixels in the predictor

category Bij, NðAÞ density of fires pixels in the study area,

NðAijÞ density of pixels in the predictor category Bij, NðCÞ
density of pixels in the study area, mðFPÞBij

belief function.

Fig. 3 Predictor variables used in this study

Fig. 4 Schematic relationships of evidential belief functions (mod-

ified after Carranza et al. 2005)
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Further, the disbelief (mð �FPÞBij
), uncertainty (mðHÞ),

and plausibility (Pls) functions are given as:

kðF�PÞBij
¼

NðAÞ�NðA\BijÞ
NðAÞ

NðCÞ�NðAÞ�NðBijÞþNðA\BijÞ
NðCÞ�NðAÞ

ð6Þ

mð �FPÞBij
¼

kðF�PÞBijP
kð �F�PÞBij

ð7Þ

mðHÞ ¼ 1� mðFPÞBij
� m �FPð ÞBij

ð8Þ

Pls ¼ 1� m �FPð ÞBij
ð9Þ

The application of the EBF model characterizes each

predictor variable category with the four mentioned mass

functions that indicate the strength of the correlation

between the predictor category and the probability of fire

occurrence. These functions were used to produce multi-

category weighted maps for all predictor variables, which

were overlaid and numerically added using the following

equation to produce four fire probability index maps:

Index map ¼
X12

i¼1

functionBel;Dis;Unc;Pls ð10Þ

where 12 refers to the number of predictor variables in the

model.

The final integrated map of wildfire probability was

produced using a GIS-based raster calculator technique by

overlaying the four index maps. Finally, to facilitate visual

interpretation of the integrated map, the data were classi-

fied using the Natural Breaks (Jenks) method and grouped

into relative levels that depict very low, low, moderate,

high, and very high probabilities of fire occurrence.

Model evaluation

Density graph

The density graph is a proper approach to show how the

historical fire events are distributed in different probability

levels of a wildfire probability map. To plot a wildfire

density graph, the density of fire events (the ratio of fire

pixels over the ratio of total pixels) per each probability

level is plotted on a diagram. In accordance with a theo-

retical base, the density of historical fire events should

increase from the very low to the very high probability

levels with an increasing rate.

ROC method

As an evaluation method that validates the quality of the

modeling process, the receiver operating characteristic

(ROC) (Hanley and McNeil 1982) with success rate and

prediction rate curves was used. The ROC curve is a useful

method that has already enjoyed great success as a measure

of performance for real case modeling efforts (Jaafari et al.

2014; Pourtaghi et al. 2015; Regmi and Poudel 2016; Tien

Bui et al. 2016; Jaafari et al. 2017a, b). This method is a

graphical representation of 100-specificity versus sensitiv-

ity rates for every modeling approach (Hanley and McNeil

1982). The plot shows the 100-specificity on the X-axis and

the sensitivity on the Y-axis:

X ¼ 100� Specificity ¼ 100� TN

TNþ FP

� �
ð11Þ

Y ¼ Sensitivity ¼ TP

TPþ FN

� �
ð12Þ

where TN (true negative) and TP (true positive) are the

number of pixels that are properly assigned as fire occur-

rences and FP (false positive) and FN (false negative) are

the numbers of pixels erroneously assigned (Jaafari et al.

2017b). The best possible ROC curve passes through the

point of (0, 1), where the area under curve (AUC) = 1 and

represents 100% specificity (no false positives; the pro-

portion of non-fire correctly predicted) and 100% sensi-

tivity (no false negatives; the proportion of fire correctly

predicted). Excellent models have AUC values greater than

0.9, and good models have AUC values greater than 0.7

(Hosmer et al. 2013). The success rate of a ROC curve that

uses the training dataset reflects how well the model fits the

training dataset, whereas the prediction rate uses the vali-

dation dataset and explains how well the model predicts the

general probability of wildfire occurrence across the study

area.

