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Abstract A reliable prediction of dispersion coefficient

can provide valuable information for environmental sci-

entists and river engineers as well. The main objective of

this study is to apply intelligence techniques for predicting

longitudinal dispersion coefficient in rivers. In this regard,

artificial neural network (ANN) models were developed.

Four different metaheuristic algorithms including genetic

algorithm (GA), imperialist competitive algorithm (ICA),

bee algorithm (BA) and cuckoo search (CS) algorithm

were employed to train the ANN models. The results

obtained through the optimization algorithms were com-

pared with the Levenberg–Marquardt (LM) algorithm

(conventional algorithm for training ANN). Overall, a

relatively high correlation between measured and predicted

values of dispersion coefficient was observed when the

ANN models trained with the optimization algorithms.

This study demonstrates that the metaheuristic algorithms

can be successfully applied to make an improvement on the

performance of the conventional ANN models. Also, the

CS, ICA and BA algorithms remarkably outperform the

GA and LM algorithms to train the ANN model. The

results show superiority of the performance of the proposed

model over the previous equations in terms of DR, R2 and

RMSE.
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Introduction

Longitudinal dispersion coefficient (K) is a key factor in

pollution transport modeling in rivers. It usually happens

when cross-sectional mixing is completed. However,

accurate prediction of longitudinal dispersion coefficient is

complicated due to nonuniformity of river bed and banks,

irregularities of velocity, development of secondary flow,

dead-zone, etc. Study of longitudinal dispersion coefficient

has attracted the attention of many researchers. Therefore,

a great number of research studies have been conducted to

estimate longitudinal dispersion coefficient, based on dif-

ferent techniques (Azamathulla and Wu 2011; Disley et al.

2015; Elder 1959; Fischer et al. 1979; Kashefipour and

Falconer 2002; Liu 1977; Najafzadeh and Tafarojnoruz

2016; Sahay 2011; Seo and Cheong 1998; Tutmez and

Yuceer 2013). Many different empirical equations have

been developed based on the experimental and field mea-

surements. In these expressions, channel width (W), shear

velocity, flow velocity and depth of water (H) were mainly

considered as key parameters affecting longitudinal dis-

persion coefficient. However, their predictions of longitu-

dinal dispersion coefficient vary significantly (Etemad-

Shahidi and Taghipour 2012). In addition, the extreme

values of W
H
and K were excluded in the model performance

evaluation in order to enhance their accuracy. In other

words, rivers with W
H
[ 50 and K[ 100 were ignored

(Etemad-Shahidi and Taghipour 2012; Sahay 2011). In

such condition, the environmental issues and pollutant

transportation are of great importance and, thus, accurate
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prediction of longitudinal dispersion coefficient is

essential.

Over the past two decades, artificial neural networks

have been widely used for hydrological modeling and also

for predicting longitudinal dispersion coefficient. Danan-

deh Mehr et al. (2015) applied different ANN algorithms

for monthly streamflow forecasting. The results showed

that the radial basis function (RBF)-based neural network

provides better performance compared with the backprop-

agation feed forward (BPFF) neural network and the gen-

eralized regression neural network (GRNN). Jafarzadeh

et al. (2016) conducted a comparative research study using

ANN and support vector machine to predict soil cation

exchange capacity. The results showed that the ANN

model provides more accurate estimation than the support

vector machine. Tayfur and Singh (2005) and Sahay (2011)

developed ANN models for predicting longitudinal dis-

persion coefficient in natural streams. They have demon-

strated that the ANN model can result in higher

performance than the empirical regression-based predictive

models. Different techniques can be applied to train ANN.

Backpropagation (BP) technique is probably the most

popular used ANN training technique due to its inherent

simplicity and easy implementation. BP technique can

apply different algorithms in training ANN (e.g., the gra-

dient descent; the conjugate gradient; Bayesian; the

Levenberg–Marquardt). These training algorithms may

have one or more deficiencies such as convergence prob-

lem, sticking in local optimum and taking long time for

training process. Moreover, in some cases their perfor-

mance is not satisfactory (Asadnia et al. 2013; Cheng et al.

2015).

In recent years, evolutionary techniques such as the bee

algorithm (BA), genetic algorithm (GA) and particle

swarm optimization (PSO) algorithm have been success-

fully used for training ANN models. The results demon-

strated that these techniques will improve the performance

of the conventional neural networks (Chau 2004; Chen

et al. 2015; Cheng et al. 2008; Düğenci et al. 2015;

Kayarvizhy et al. 2013; Wang et al. 2012). Also, they

overcome the above-mentioned drawbacks of different

algorithms that can be applied in the BP training technique.

