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Abstract Methylene blue color is a cationic dye which

is used in textile industry. Health effects of methylene

blue dye discharge into the environment is including

toxicity, high color, reduced light penetration in water,

high stability, and low degradation capability. So,

removing it from the environment is extremely impor-

tant. The aim of this study was to synthesize Uio-66

MOFs used for adsorption of methylene blue from syn-

thetic sample. The synthesized UiO-66 MOFs were

characterized by using XRD, FE-SEM, EDAX, and BET

analyses. Various parameters were evaluated such as pH,

initial MB concentration, reaction time, and adsorbent

dose. The findings showed that the sizes of Uio-66

crystals were between 153 and 213 nm. Total pore vol-

ume, BET, and Langmuir surface area were found to be

657, 906 m2 g-1, and 0.446 m3 g-1, respectively. Zeta

potential of Uio-66 was equal to 6. As a result, at higher

than zeta potential point, methylene blue adsorption on

Uio-66 is favorable. Maximum adsorption has been

achieved at the pH = 9. The maximum adsorption

capacity of Uio-66 for methylene blue was 91 mg/g.

Optimum dose of Uio-66 was 0.4 g L-1 for methylene

adsorption. The Langmuir I isotherm was a fit model to

describe the adsorption isotherm. Pseudo-first-order

kinetic model was a fit model to describe the adsorption

kinetic of MB on Uio-66. The Uio-66 MOF is a

promising adsorbent in the adsorption of methylene blue

from aqueous solution.

Graphical Abstract
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Introduction

Dye is the first thing that is recognized in an effluent.

With increasing production of dye and its various appli-

cations, there is higher production of effluents with high

strength (Rafatullah et al. 2010; Ali et al. 2016; Gupta
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et al. 2005; Yola et al. 2014a, b). Most materials in

effluents are toxic, dangerous and cause severe pollutions

in the environment (Rafatullah et al. 2010; Mansoorian

et al. 2013; Dias and Petit 2015). One of the most com-

mon dyes extensively used in the textile industry is

methylene blue which is a cationic dye (Vargas et al.

2011). Till now, various methods for dye adsorption are

used, these are, photo-catalytic degradation (Ehrampoosh

et al. 2010; Sohrabi and Ghavami 2008), sono-chemical

process (Ali et al. 2012), adsorption (Umoren et al. 2013;

Ali and Gupta 2006; Ali 2010), H2O2 (Masoumbeigi and

Rezaee 2015), TiO2 (Deilami and Fallah 2015), photo-

fenton oxidation (Gowtham and Pauline 2015), electro-

fenton degradation (Xia et al. 2014) and biological

method (Cheng et al. 2015). From these, adsorption is one

of the most popular processes. If properly designed, it can

effectively remove various dye materials (Crini 2006; Ali

2014). Thus, different adsorbents such as biopolymer oak

sawdust composite (El-Latif et al. 2010), mesoporous

carbon (Álvarez-Torrellas et al. 2015), waste cotton

activated carbon (Ekrami et al. 2016), activated carbon

and water hyacinth (Kanawade and Gaikwad 2011), nat-

ural illitic clay (Amrhar et al. 2015), modified pumice

stone (Derakhshan et al. 2013), zeolite material (Fungaro

et al. 2010; Ali et al. 2012), can papyrus (Saed et al.

2014), carbon nanotubes (Shahryari et al. 2010), boron

enrichment waste (BW) and molasses modified boron

enrichment waste (MBW)-based nanoclays (Gupta et al.

2014), blast furnace sludge (Malina and Radenovic 2014),

NaOH-modified dead leaves (Gong et al. 2013), Fe@Au

bimetallic nanoparticles (Gupta et al. 2014), TiO2

nanoparticles involved boron enrichment waste (Yola

et al. 2014a, b), wool fiber and cotton fiber (Khan et al.

2005), and bentonite (Hong et al. 2009) are used for

adsorption of methylene blue from water and wastewater.