Results and discussion

Model results

All the twelve predictor variables were characterized by four

mass functions of belief, disbelief, uncertainty, and plausi-

bility that reveal the correlation between the fire ignitions and

the variables across the study area (Table 2). Given to the

similar proportion of fire pixels in the different classes of

aspect, it appears that landscape-level difference in fire igni-

tion among the different classes of this variable was mod-

est (cf. Jaafari et al. 2017a). Although aspect significantly

effects on local conditions such as exposure to sunshine,

prevailing direction of winds, amount of rainfall, drying

winds, and the morphologic structure that have been associ-

atedwithfire incidents (deVasconcelos et al. 2001;Adabet al.

2013; Chen et al. 2015; Jaafari et al. 2017a), values of mass

functions failed to indicate a strong association between fire
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Table 2 Spatial relationship between each predictor variable and wildfires extracted by using EBF model

Variable Class Number of pixels in domain Number of fire pixels Belief functions components

Bel Dis Unc Pls

Aspect F 1,293,545 104 0.128 0.109 0.763 0.891

N 1,125,592 68 0.096 0.113 0.791 0.887

NE 1,080,931 88 0.130 0.109 0.761 0.891

E 1,149,299 82 0.114 0.111 0.776 0.889

SE 1,351,149 91 0.107 0.112 0.781 0.888

S 1,273,339 89 0.111 0.111 0.778 0.889

SW 1,509,005 113 0.119 0.110 0.771 0.890

W 1,503,418 107 0.113 0.111 0.776 0.889

NW 1,399,058 71 0.081 0.115 0.804 0.885

Altitude (m) \200 5,718,412 444 0.229 0.179 0.592 0.821

200–500 2,944,720 163 0.163 0.215 0.622 0.785

500–800 1,240,373 82 0.195 0.203 0.603 0.797

800–1100 830,649 65 0.231 0.200 0.570 0.800

[1100 951,182 59 0.183 0.203 0.614 0.797

Plan curvature (100/m) Concave 844,087 51 0.326 0.356 0.318 0.644

Flat 9,224,888 679 0.397 0.276 0.327 0.724

Convex 1,616,361 83 0.277 0.368 0.355 0.632

TRI \3 7,761,777 591 0.396 0.281 0.323 0.719

3–6 2,344,592 118 0.262 0.370 0.368 0.630

[6 1,578,967 104 0.342 0.349 0.309 0.651

Temperature (�C) \14 2,310,677 183 0.201 0.161 0.637 0.839

14–15 617,880 30 0.123 0.170 0.707 0.830

15–16 1,397,226 70 0.127 0.173 0.699 0.827

16–17 1,831,376 118 0.164 0.169 0.667 0.831

17–18 1,745,637 137 0.199 0.163 0.637 0.837

[18 3,782,540 275 0.185 0.163 0.652 0.837

Rainfall (mm) \150 306,212 8 0.097 0.247 0.656 0.753

150–200 5,861,249 266 0.169 0.328 0.503 0.672

200–250 2,672,594 311 0.434 0.194 0.371 0.806

[250 2,845,281 228 0.299 0.231 0.470 0.769

Evapotranspiration (mm/day) \1300 227,151 7 0.057 0.163 0.780 0.837

1300–1500 1,739,279 301 0.319 0.120 0.561 0.880

1500–1700 984,916 185 0.346 0.136 0.517 0.864

1700–1900 1,417,211 136 0.177 0.153 0.670 0.847

1900–2100 2,387,681 81 0.063 0.183 0.754 0.817

[2100 4,929,098 103 0.039 0.244 0.717 0.756

LULC Forest 1,705,745 136 0.325 0.240 0.434 0.760

Rangeland 5,104,500 74 0.059 0.398 0.543 0.602

Farmland 4,158,113 598 0.587 0.101 0.312 0.899

Shrubbery 717,178 5 0.028 0.261 0.711 0.739

Soil type Inceptisol 3,157,383 145 0.110 0.222 0.668 0.778

Mollisol 2,063,469 417 0.485 0.117 0.398 0.883

Entisol 3,950,429 138 0.084 0.248 0.669 0.752

Aridisol 1,763,401 22 0.030 0.226 0.744 0.774

Alfisol 750,654 91 0.291 0.187 0.522 0.813

Proximity to roads (m) \150 175,923 43 0.218 0.121 0.661 0.879

150–300 154,972 30 0.173 0.123 0.704 0.877
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ignition and this variable (Table 2). The spatial association