Furthermore, some other optimization algorithms such as

imperialist competitive algorithm (ICA) and cuckoo search

(CS) algorithm have shown great efficiency for optimiza-

tion problems in different fields of engineering (Gandomi

et al. 2013; Kaveh and Talatahari 2010; Lucas et al. 2010).

To the best knowledge of the authors, this is the first

effort which applies the metaheuristic algorithms to train

ANN models for predicting longitudinal dispersion coef-

ficient. Therefore, the main objective of the current

research is to develop a more accurate model for predicting

longitudinal dispersion coefficient in natural streams. In

this regard, ANN models with different training algorithms

(GA, BA, ICA and CS algorithm) have been taken under

investigation. The dimensionless ratios of width to depth

W
H

� �
and flow velocity to shear velocity U

U�

� �
were con-

sidered as input variables. These parameters are mainly

applied in the predictive models for longitudinal dispersion

coefficient because they are easily measureable, accessible

and are consistent with the physics of the problem. Model

performance is evaluated by using statistical error

measures.

Materials and methods

Previous studies

Once the cross-sectional mixing is completed, the longi-

tudinal dispersion becomes the most important process.

Generally, two kinds of study can be recognized dealing

with dispersion coefficient prediction. One method

attempts to develop equations using different statistical

approaches, and the other is based on constructing intelli-

gence-based models to predict the coefficient. Each method

contains some advantages. For example, the statistical

methods that give equations are easy for computation of the

coefficient. Anyhow, they are less accurate in comparison

with those of the intelligence-based methods. A large

number of studies have been carried out and presented

some equations for predicting dispersion coefficient.

Table 1 summarizes the results of some studies. In this

table, C is cross-sectional average concentration (kg/m3);

U is average velocity (m/s) in the section; x is direction of

the mean flow; t is time (s); K is longitudinal dispersion

coefficient (m2/s); H is the depth of flow, U� is the bed

shear velocity; and W is the channel width.

Regarding intelligence-based predictive models for

longitudinal dispersion, several studies successfully

applied different types of techniques for predicting K in

natural streams. Noori et al. (2009) examined the ability of

two models including support vector machine (SVM) and

adaptive neuro-fuzzy inference system (ANFIS). They

evaluated the performance of the models in terms of cor-

relation coefficient (R) and provided the R values of 0.7

and 0.71 for the SVM and ANFIS models, respectively.

Sahay (2011) developed a backpropagation ANN model to

forecast the dispersion coefficient. The results showed that

the proposed model outperforms the practical equations.

Also, it was found that the ANN model gives an accuracy

(DR) of 65% for predicting dispersion coefficient with

K\ 100 m2/s and W
H
\50. Azamathulla and Wu (2011)

developed a support vector machine approach for predict-

ing dispersion coefficient in rivers. They concluded that the
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proposed approach can be successfully used in order to

provide an acceptable estimation of the dispersion coeffi-

cient. Noori et al. (2015) investigated the reliability of the

intelligence-based models including ANN, ANFIS and

SVM for predicting dispersion coefficient. The results

indicated that a high uncertainty can be found in the

models although they predicted the coefficient

appropriately.

Data and statistical analysis

In this study, a comprehensive field dataset was used to

develop the models. The data that include longitudinal

dispersion coefficient, flow depth, flow velocity, shear

velocity and channel width were obtained from the tech-

nical literature (Etemad-Shahidi and Taghipour 2012).

These data have been widely employed in previous study to

predict longitudinal dispersion due to their availability for a

large number of rivers. Moreover, it was found that flow

depth, flow velocity, channel width and shear velocity are

the most effective parameters for predicting dispersion

coefficient (Noori et al. 2015). Generally, 149 distinctive

data records including different geometric and hydraulic

parameters were used in model development (Etemad-

Shahidi and Taghipour 2012). The statistical analysis of the

data applied for this study is given in Table 2. These sta-

tistical measures of the datasets include minimum (Min),

maximum (Max), average (Mean), standard deviation (SD)

and skewness coefficient (Csx).

All the data were normalized in a range of [-1, 1]

applying Eq. (1) as (Xiao et al. 2014):

xnorm ¼ xi � xmin

xmax � xmin

� 2

� �
� 1 ð1Þ

Two main advantages of data normalization before apply-

ing ANN models are to avoid attributes in greater numeric

ranges dominating those in smaller numeric ranges and to

avoid numerical difficulties during the calculation (Wang

et al. 2009).