These adsorbents have different advantages and disad-

vantages. With significant development of science in the

past decades, considerable progress has been made in the

construction and synthesis of new adsorbents (meso-

porous materials) (Ali 2012). Metal-organic framework

(MOF) is one of these new adsorbents (Hasan et al. 2013;

DeCoste and Peterson 2014). Actually, MOFs are a class

of porous materials that are composed of two parts:

inorganic (as metal core) and organic ligand (as linker)

(Katz et al. 2013; Hasan and Jhung 2015). The advantages

of these new adsorbents include: high specific surface

area, adjustable size by temperature changes, large pore

volume and coordinately saturated or unsaturated site to

regulate the adsorption capability (Bakhtiari and Azizian

2015; Huo and Yan 2012). MOFs are used in various

applications such as advance oxidation processes: (MIL-

53, MIL-100(Fe) and FeII@MIL-100(Fe) (Du et al. 2011;

Huanli et al. 2015), fluoride (Uio-66) (Massoudinejad

et al. 2016), gas separation (Zr-MOF) (Abid et al. 2013;

Barea et al. 2014), 2,4-dichlorophenoxyacetic (Jung et al.

2013), phthalic acid and diethyl phthalate (ZIF-8) (Khan

et al. 2015), p-nitrophenol (HKUST-1) (Lin et al. 2014),

arsenate (ZIF-8, MIL-53 and F-BTC) (Li et al. 2014; Zhu

et al. 2012). However, the application of Uio-66 in the

methylene blue dye adsorption from water and wastewater

has not been evaluated. Until now, several metal-organic

frameworks are used for adsorption of various dyes such

as MOF (Co/Ni) (Abbasi et al. 2016), MIL-125(Ti) (Guo

et al. 2015), magnetic CU3(BTC)2 (Zhao et al. 2015; Lin

et al. 2014), Fe(BTC) (Garcı́a et al. 2014), iron tereph-

thalate (MOF-235) (Haque et al. 2011) and MIL-100(Fe)

Huo and Yan 2012). Therefore, the aim of this study was

to synthesize Uio-66 MOFs and show its uses in the

adsorption of methylene blue from synthetic samples.

Materials and methods

Materials

Zirconium chloride (IV) and terephthalic acid (TPA) were

obtained from Merk Company. N,N-dimethylformamide

(DMF), methanol (CH3OH), methylene blue (C16H18-

ClN3S), sodium hydroxide (NaOH) and sulfuric acid

(H2SO4) were supplied by Sigma-Aldrich. All the reagents

and solvents were used as received from commercial sup-

pliers without further purification.

Synthesis and preparation of Uio-66

UiO-66 MOF was synthesized according to previous

studies (Shen et al. 2013a, b; Luu et al. 2015; Gao et al.

2016). In usual synthesis, 0.2332 g of ZrCl4 [Zr6O4(-

OH)4(BDC)6] (Furukawa et al. 2013) and 0.161 g tereph-

thalic acid were dissolved in 50 ml DMF solution. Then,

the solution was transferred to a 100-ml Teflon autoclave.

The autoclave was sealed and heated in a vacuum oven at

120 �C for 48 h under constant pressure. After cooling, the

sample was purified with methanol solution (95%) three

times to make sure that the occluded DMF molecules were

eliminated. After drying, Uio-66 was obtained under vac-

uum at 100 �C for 12 h.