between fire events and elevation shows that when the ele-

vation increases, the probability of wildfire decreases. This

result is supported by previous findings that low-elevation

areas are more vulnerable to fire occurrence due to intensive

human activities (Syphard et al. 2008; Oliveira et al. 2012;

Adab et al. 2015; Guo et al. 2016), and favorable weather

conditions, soil moisture, and vegetation cover (Adab et al.

2013). Although 83.5% of all fires recorded on the flat class of

plan curvature, 79% of the study area was classified as flat

terrain, which shows why plan curvature was identified as

being marginally associated with fire occurrence. In contrast,

in some studies (Pourtaghi et al. 2015; Pourghasemi 2016), the

probability of fire occurrence was lower on flat terrain and

higher on concave slopes. This is likely attributable to the

dominant effect of other topographic features in the study area

that swamped the influence of plan curvature on fire occur-

rence (cf. Parisien et al. 2012). For TRI, the class of\3 shows

the highest wildfire susceptibility with almost 73% of recor-

ded fire ignitions and a Bel value of 0.396. The spatial asso-

ciation betweenfire occurrence and annual temperature shows

that up to 65.2% of fire events are related to the areas with

[16 �C. For rainfall, while the classes of[200 mm covered

47.2% of the landscape, 66.3% of all fires occurred here; in

contrast, the classes of \200 mm covered 52.8% of the

landscape, but only 33.7% of all fires occurred here. Portions

of the landscape with average evapotranspiration of

1500–1700 mm that encompassed 8.4% of the landscape and

experienced 22.8% of all fires were the predestined places for

wildfires. Climate variables have been widely cited as critical

parameters affecting relative likelihoodofwildfire occurrence

(Syphard et al. 2008; Arpaci et al. 2014; Adab et al. 2015;

Pourtaghi et al. 2016; Jaafari et al. 2017a), presumably

because fuels moisture content is largely a function of pre-

cipitation and temperature (Oliveira et al. 2014). Further,

higher temperatures are expected to increase the amount of

moisture that evaporates from land and water (Christian-

Smith et al. 2012), which can lead to increase the probability

of fire occurrence (Mhawej et al. 2016). The attribution of fire

occurrences to the different categories of LULC shows that

most fires regularly occur at those portions where land use has

favored farmlands (73.5% of all fires). Here, fire events are

often deliberately set to remove weeds, shrubs, and stubbles

from the farmlands. Further, many of these fires are caused by

arson due to the conflicts among people, or to expand the

farmlands into the forests. Among different categories of soil

type, fire probability was more likely onMollisol soils, which

mostly permit farmlands and forests and contain 51.3% of

recorded fire events, but cover 17.7% of the landscape. In the

case of the effect of proximity to rivers, the results showed that

none of the distance classes deviated from an expectation of

random fire occurrence that reveals a weak association

between proximity to rivers and fire ignition in the study area.

For the effect of proximity to roads, the results showed that

there was a clear contrast between areas within 750 m and

those[750 m from road networks. Although only 6.7%of the

land area was within 750 m of road networks, 20.7% of all

fires occurred there; 79.3%of fires occurred in places[750 m

from road networks that comprised 93.3% of the land area.