Artificial neural networks (ANN)

Over two past decades, ANNs as a ‘black box’ approach

showed great ability dealing with nonlinear problems. The

Table 1 Empirical equations for computation of dispersion coefficient

Nos. References Equations

1 Taylor (1953, 1954) oC
ot

� �
þ U oC

ox

� �
¼ K o2C

ox2

� �

2 Elder (1959) K ¼ 5:93HU�

3 Fischer et al. (1979) K
HU�

¼ 0:011 U
U�

� �2
W
H

� �2

4 Seo and Cheong (1998) K
HU�

¼ 5:915 U
U�

� �1:428
W
H

� �0:62

5 Kashefipour and Falconer (2002) K
U�H

¼ 7:428þ 1:775 W
H

� �0:62 U�
U

� �0:572h i
U
U�

� �2
; if W

H
[ 50

6 Kashefipour and Falconer (2002) K
U�H

¼ 10:612 U
U�

� �2
; if W

H
[ 50

7 Sahay and Dutta (2009) K
HU�

¼ 2 U
U�

� �1:25
W
H

� �0:96

8 Etemad-Shahidi and Taghipour (2012) K
HU�

¼ 15:49 W
H

� �0:78 U
U�

� �0:11
; if W

H
\30:6

9 Etemad-Shahidi and Taghipour (2012) K
HU�

¼ 8:36 W
H

� �0:61 U
U�

� �0:85
; if W

H
[ 30:6

10 Li et al. (2013) K
U�H

¼ 2:282 W
H

� �0:7613 U
U�

� �1:4713

11 Zeng and Huai (2014) K
HU�

¼ 5:4 W
H

� �0:7 U
U�

� �1:13

Table 2 Statistical analysis of the data

Parameter Min. Max. Mean SD Csx

W (m) 1.4 711.2 59.5 90.07 4.72

H (m) 0.14 19.94 1.53 2.1 5.34

U (m/s) 0.029 1.73 0.476 0.317 1.51

U� (m/s) 0.0016 0.553 0.084 0.0717 3.94

K (m2/s) 0.2 891.87 79.42 144.5 3.41

W=L 2.2 403.75 47.43 47 4.44

U=U� 0.77 20.25 7.04 4.67 1.19

K=U�H 3.08 5630.68 770.9 1028.4 2.83
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ANNs that consist of an interconnected assembly of simple

processing nodes are capable to find an appropriate rela-

tionship between input and target variables. A usual ANN

is formed from three distinguished layers including input,

output and hidden layer. Neurons of each layer are con-

nected with neurons in the next layer. Strength of the

connections is determined by a term called weight. Gen-

erally, mathematical structure of an ANN can be defined

as:

y ¼ u
Xn

i¼1

wixi � b

 !

ð2Þ

In Eq. (2), wi shows the weight of the input variable xi;

b represents the bias, u denotes the activation function, and

n stands for number of input variables (Bishop 1995).

Sigmoid function and a linear activation function were

used as transfer functions in the hidden layer and output

layer, respectively. These activation functions can be

formulated as Eqs. (3) and (4).

f yj
� �

¼ 1
.

1þ exp �
Xn

i¼1

wijxi � bj

 ! ! !

;

j ¼ 1; 2; . . .; h

ð3Þ

yk ¼
Xh

j¼1

wjf yj
� �

� b ð4Þ

where yj ¼
Pn

i¼1 wijxi � bj, n is the number of input nodes

or variables, bj is the bias for the jth node in the hidden

layer, and b is the bias for the output layer. h, wij; wj and yk
stand for the number of neurons in the hidden layer, the

connection weight from the ith node in the input layer to

the jth node in the hidden layer, the connection weight

from the jth node in the hidden layer to the output node and

the final output, respectively.

Training ANNmodels play an important role on the ANN

performances. The training procedure is viewed as a process

to find the optimum weights and biases. In other words, it

tunes the ANN model in a way to minimize the difference

between observed and predicted target variable. Different

algorithms such as gradient descent, backpropagation and

heuristic/metaheuristic can be employed in the training

phase. In the present study, the Levenberg–Marquardt

backpropagation algorithm and also some metaheuristic

algorithms including GA, ICA, BA and CS are employed to

train the ANN models. The Levenberg–Marquardt BP

algorithm, which is a simplified version of Newton method,

has been widely used because it is usually faster and more

reliable than any other backpropagation techniques (Hagan

and Menhaj 1994; Ham and Kostanic 2000). The meta-

heuristic algorithms will be described in the following

subsections.More information related toANNs can be found

in Hagan and Menhaj (1994) and Ham and Kostanic (2000).