General characteristics

The synthesized UiO-66 MOF was characterized by X-ray

diffraction, field emission-scanning electron microscopy,

energy-dispersive X-ray spectroscopy and Brunauer–Em-

mett–Teller surface area. Total pore volume of the samples

was determined by nitrogen (N2) adsorption isotherms at

77 K.
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Adsorption studies

All the experiments of methylene blue adsorption were

performed by Uio-66 in batch conditions. The effect of

various parameters including pH, initial methylene blue

concentration, reaction time, and adsorbent dose was

evaluated. Initially, stock solution of methylene blue

(1000 mg L-1) was prepared by dissolving 1 g of methy-

lene blue in 1 L of distilled water and then stored under

standard conditions. An adsorbent dose was added to 50 ml

of methylene blue solution. The solution pH was adjusted

by using 0.1 N NaOH and HCl. After the experiments, the

remaining adsorbent was separated from the solution by

centrifugation (2000 rpm and 15 min). Then, the residual

methylene blue concentration was determined by a spec-

trophotometer (k = 624 nm) (Li et al. 2014). All the

experiments were done at constant temperature of

25 ± 1 �C (Cai et al. 2015). Finally, the amount of

methylene blue adsorbed on the Uio-66 was calculated

according to Eq. 1 (Reardon and Wang 2000):

qe ¼
VðC0 � CeÞ

m
ð1Þ

where C0 and Ce are the concentration of initial and final

methylene blue in the solution (mg L-1), respectively, V is

the volume of methylene blue solution (ml), and m is the

weight of the adsorbent (g). The removal efficiency of

methylene blue was calculated according to Eq. 2

(Bhaumik et al. 2013):

R ð%Þ ¼ ðC0 � CtÞ
C0

ð2Þ

where C0 and Ct represent the initial and final methylene

blue concentration (mg L-1), respectively.

Results and discussion

X-ray diffraction analysis

X-ray diffraction (XRD) pattern is a useful tool for iden-

tification of the atomic and molecular structures of a crystal

sample. The as-synthesized Uio-66 was in the form of

white powder. The crystallographic structure of synthe-

sized Uio-66 was investigated by X-ray diffraction. The

X-ray diffraction pattern of the prepared Uio-66 is shown

in Fig. 1. The Uio-66 MOF contained characteristic peaks

at 2h equal to 7� and 8.45� with variation of peak intensity

depending on the reaction time (Luu et al. 2015). X-ray

diffraction pattern was similar to that of previous studies

(Lin et al. 2016; Peterson et al. 2014; Shen et al. 2013a, b).

Also, Fig. 2 shows FTIR spectra of the prepared Uio-66.

Field emission-scanning electron microscopy (FE-

SEM)

Figure 2 shows the SEM morphology of as-synthesized

Uio-66. The field emission-SEM image showed that the

sizes of Uio-66 crystals were between 153 and 213 nm. In

similar studies, the prepared Uio-66 MOFs crystals sizes

were between 200 and 500 nm (Lin et al. 2015).

The nitrogen adsorption–desorption isotherms

Figure 3 shows N2 adsorption–desorption isotherms and

BJH pore size distributions of Uio-66 MOFs. Adsorption–

desorption isotherm of Uio-66 was similar to type I.

Table 1 shows some properties of the prepared Uio-66

MOFs.

Energy-dispersive X-ray spectroscopy (EDAX)

Energy-dispersive X-ray spectroscopy is an analytical

technique used for the elemental analysis or chemical

composition of one sample (Masoumbeigi and Rezaee

2015). In this work, energy-dispersive X-ray spectroscopy

technique was utilized to check the chemical composition

of the synthesized Uio-66. The results showed that per-

centages of C, O, Zr, and Cl compounds were 46.84, 23.65,

26.64, and 2.87%, respectively. As shown in the results, the

ingredients of as-synthesized Uio-66 were the same with

the raw materials used before that without any impurity.