These results are supported by previous findings that

demonstrated a positive relationship between the spatial pat-

terns of ignitions and landscape accessibility (e.g., de Vas-

concelos et al. 2001; Martı́nez-Fernández et al. 2013; Jaafari

et al. 2017a). Similarly, proximity to settlements showed a

Table 2 continued

Variable Class Number of pixels in domain Number of fire pixels Belief functions components

Bel Dis Unc Pls

300–450 153,767 40 0.232 0.121 0.646 0.879

450–600 152,271 22 0.129 0.124 0.747 0.876

600–750 150,666 33 0.195 0.123 0.682 0.877

[750 10,897,737 645 0.053 0.387 0.560 0.613

Proximity to rivers (m) \150 806,703 64 0.178 0.163 0.658 0.837

150–300 704,907 65 0.207 0.161 0.631 0.839

300–450 685,411 61 0.200 0.162 0.638 0.838

450–600 656,600 42 0.144 0.166 0.691 0.834

600–750 617,301 33 0.120 0.167 0.713 0.833

[750 8,214,414 548 0.150 0.181 0.669 0.819

Proximity to settlements (m) \1000 320,996 46 0.205 0.160 0.635 0.840

1000–2000 812,958 159 0.280 0.143 0.578 0.857

2000–3000 929,602 186 0.286 0.138 0.575 0.862

3000–4000 827,374 102 0.176 0.155 0.668 0.845

[4000 8,794,406 320 0.052 0.404 0.544 0.596
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clear contrast in fire probability: landscape portions within

4000 m to a human settlement were positively associated

with fires (60.6% of all fires on 24.7% of the landscape

area), whereas portions [4 km from settlements were

negatively associated with fire occurrence (39.4% of all

fires on 75.3% of the landscape area). The proximity vari-

ables directly (proximity to roads and settlements) or

indirectly (proximity to rivers) provide significant oppor-

tunities for people to change fire regimes in different ways,

such as through changing fuel types, modifying fuel

structure and continuity, and igniting the forest and other

vegetated areas in different seasons and under different

weather conditions than would occur naturally (Bowman

et al. 2011; Adab et al. 2015; Jaafari et al. 2017a).

The final results of the EBF model are shown in Fig. 5.

The spatial distribution of the mass functions components

can be interpreted in terms of physiography (Rahmati and

Melesse 2016) and the characteristics of landscapes. Here,

higher degrees of Bel and Pls are near to roads and human

settlements and correlated with flat areas, while lower

degrees are correlated with those portions of the landscape

where land use has favored farmlands. Further, higher

probability of fire occurrence is associated with those

portions of the landscape that are characterized with higher

degrees of Bel and lower degree of Dis values. The Unc

map offers insights into the degree of uncertainty associ-

ated with the predictions results on those portions of the

landscape that geospatial data failed to provide enough

evidence for confirmation (Althuwaynee et al. 2014;

Mogaji et al. 2016).

The integrated map of wildfire probability (Fig. 6)

depicts five probability classes that range from very low to

very high across the landscape. The map provides a relative

ranking of the likelihood of wildfire occurrence that con-

forms somewhat to human infrastructure and associated

activities, i.e., farmlands, settlement areas, and road net-

works. Farmlands and the areas surrounding human set-

tlements and along road networks that are visible as

circular rings (Fig. 6) have mostly been classified into high

to very high level of probability to fire occurrence. These

results are in close agreement with those who found a

positive relationship between intensive human activities

and increased probability of fire occurrence (e.g., Catry

et al. 2009; Adab et al. 2015; Guo et al. 2016).

A comparison of the spatial distribution of the probability

levels indicates that the zones of high and very high proba-

bility cover 38.7% of the entire study area, zone of moderate

probability covers 20.4%of the area and zones of lowandvery

low probability cover 40.9% of the study area (Fig. 7). Thus,

resources and infrastructure, mitigations strategies, and sup-

pression efforts should be allocated to the roughly 60% of the

landscape where fires are most likely to occur.

Validation results

Figure 7 shows the fire density in five classes of the wildfire

probability map. Fire density that indicates to a ratio between

the number of fire pixels and the number of class pixels in each

probability-level class ranges from 0.18 to 2.94. The highest

value is for very high probability levels which is followed by

Fig. 5 Function maps

generated from EBF model

results
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high probability, moderate probability, low probability, and

very low probability, respectively. The quantized increase in

the fire density from very low probability level to very high

probability level that was achieved in this study indicates to

the capability of the EBF model to delineate the general

probability levels of fire occurrence with respect to the pre-

vious ignitions.

