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Abstract Hazard analysis is the first step in any disaster

management activity. Drought is a serious environmental

hazard strongly limiting the agricultural production in the

tropical countries like India. A comprehensive drought hazard

map is useful for multiple perspectives such as agriculture,

environment and hydrology. In this study, daily rainfall data of

the Climate PredictionCentre during the south-westmonsoon

season (June–September) of 12 years, over India was anal-

ysed. Based on rainfall and rainy days, six indicators of

drought were generated which were then synthesized into a

composite index of drought hazard for every 10 9 10 km

pixel. The weights for the composite index were generated

throughvariance approach.The indexhas effectively captured

the spatial variations in meteorological drought across India

by showing a typical pattern with increasing hazardous area

from east to west. The drought hazard map also shows con-

siderable agreement with the climate classification map and

the drought pronenessmap reportedbyother studies.Thus, the

current study presents a simple and novel approach for

drought hazard analysis, using the routinely available

geospatial rainfall data products. The methodology can be

extended to other geographies and disasters too. Use of time

series data of longer period would improve the reliability of

the composite drought hazard index.

Keywords Integrated index � Drought hazard � India �
Meteorological drought

Introduction

Drought is recognized as the most disastrous natural hazard

affecting the vast geographical area and causing a huge

economic impact on human livelihood (Wilhite 2000).

Drought originates from the deficiency of precipitation

leading to the inadequacy of water to certain activities or

groups. Due to the complexities associated with drought

occurrence, spread and its impact, there is no single index

for drought detection and intensity assessment. Drought

management is closely related to sustainable agriculture

and food security. The probabilistic seasonal drought

forecasts can substantially improve drought early warning

systems which can support regions with famine and food

crisis (Lobell et al. 2008). Meteorologists, environmental-

ists, ecologists, agricultural scientists, hydrologists, geolo-

gists and socio-economic experts developed different

indices to address different aspects of drought (Mishra and

Singh 2010). An effective drought monitoring and predic-

tion system should be based on comprehensive and inte-

grated approach that can include multiple drought

indicators (Svoboda et al. 2002; Mishra and Singh 2010;

Hao and Agha Kouchak 2013). The various data-mining

algorithms to build prediction model have vast scope in the

field, where physical models are infeasible. There are

various application areas like rainfall prediction, storm

detection, weather forecasting and other disciples of sci-

ence and technology where it can be used effectively
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(Kusiak 2000; Li et al. 2008; Fauvel et al. 2008; Marzano

et al. 2010; Domenech and Wehr 2011; Kusiak et al. 2013).

Understanding drought at local and regional scales with

historical and current perspective is of primary importance

for planning and management. A study by Dai (2011) and

Otgonjargal (2012) noted that many places in various

continents can encounter the significant drying conditions

in the coming decades including South-East Asia. There

are various studies that have also addressed the regional

and global consequences of climate change on the param-

eters like rainfall and temperature. Addisu et al. (2015)

have addressed the issues of climate change on a national

and local level by analysing time series temperature and

rainfall trends. Their study stated that the rainfall pattern,

its distribution, frequency and probability of dry spells in

the growing season are key factors and the unusual rainfall

amount leads to poor harvest or complete crop failure and

famine of pasture and animal feeds. Drought occurrence is

strongly determined by a combination of climate hazard

and ecosystem vulnerability. Drought hazard assessment is

the first step in risk assessment and development of drought

management plans. Drought hazard is characterized by

location, intensity, frequency and probability of drought.

Origin, characteristics and behaviour of hazard constitute

the hazard analysis (Nadim et al. 2006). With proactive/

mitigation-oriented disaster management being increas-

ingly preferred, hazard analysis has attained greater

importance in recent years. Otgonjargal (2012) analysed

drought hazard in Morocco using the Standardized Pre-

cipitation Index (SPI). Barlow et al. (2006) used weighted

anomaly SPI and Persistent Deficits of Precipitation for

drought hazard assessment at country level in Asia and

recommended sub-country level analysis with multiple

indices. Zubair et al. (2006) constructed drought hazard

map of Sri Lanka with rainfall data.

Various methods and indices using many drought-

causative and drought-responsive parameters like rainfall,

soil moisture, surface water levels, groundwater, potential

evapotranspiration and vegetation condition have been

developed in the recent years, and the strength and

weakness of each index have been demonstrated through

case studies. Most of these indices such as derived from

climate data are applied in non-spatial perspective. Fur-

ther, these indices are tested in isolation to establish their

sensitivity to drought conditions. Since drought is a phe-

nomenon interlinked with multiple processes, use of a

combination of indices better captures the drought inten-

sity. For example, although rainfall is the basic cause of

drought, use of rainfall and rainy days together better

captures the drought conditions (Murthy et al. 2015). This

is because rainfall represents the amount of rainfall

received at a given location in a given period of time and

rainy days represent the temporal distribution of rainfall.