Optimization algorithms

Genetic algorithm (GA)

GA is a heuristic/metaheuristic, stochastic, combinatorial,

optimization technique that mimics the process of natural

selection. Main components of GA include bit, gene, chro-

mosome and gene pool. Gene illustrating a decision variable

consists of bits (0 and 1)which stands for amodel parameter to

be optimized. The combination of genes forms the chromo-

some, and the gene pool is comprised of a set of chromosomes

(Tayfur 2009). Each chromosome can be considered as a

possible solution for each decision variable. Reproduction,

crossover and mutation are three of the most important

operations of the algorithm. Reproduction contains elite and

selection of chromosomes.Characteristics of the elitewhich is

defined as a chromosomewith the best fitness do not change in

the next generation. During the selection process, some of the

chromosomeswhich are not elite but have a better fitness than

others are chosen as tentative genes to be utilized in the

crossover stage.Crossover is a process inwhich chromosomes

of theolder generation are combinedwith eachother tomake a

new generation of chromosomes. In this stage, parents

exchange their genes and create new members. In mutation,

gene values in a chromosome can be changed in which it can

be resulted to omit a gene from chromosome or to add a new

gene to the chromosome. Therefore, the present solution can

be different from the previous solution and subsequently the

solution is changed in away to obtain a better solution through

mutation process.

The parameters of an optimization problem are first

encoded as an artificial chromosome (Chen and Chang

2009). The algorithm starts the optimization process with a

number of randomly initialized chromosomes. Afterward, a

cost function (objective function) is defined in order to

evaluate the fitness of each chromosome. The reproduction,

crossover and mutation continue to find the optimal solu-

tion up to maximum iteration number or until the stop

criteria are satisfied. One can find more information related

to the algorithm in Goldberg (1989). In this study, we

investigated different values of population size, mutation

probability and crossover probability to achieve the opti-

mum values through trial-and-error procedure.

Imperialist competitive algorithm (ICA)

The ICA is a new socio-politically motivated global search

strategy that is used to solve different types of optimization
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problems (Atashpaz-Gargari and Lucas 2007). Dealing

with the ICA, a large number of parameters should be set

appropriately in order to achieve optimized solutions.

Some of these parameters include the number of countries,

number of imperialists and colonies, number of decades,

revolution rate, assimilation coefficient and assimilation

angle coefficient. The algorithm is initiated with the initial

world which has a primary population. Individuals form

countries. Countries with the best objective functions

(powerful countries) constitute imperialists, and the

remains form colonies of the imperialists. Based on the

power of the imperialists, they absorb the colonies in which

the imperialist with more power tries to have more colo-

nies. The position of the imperialist and a colony is

changeable if the imperialist becomes less powerful than a

colony. Afterward, the ICA updates with the new position

of the imperialists and colonies.

Empires compete with each other in order to get the

control of colonies belonging to the others (not them-

selves). Subsequently, some empires will be more powerful

by getting the control of more colonies from the weaker

empires. The empires that lost their power may collapse.

There is a tendency among colonies to remain in their

imperialists through competition and collapse processes

which led them to form a state (Ardalan et al. 2015). The

new situation provides an equal position and power for

colonies and the imperialist. Dealing with ICA, there are a

number of parameters (e.g., number of initial countries,

number of initial imperialists, assimilation coefficient and

revolution rate) which should be tuned appropriately in

order to get optimum solutions.

Bee algorithm (BA)

The bee algorithm is a global search algorithm which

inspired by foraging strategy of honey bees. In nature, bees

conduct a waggle dance including some useful information

such as the distance from the hive and the quality of food

source by dance duration and frequency, respectively. In

this way, they help the colony to send its bees precisely.

The BA introduced by Pham et al. (2005), as a meta-

heuristic algorithm, is organized to achieve the optimum

solution. Some important parameters affecting the effi-

ciency of the algorithm are: n (number of scout bees), m

(number of sites selected out of n visited sites), e (number

of best sites out of m selected sites), ngh (initial size of

patches), nep (number of bees recruited for best e sites),

nsp (number of bees recruited for the other). Bee algorithm

begins with n scout bees being randomly placed in the

search space. After return, suitability of the visited places

via scout bees is assessed and stored as arrays in

descending order. In other words, it initializes the popu-

lation with random solutions and evaluates fitness of the

population. The m best sites having the best fitness are

selected randomly, and then, the best e sites out of m will

be chosen. Using the information derived from m bees in

the preceding step, the ngh is determined or updated. In the

recruitment procedure, number of nep and nsp (nsp� nep)

are sent to e sites and m–e sites, respectively. In other

words, more foragers are assigned for places with better

solution recruited. Therefore, patches can be visited by

more bees or may be abandoned considering their fitness.