In addition, ROC-AUC method with success rate and

prediction rate curves was used to measure the overall

performance of the EBF model. Figure 8 shows the success

rate and prediction rate curves that were plotted using

‘‘sensitivity’’ and ‘‘100-specificity’’ values. Since the

steep slope of the first part of the curves and their further

distance from the diagonal trend indicate a more reliable

model performance (Jaafari et al. 2015), the results of this

study show the good performance of the GIS-based EBF

model and therefore the good reliability of the modeling

process, including the selection of the predictor variables.

More precisely, the success rate curve shows that nearly

78% of the fire ignitions (of the training subset) were

captured within 10% of the probability map, indicating

high model efficiency. The prediction rate curve also

showed that 70% of the fire events (of the validation sub-

set) can predict within 10% of the probability map. Fur-

thermore, the validation results show that the AUC for

success rate and prediction rate curves is 84.14 and

81.03%, respectively, indicating a very good reliability of

the EBF model to estimate relative wildfire likelihood (cf.

Hosmer et al. 2013). However, some drawbacks exist due

to its statistical assumptions (Althuwaynee et al. 2014).

The main weak point of this model is to neglect the rela-

tionship between the predictor variables that can actually

lead to assume that all the variables carry equal weight in

determining the level of vulnerability of the pixels across

the landscape. In this situation, some of the variables might

be ignored during the calculations, which can decrease the

prediction quality and enhance the model uncertainty

(Jaafari et al. 2014). Nonetheless, despite this limitation,

the GIS-based EBF model adopted in this study had the

ability to deal with generalized and manifold information

from multiple sources. The model was quite flexible and

easy to apply within the GIS environment to explore spatial

association between each category of the predictor vari-

ables and historical fire locations to predict where wildfires

may occur in the future. Overall, the model represented a

Fig. 6 Wildfire probability

distribution map

Fig. 7 Distribution of probability levels and fire density in wildfire

probability map
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robust and analytic framework for studying wildland fires

and for supporting spatial planning. This assertion is sup-

ported by previous applications of the EBF model in dif-

ferent contexts of hazard assessment such as forest fire

(Pourghasemi 2016), landslide (e.g., Althuwaynee et al.

2014; Gorum and Carranza 2015; Regmi and Poudel 2016),

and environmental studies (e.g., Thiam 2005; Carranza

et al. 2005, 2008; Rahmati and Melesse 2016; Naghibi

et al. 2016; Mogaji et al. 2016).

Conclusion

In this paper, GIS-automated techniques were integrated

with the quantitative data-driven EBF model to estimate

wildfire probability in a part of the Hyrcanian ecoregion. A

wide array of predictor variables including aspect, elevation,

plan curvature, TRI, annual temperature and rainfall, evap-

otranspiration, LULC, soil type, and proximity to roads,

rivers, and settlements were used as the inputs to the EBF

model. The application of model was divided into training

and validation steps. 70% of historical fire events were used

for training the model, and the remainder was used for

validation purpose. The results showed that the GIS-based

EBF framework is successful for identifying fire-prone

areas. The derived probability map revealed that zones of

moderate, high, and very high probability covered nearly

60% of the land area and the probability of fire occurrence

was strongly dependent upon human infrastructure and

associated activities. As a whole, the results revealed a good

reliability of the adopted approach for investigating the

spatial relationship between each category of the predictor

variables and historical fire locations throughout the study

area that enabled us to study in detail the effect of each

variable on the probability of fire occurrence.

Due to the continuous human activity throughout the

landscape, the probability of fire occurrence is subject to

change. Thus, a periodic updating of the results is desir-

able. Recommendations for future research include evalu-

ating the capability of different bivariate, multivariate, and

knowledge-based models, as well as assessing and

employing a wider range of predictor variables, especially

those related to human actions, to produce more reliable

estimates of wildfire probability.
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