Effect of pH

pH is one of the most important parameters that influence

dye adsorption, because of change in the surface charges of

adsorbent and the degree of ionization of the target pollu-

tants (Guo et al. 2015; Lin et al. 2014). So, the initial pH of

the methylene blue solution is a significant factor. In this

work, methylene blue adsorption by Uio-66 MOF was

studied in various pHs and at 298 �K. To evaluate the effect
of pH on methylene blue adsorption, various pHs in the

range of 3–11 were used. In the adsorption experiments, a

0.4 g of Uio-66 MOF was added to 50 ml volume of

methylene blue solution with initial concentration of 30 mg

L-1. Figure 4 shows methylene blue adsorption at various

pHs. Increasing pH from 3 to 11 led to methylene blue

adsorption. At pH of 3 and 9, methylene blue adsorption

was 10.3 and 80.96%, respectively. Uio-66 with pH = 9

can remove large amount of methylene blue. In Lin study,

methylene blue adsorption efficiency increased with

increase in pH (Lin et al. 2014). Methylene blue dye is a

cationic dye. At low pH, H? concentration is high, so, Uio-

66 surface charge is positive which in turn reduces the

methylene blue adsorption. By increasing pH, OH-
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concentration gradually increased and methylene blue

adsorption on Uio-66 increased (Weng and Pan 2007;

Gürses et al. 2006). Isoelectric point of Uio-66 was equal to

6. At pH higher than isoelectric point, methylene blue

adsorption on Uio-66 was favorable. Maximum adsorption

was achieved at pH 9. As a result, pH 9 was selected for

further experiment.

Effect of initial concentration of methylene blue dye

In order to evaluate the effect of initial concentration,

10–50 mg L-1 methylene blue concentration was used

at contact time of 60 min. Figure 5 shows the effect of

initial methylene blue concentration on adsorption by

Uio-66. With increasing methylene blue concentration,

adsorption efficiency decreased. In methylene blue

equal to 10 mg L-1, methylene blue dye was com-

pletely adsorbed after 300 min contact time. In lower

concentrations, methylene blue molecules were adsor-

bed on Uio-66 adsorbent surface, rapidly, but Uio-66

surface became saturated gradually with increase in

methylene blue. Finally, the adsorption decreased

because of the repulsion among methylene blue

Fig. 1 a X-ray diffraction

pattern of the prepared Uio-66,

b FTIR spectra of the prepared

Uio-66

Fig. 2 Field emission-SEM image of the prepared Uio-66 MOFs

Fig. 3 N2 adsorption–desorption isotherm and BJH pore size distri-

butions of Uio-66
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molecules (Garcı́a et al. 2014; Zvinowanda et al.

2009).

Effect of Uio-66 dose

Figure 6 shows the effect of Uio-66 dose and removal

efficiency of methylene blue dye. It was observed that

methylene blue adsorption increased with the increase in

Uio-66 dose until an equilibrium dose was reached. Opti-

mum dose was 0.4 g L-1. With increase in the Uio-66

dose, methylene blue adsorption was not significant.

Adsorption efficiency of methylene blue in dosages of 0.4

and 0.5 g L-1 were 72.5 and 75%, respectively. As a

result, the optimum dose was 0.4 g L-1. Based on the

finding of other researchers, the increase in methylene blue

adsorption with Uio-66 dose can be caused by high

adsorbent surface and availability of more adsorption sites

(Maleki et al. 2015). With dose higher than optimum

(0.4 g L-1) and with increase in Uio-66 dose, adsorption

capacity of adsorbent was almost constant. This
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Table 1 Some properties of Uio-66 for BET experiments at 77 K

Sample SABET (m2 g-1) SALangmuir (m
2 g-1) Total pore volume (m3 g-1) Mean pore diameter (nm)

Uio-66 765 906 0.446 2.331
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phenomenon can be due to overlapping or aggregation of

adsorption sites of Uio-66 that eventually lead to decrease

in total Uio-66 surface area (Maleki et al. 2015; Zhang

et al. 2014).

Adsorption kinetics and adsorption isotherms

In order to study the mechanisms of methylene blue

adsorption on Uio-66, kinetic models like pseudo-first-

order and pseudo-second-order kinetic models were used.