Afterward, the best bee from each site (the highest fitness)

is selected to form the next bee population. It continues by

forming new population and repeating the above-men-

tioned procedures for a specified iteration number or until

the stop criteria be obtained. As it was mentioned, these

values were obtained through trial-and-error procedure.

Cuckoo search algorithm

Cuckoo search (CS) is a recent metaheuristic algorithm

inspired by the breeding behavior of some species of

cuckoo birds. These species have an interesting behavior

which lay their eggs in the nests of other species. If the host

birds detect the cuckoo egg, they may throw it away or

leave their nests and construct a new nest in other places.

The algorithm initializes with a population of cuckoos. It

acts in a way that each egg and cuckoo egg stand for a

solution and a new solution, respectively. Cuckoo eggs are

considered as an improved solution that are going to be

substituted with those of worse solutions in the nest. It

should be pointed out that in the algorithm implementation,

one egg is placed in each nest. A usual cuckoo search

algorithm composed of three rules including (Yang and

Deb 2009): (1) At a time, each cuckoo lays one egg only

and dumps it in a randomly chosen nest; (2) the best nests

with the best solutions are remained to be carried over to

the next generations; (3) the probability (pa) that the host

birds can detect the cuckoo egg in their nests varies from

[0, 1]; also it is assumed that number of their nests are

unchanged. The nest is substituted with a new nest con-

taining random solutions when the host bird detects the

cuckoo egg. At each iteration, the best solution (nests with

the highest fitness) is memorized and the process will be

repeated to reach the requirements. Similar to other opti-

mization metaheuristic algorithms, cuckoo search com-

prises of two local and global search spaces which pa
represents its local search capability and 1 - pa denotes its

global search strength. The parameters of the algorithm

have been tried for different values, and the best values

have been found. It was found that Pa = 0.25 resulted in

best performance which is in a complete accordance with

that proposed by Yang and Deb (2009). Details of the CS

algorithm can be found in Gandomi et al. (2013), Yang and

Deb (2009) and Yildiz (2013).
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ANN training with optimization algorithms

Once a network has been structured for a particular

application, training process can be started. In this stage,

optimization algorithms are applied to tune weights and

biases accordingly. It was found that 10 neurons in the

hidden layer for all the ANN models applied in this study

give a higher performance. The metaheuristic algorithms

can be employed for training ANNs in two ways. They can

be applied to minimize error by finding optimum values of

weights and biases and obtain a suitable ANN structure. In

this research, the metaheuristic algorithms have been

applied to train ANN models by finding optimum weights

and biases. In other words, role of training algorithm is to

minimize the error which is defined as difference between

real and estimated values of the target values. To do this,

the training algorithm through an iterative process for the

applied algorithms assigns different values to weights and

biases and measures the error. In each algorithm (Meta-

heuristic and LM), the fitness function is evaluated for

500,000 times at most.

Through continuous iterations, the network is set to have

minimum error. For each iteration, the algorithm tunes the

weights and biases and computes the error in a way to

improve the model performance or decrease the error for

next iteration. Assuming m input–output sets, yk � tk for

k ¼ 1; 2; . . .; m; yk and tk represent forecasted and real

values of kth output unit. Therefore, the error is defined as

follows:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1 Ek

m

r

where Ek ¼ tk � ykð Þ2 ð5Þ

The optimization algorithms are aimed to minimize the

error which is considered as cost function. The

minimum of cost function is achieved if the nodes in

the layers connect to each other with optimized weights

and biases. The weights and biases which should be

optimized are h ¼ iw:hw:hb:obð Þ which are arranged as a

single vector of real numbers. iw and hw represent

weights for input to hidden layer connections and

hidden to output layer connections, respectively. Also,

hb and ob are the biases imposed to the neurons in the

hidden and output layers. The weights and biases of

ANN for every solution in evolutionary algorithms can

be encoded in three methods including matrix, vector

and binary (Zhang et al. 2007). In the current research,

the vector encoding method has been taken under

consideration. However, it consists of a decoding

phase in which particles’ vectors are applied to form

weights and biases matrix. In this study, the weights and

biases matrix are formed as follows:

iw ¼

wa1 wb1

wa2 wb2
wa3 wb3

wa4 wb4
wa5 wb5

wa6 wb6
wa7 wb7

wa8 wb8
wa9 wb9

wa10 wb10

2

66666666666664

3

77777777777775

: hb ¼

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

2

666666666666664

3

777777777777775

: hw

¼

w1c

w2c

w3c

w4c

w5c

w6c

w7c

w8c

w9c

w10c

2

666666666666664

3

777777777777775

: ob ¼ b11½ �

In brief, 41 variables including weights and biases have

been resulted following the ANN model for this study. As

we have two input variable, therefore, we have two input

nodes in the ANN structure. Also, through a trial-and-error

procedure, it was found that 10 neurons in the hidden layer

give the optimum performance. Figure 1 shows a sche-

matic layout of the ANN model with a 2–10–1 structure in

Fig. 1 A schematic layout of the ANN with a 2–10–1 structure
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which 2, 10 and 1 represent number of neurons in the input

layer, hidden layer and output layer.

To have a fair comparison between the performance of

the different algorithms in training the ANN models, the

models’ parameters were tuned in a way the number of

fitness evaluation and also number of recall to change the

weights and biases for all the algorithms be equal. In this

regard, as the number of parameters is different and for

high dimensionality of the problem, the 500,000 has been

selected as the number of neural network (fitness evalua-

tion) modifications (e.g., for the cuckoo search:

5000 9 50 9 2 = 500,000, where 5000, 50 and 2 stand

for number of iterations, number of nests and fitness

evaluation for each CS algorithm iteration, respectively).

Through a trial-and-error procedure and following the

equal number of fitness evaluation for each model, the

following parameters have been achieved for the meta-

heuristic training algorithms (Table 3).

In order to increase the speed of the MATLAB software

for such large number of parameters, the computer codes

were originally developed in C language and recalled with

MATLAB software.

In the developed models, two variables of W
L
and U

U�
were

applied to predict K
U�H

: In this regard, different optimization

algorithms includingGA, ICA, BA and CS algorithms aswell

as Levenberg–Marquardt algorithm were applied for training

the ANN. In all the developedmodels, 80 and 20% of the data

were used for training and testing ANN, respectively. In the

data selection, it has been tried to select test data in a way that

follow the normal distribution of the training data. It is note-

worthy, for the ANN model trained with Levenberg–Mar-

quardt algorithm, we applied a validation dataset including

20% of data. Therefore, for the LM-ANN model, the dataset

was divided into three subsets of training data (60%), vali-

dation data (20%) and testing data (20%), whereas for the

other ANN models, only two sets of data including training

(80%) and testing (20%) datasets. The validation dataset in

gradient-based algorithm for training ANN models is applied

in order to overcome network overfitting problems. Figure 2

shows the data in a 3D graph inwhich blue star and red circles

represent training and testing data, respectively.

Performance evaluation criteria

In this study, the performance of different predictive

models is evaluated by using statistical criteria including

the coefficient of determination (R2), the root-mean-square

error (RMSE) and the discrepancy ratio (DR). R2 measures

the degree of determination among the actual and predicted

values. RMSE indicates the discrepancy between the

observed and forecasted values. Positive and negative

values of discrepancy ratio (DR) indicate an overestimation

and an underestimation, respectively. The percentage of

DR values which are in a range between -0.3 and 0.3 is

defined as accuracy (Kashefipour and Falconer 2002; Seo

and Cheong 1998). In brief, the models’ predictions are

optimum if R2, RMSE and DR are found to be close to 1, 0

and 0, respectively. These indices (R2, RMSE and DR) are

defined as follows:

R2 ¼
Pn

i¼1ðKiðmÞ � �K mð ÞÞðKiðpÞ � �kxðpÞÞ
	 
2
Pn

i¼1 KiðmÞ � �kðmÞ
� �2Pn

i¼1 KiðpÞ � �kðpÞ
� �2 ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 KiðmÞ � KiðpÞ
� �2

n

s

ð7Þ

DR ¼ log
KðPÞ
KðmÞ

ð8Þ

where K and n stand for dimensionless longitudinal dis-

persion K
U�H

� �
and the number of data, respectively. In

Eq. (8), �k mð Þ and �k pð Þ, respectively, stand for the mean

values of measured and predicted dimensionless longitu-

dinal dispersion coefficient.