The pseudo-first-order kinetic model expression of Lager-

gren is expressed in Eq. 3:

dqt

dt
¼ k1ðqe � qtÞ2 ð3Þ

where qe and qt are the amounts of methylene blue

adsorbent on the Uio-66 at equilibrium and at time t,

respectively, and k1 is the rate constant (min-1). The linear

form of pseudo-first-order is expressed as Eq. 4 (Baskan

and Pala 2011; Mohsenibandpei et al. 2016)

logðqe � qtÞ ¼ log qe �
k1

2:303
t ð4Þ

where k1 and qe are obtained from the slope and intercept

of the linear plots of log (qe - qt) versus t, respectively.

Pseudo-second-order kinetics model is expressed as Eq. 5

(Kragović et al. 2013; Mohsenibandpei et al. 2016):

dqt

dt
¼ k2ðqe � qtÞ2 ð5Þ

where qt and qe are sorbent methylene blue at time t and

equilibrium (mg L-1), respectively, and k2 is the constant

of pseudo-second-order sorption of methylene blue

(g mg-1 min-1). The linear form of pseudo-second-order

is expressed in Eq. 6:

t

qt
¼ 1

k2q2e
þ t

qe
ð6Þ

where k2 and qe are obtained from the slope and intercept

of the linear plots of log(qe - qt) versus t, respectively. To

conduct adsorption kinetic experiments, 0.4 g of Uio-66

adsorbent was added to 50 ml of methylene blue solution at

initial concentration of 10–50 mg L-1. Figure 7 shows the

effect of initial methylene blue concentration and contact

time on methylene blue adsorption on Uio-66 MOF. Ini-

tially, methylene blue dye was adsorbed rapidly on Uio-66.

Adsorption equilibrium of methylene blue was performed

after 200 min. After this time, methylene blue adsorption

dose did not significantly change. Calculated constants of

kinetic models are given in Table 2. Coefficient of deter-

mination (R2) was used to determine the best kinetic model

(Bakhtiari and Azizian 2015). Coefficient of determination

of the used kinetic models is given in Table 2. As shown in

Table 2, pseudo-first-order (PFR) kinetic model had the

highest square R. As a result, the PFR model was a fit

model to describe the adsorption kinetic of methylene blue

on Uio-66.

Adsorption isotherms were used to describe the

adsorption of methylene blue and mechanisms of adsorp-

tion on Uio-66. The adsorption of methylene blue on Uio-

66 MOF was studied with five concentrations (10, 20, 30,

40, and 50 mg L-1), various contact times (30–500 min) at

temperature and stirring speed of 298 �K and 300 rpm,

respectively. In this research, the equilibrium data of Uio-

66 were fitted to the Langmuir (I, II, III, and IV) and

Fraundlich isotherms. The Fraundlich isotherm model is

expressed in Eq. 7 (Camacho et al. 2011):

qe ¼ KfC
1=n
e ð7Þ

where qe is the amount of methylene blue adsorbed at

equilibrium, Ce is the equilibrium concentration of

methylene blue in the solution, and Kf and n are the

Fraundlich constants. The linear form of the Fraundlich

isotherm model is expressed in Eq. 8 (Lee and Tiwari

2013):
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log qe ¼
1

n
logCe þ logKf ð8Þ

where qe and Ce are the amount adsorbent of methylene

blue (mg g-1) and sorption concentration (mg L-1) at

equilibrium, respectively. KF and 1/n are the Fraundlich

constants denoting adsorption capacity and adsorption

intensity or surface heterogeneity, respectively. The

Langmuir isotherm model is expressed in Eq. 9

(Jayakumar et al. 2015):

qe ¼
qmKLCe

1þ KLCe

ð9Þ

where qe and qm are amount of adsorbed methylene blue

per unit mass of Uio-66 and maximum sorption capacity of

the Uio-66 (mg g-1), respectively. Ce is equilibrium

methylene blue concentration, and KL is Langmuir

isotherm constant (dm3 g-1). The linear form of the

Langmuir isotherm model is expressed as Eq. 10

(Jayakumar et al. 2015):