Results and discussion

Relative ratios of W
H
and U

U�
are imposed as input variables to

predict the dimensionless values of K
U�H

: Four different

metaheuristic optimization algorithms including GA, ICA,

BA and CS and the Levenberg–Marquardt (LM) algorithm

were applied to train ANN models. Results of the best

Table 3 Summary of the algorithm parameters

GA ICA BA CS

Parameter Value Parameter Value Parameter Value Parameter Value

Population size 200 Initial countries 250 n 100 Pa 0.25

Mutation probability 0.05 Initial imperialists 20 m 40 Nests 50

Crossover probability 0.7 Assimilation coefficient 1.5 e 10

Revolution rate 0.3 ngh 0.1

nep 30

nsp 10
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ANN models for each algorithm and during testing period

are presented in Table 4. The table shows that applying

optimization algorithms to train neural network remarkably

improves the ANN performance. All the optimization

algorithms are superior over the traditional LM algorithm

for training ANN. The performance evaluation criteria

(DR, R2 and RMSE) improve when metaheuristic algo-

rithms are used instead of the LM algorithm for training

process. Generally, the performance of the ANN models

trained with the metaheuristic algorithms is close to each

other regarding DR and RMSE. The best model in terms of

accuracy is the ICA-ANN model, while the CS-ANN

model has the highest performance in terms of R2 and

RMSE and the GA shows the lowest efficiency. Anyway,

the GA-ANN model outperforms the LM-ANN model

considering the accuracy, R2 and RMSE.

It is concluded that the proposed models can be applied

successfully to estimate longitudinal dispersion coefficient

in natural streams. High values of R2 and the accuracy

(-0.3\DR\ 0.3) and also small values of RMSE for

testing period of the developed models demonstrate their

ability. The models including CS, BA and ICA have rela-

tively low values of RMSE. As the values of dispersion

coefficient applied for this study change in a wide variety,

great values of RMSE reveal the failure of the model to

predict the extreme values of the target parameter.

Regarding the performance evaluation criteria, the CS, BA,

ICA and GA are the most efficient algorithms for training

the ANN models for this study. Figures 3 and 4 show the

predicted values of K
U�H

versus observed values for testing

set which illustrate the ability of the models.

The figures show that the proposed models are able to

give an acceptable prediction of the target variable and

provide a great performance in estimation of extreme

values. Except LM and ICA algorithms with a deficiency in

prediction of extreme values, other algorithms offer better

prediction. Therefore, BA, GA and cuckoo search algo-

rithms are recognized as efficient algorithms for training

ANN models to give an acceptable prediction of longitu-

dinal dispersion coefficient. Generally, BA-based ANN

model overestimates the K
U�H

values, while GA underesti-

mates the target values. Regarding the scatter diagram, the

highest correlation between observed and predicted values

is derived for cuckoo and BA algorithms. ANN with

cuckoo search algorithm gains R2 = 0.693 during testing

period, which demonstrate a relatively high correlation

between measured and predicted values. The CS-ANN

model reasonably predicts the extreme values. Therefore,

providing an acceptable prediction for high values of K is

one of the advantages of the ANN models. Moreover, the

correlation coefficient derived for the ANN models trained

with BA and CS algorithms is relatively high. According to

Fig. 4, the CS-ANN and BA-ANN models provide a rela-

tively high value of the coefficient of determination com-

pared with the other models.

Fig. 2 The training and testing

data

Table 4 Results of the ANN

models trained with different

algorithms during testing phase

Algorithm DR Testing period

DR\-0.3 -0.3\DR\ 0.3 DR[ 0.3 R2 RMSE

LM 13 47 40 0.428 893

GA 20 77 3 0.519 887

ICA 13 83 7 0.543 779.9

BA 13 77 10 0.661 771

CS 12 77 10 0.693 734
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A comparison between the LM-ANN models with those

of the GA-, BA-, ICA- and CS-based ANN models

demonstrated that the metaheuristic algorithms are superior

over the LM-ANN model. Besides from the intrinsic

characteristics of metaheuristic algorithms which are

superior over the gradient-based algorithms (the meta-

heuristics are advantages due to not sticking in local min-

imum, higher speed and divergence), they have been

trained with larger number of datasets which results in

better performance. The ANN model trained with meta-

heuristic employed 80% of the whole dataset for the model

training, while the LM based applied 60% of the data for

training. It is because the LM-ANN model needs a separate

dataset for validation to prevent the network overfitting.

Based on the practical formulas in the literature, the best

model performances achieved so far provide an accuracy of

66% and correlation coefficient of 0.6, which are lower

than those of CS-ANN and BA-ANN models. Noori et al.

(2009) developed SVM and ANFIS models and achieved

correlation coefficient of 0.7 and 0.71, respectively. Sahay

(2011) achieved an accuracy of 65% by using ANN

models. Therefore, the CS-ANN model constructed in this

study with, respectively, an accuracy and correlation

coefficient of 77% and 0.83 outperforms those of the pre-

vious studies.