Ce

q
¼ 1

q0b
þ Ce

qe
ð10Þ

where q is the amount of methylene blue adsorbed per unit

weight of Uio-66 (mg g-1) at equilibrium, Ce is the equi-

librium methylene blue concentration (mg L-1), q0 is the

Langmuir monolayer adsorption capacity, and b is the

Langmuir constant (L g-1). Calculated constants of kinetic

models are given in Table 3. Coefficient of determination

(R2) was used to determine the best isotherm model (Huo

and Yan 2012). R squared or coefficient of determination is

a number that indicates the proportion of the variance in

the dependent variable which is predictable from the

independent variable (Steel and Torrie 1960). Coefficient

of determination of the used isotherm models is shown in

Table 3. As illustrated in Table 3, Langmuir I model has

the highest R2 (0.9993). As a result, the Langmuir I iso-

therm was the best fit model to describe the adsorption

isotherm of methylene blue on Uio-66. According to

Langmuir I model, the maximum adsorption capacity (qm)

(for initial methylene blue concentration, 10–50 mg L-1)

of Uio-66 for methylene blue adsorption was equal to

64.5 mg g-1.

Regeneration studies

One of the most important issues in the adsorption pro-

cesses is reuse of the used adsorbent. In this work, Uio-66

was regenerated with methanol. To do so, 0.4 of Uio-66

was added to 50 ml of methylene blue solution (initial

concentration = 20 mg L-1). After completion of methy-

lene blue adsorption process, the used Uio-66 was sepa-

rated. For the regeneration of the used Uio-66, methanol

was applied with high purity of 95%. After washing with

methanol, the adsorbent was dried in an oven at 100 �C for

10 h. Regeneration process was performed with 5 cycles.

The results showed that Uio-66 MOFs can be easily

Table 3 Calculated constants of isotherm models for the adsorption

of methylene blue onto Uio-66

Isotherm type Isotherm parameters Adsorbent dose (g L-1)

Fraundlich n 3.1926

Kf 23.6945

R2 0.9682

Langmuir I type KL 0.5281

R2 0.9993

qm 90.4840

II type KL 0.6338

R2 0.9973

qm 70.7695

III type KL 0.6134

R2 0.9877

qm 65.4031

IV type KL 0.6059

R2 0.9877

qm 70.6084

Table 2 Calculated constants of kinetic models for the adsorption of methylene blue on Uio-66

Kinetics type Kinetic parameters MB concentration (mg L-1)

10 20 30 40 50

Pseudo-first-order reaction K1 0.0171 0.0082 0.0071 0.0071 0.0072

R2 0.9944 0.9982 0.9948 0.9905 0.9957

qcal 53.8368 56.8787 50.2925 55.1593 81.3564

Pseudo-second-order reaction K2 0.00040 0.00000 0.00021 0.00008 0.00004

R2 0.9539 0.0188 0.9600 0.7417 0.6204

qm 29.2830 192.4024 56.1478 84.4895 103.5427
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regenerated with methanol and methylene blue adsorption

efficiency which is almost unchanged after multiple times.

Conclusion

In this research, Uio-66 was synthesized using hydrother-

mal method. It was used for the adsorption of methylene

blue dye from synthetic samples. Uio-66 structure was

characterized by using X-ray diffraction, Fourier transform

infrared spectroscopy spectra, field emission-scanning

electron microscopy, energy-dispersive X-ray spec-

troscopy, and Brunauer–Emmett–Teller. Adsorption iso-

therm of methylene blue was described based on Langmuir

model that represents the monolayer adsorption onto Uio-

66. The best kinetic model for methylene blue adsorption is

a more suitable pseudo-first-order model. The maximum

adsorption capacity of Uio-66 MOFs was 90 mg g-1 at an

initial concentration of 50 mg L-1. The Uio-66 MOFs is a

promising adsorbent in the adsorption of methylene blue

from aqueous solution.
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