To provide more comparisons of the efficiency of the

proposed model (CS-ANN model), results of the CS-ANN

model have been compared with some of the empirical

equations in terms of the accuracy, RMSE and R2. The

results are illustrated in Figs. 5 and 6.

Figure 5 illustrates the results of the different models in

terms of accuracy and RMSE, respectively. As it can be

observed, the cuckoo search algorithm-based ANN model

significantly outperforms the other models in terms of

accuracy. The CS-ANN model has the accuracy of 77% in

which it is higher than the best empirical-based model

(Zeng and Huai 2014) with the accuracy of 50%. Also, the

CS-ANN model has the lowest value of RMSE equal to

734 which demonstrates the model superiority over the

compared equations considering the RMSE criterion.

Regarding the scatter plot (Fig. 6), the predictions obtained

by the CS-ANN model which suggested in this study rep-

resent the highest correlation with the observed values of
K

U�H
: As illustrated in the figure, the coefficient of deter-

mination for the CS-ANN model is higher than those of the

empirical equations remarkably. The highest value of the

coefficient of determination for the empirical equations has

been achieved as 0.5 which is much lower than the R2

obtained for the CS-ANN model.

Results of previous studies indicated that black box

models such as ANN models are superior over empirical-

based models for predicting longitudinal dispersion coeffi-

cient. The black box models outperform the statistical

methods including regression-based models because of their

great ability dealing with nonlinear problems. However, the

ANN models applied for the prediction of dispersion coef-

ficient were trained via gradient-based algorithms. Also, it

was found that the performance of the ANN models can be

improved significantly when metaheuristic algorithms are

employed for different applications. In this regard, the pro-

posedmodels developed for this study are expected to have a

higher performance than those of the previous studies.

Conclusion

A reliable prediction of longitudinal dispersion coefficient in

rivers can bring useful information for environmental sci-

entists and river engineers. Anyhow, it is not an easy task due

to nonlinear relationship between input and target variables

and inherent complexity of the phenomenon. Recently,

ANNs have been applied as an efficient approach to deal with

nonlinear problems. Concerning ANNs, the training process

is known as one of the most important stages to construct an

accurate ANN model. In this regard, different training
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algorithms can be utilized in which backpropagation algo-

rithms are probably the most common type of it due to their

simplicity. However, they have some disadvantages such as

premature and slow convergence. To overcome this defi-

ciency of theBP algorithms, various optimization algorithms

such as metaheuristic algorithms have been investigated for

ANN training and interesting results have been obtained. In

the present study, an attempt wasmade to examine the ability

of four different metaheuristic algorithms (genetic algo-

rithm, imperialist competitive algorithm, bee algorithm and

cuckoo search algorithm) for trainingANNs. Expansive field

data were applied to derive longitudinal dispersion coeffi-

cient in natural rivers.

The results obtained through the study were compared

with the LM-ANN model. It was observed that ANN

models successfully predict longitudinal dispersion coeffi-

cient in natural streams. Training ANNs with metaheuristic

algorithms increased the model performance significantly.

A remarkable improvement in the model performance was

observed when BA, ICA and CS algorithms were applied

for training ANNs. These models have a great ability for

predicting extreme values of dispersion coefficient in riv-

ers. The proposed models are applicable for a wide range

of river geometric and hydraulic characteristics.

Considering the model performance evaluation criteria

including discrepancy ratio, coefficient of determination

and RMSE, the CS-ANN model is realized as the most

efficient model for predicting dispersion coefficient in a

wide range of river geometric and hydraulic characteristics.

The results of this study indicated that applying CS-ANN

model provides a relatively high accurate prediction of

dispersion coefficient with accuracy, R2 and RMSE of

77%, 0.693 and 734 m2/s, respectively.

Findings of this study indicated that the proposed ANN

models provide more accurate predictions compared with

the previous studies and those of the empirical equations.

The CS-ANN model developed in this study has the

highest values of the accuracy (equals to 77%) and corre-

lation coefficient (equals to 0.83) and the lowest value of

RMSE as 734 compared with the equations applied for

predicting longitudinal dispersion coefficient.

This study presented a new application of cuckoo search

algorithm which rarely applied to train ANN models. As

the results of the CS-ANN models were superior over the

other metaheuristic algorithms, it is suggested to investi-

gate more applications of this algorithm to examine its

efficiency in other problems and compare the results with

other metaheuristics and optimization algorithms as well.
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