Drought hazard is a multidimensional, spatially and

temporally dynamic and scale dependent. Therefore, the

real challenge is to evolve a composite index at a disag-

gregated level. Keyantash and Dracup (2004) recognized

the importance of an aggregated index for drought,

developed it through the multivariate approach and con-

cluded that the index is superior to different indices used

in standalone mode. Hao et al. (2014) provide meteoro-

logical and agricultural drought information based on

multiple drought indicators using the Global Integrated

Drought Monitoring and Prediction System (GIDMaPS).

The multiple satellites and model-based input data sets of

precipitation and soil moisture are used for a near real-

time monitoring and seasonal probabilistic prediction

which provide essential information for early warning,

taking preventive measures and planning mitigation

strategies. The objective of the current study is to carry

out meteorological drought hazard analysis through a

composite index approach in a geospatial perspective,

over India from 2001 to 2012 for south-west monsoon

season. Thus, the current study emphasizes the aggregated

perspective for drought hazard analysis.

Materials and methods

Study area

The present research work has been carried out over India

which is situated in the north of the equator between 8�40
and 37�60N latitude and 68�70 and 97�250E longitude with

the total area of 3,166,414 km2 (Fig. 1). India is geo-

graphically blessed with a wide variety of climatic condi-

tions ranging temperate and alpine in the Himalayan north

to tropical in the south. The south-west monsoon season

from June to September is considered the prime rainfall

contributor because 75% of annual rainfall is received

during this short span of time. India has diverse rainfall

zones, crop-growing environments and cropping pattern.

The net cropped area is 140 million hectare (mha), and

about 60% of it is directly dependent on rainfall. Kharif is

the principal crop season, which corresponds to 4- to

5-month period.

Data used

In this study, a composite index of drought hazard was

constructed using a set of contributing indicators derived

from CPC rainfall time series. The methodology includes

analysis of rainfall time series data, generation of input

indicators, weights computation, construction of a com-

posite index and analysis of drought hazard patterns as

shown in Fig. 2.
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The rainfall database was generated using the CPC daily

global precipitation product. The CPC provides South-East

Asia to South Asia precipitation data set. The rainfall data

for the period of 12 years (2001–2012) and for the duration

of four continuous months (June to September, i.e. south-

west monsoon) were used for generation of various indices.

The spatial resolution of the data set is 0.1� 9 0.1�.
Satellite-based rainfall estimates are becoming increasingly

important due to inadequate network and measurement

errors associated with surface gauges. These spatial rainfall

data sets from satellites certainly complement the surface

gauge data for early warning on water availability. Verdin

et al. (2005) and Satya et al. (2014) analysed the agreement

between TRMM-PR- and gauge-based rainfall and found

that the TRMM-PR 3A25 data sets have captured the

interannual variability of rainfall over South Asia.

The algorithm used for rainfall estimation is called

Rainfall Estimation Algorithm version 2.0, and the prod-

ucts are called RFE 2 estimates (Love et al. 2004; Her-

mance and Sulieman 2013). CPC rainfall data during the

south-west monsoon season (June to September) of the last

12 years (2001–2012) were analysed to generate different

indicators of exposure. Along with rainfall, data on rainy

days were also considered to account for the distribution of

rainfall. The definition of a rainy day is adapted from India

Meteorological Department (IMD) which considers any

day with greater than or equal to 2.5 mm of rainfall as a

rainy day.

World

India

Fig. 1 Location map of study

area
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From the daily rainfall images of 12 years, two images,

namely (1) total season rainfall and (2) number of rainy

days in the season, were generated for each year. Rainfall

and rainy days together capture the drought situation

effectively. Otgonjargal (2012) used both rainfall and rainy

days for drought hazard analysis in Morocco. Using total

season rainfall time series, three indicators were com-

puted—mean rainfall, coefficient of variation (CV) of

rainfall and drought frequency. Drought frequency indi-

cates the number of years under drought conditions during

the 12-year period. The criteria for deciding a drought year

are an occurrence of less than 75% of normal rainfall

(mean of 12 years) in the given pixel for the given period.

This criterion of meteorological drought detection has been

recommended by IMD in India (www.imd.gov.in). Simi-

larly, from the rainy days time series, the same sets of three

indicators were computed. Thus, there were six indicators

of drought constituting the generation of 6-channel image.

Data normalization

The contributing indicators of the model are in different

units with different functional relationships with the

resultant hazard index. Some of the input indicators are

having positive relation with the drought hazard, and some

are having negative relation. In order to make these indi-

cators free of their units and to standardize their values,

data normalization was done. In the case of the variables

that have a positive relationship with its respective com-

ponent index, the normalization was done using the

formula.

Xij ¼
Xij �Max Xið Þ

Max Xið Þ �Min Xið Þ ð1Þ

In the case of variables that have a negative relationship

with its respective component index, the normalization was

done using the formula;

Xij ¼
Max Xið Þ � Xij

Max Xið Þ �Min Xið Þ ð2Þ

where Xij = normalized contributing indicator, Xij = input

indicator, Max(Xi) = maximum value of indicator,

Min(Xi) = minimum value of indicator.

After normalization, all the indicators were ranging

from 0 to 1 and have a positive relationship with the

drought hazard index where the severity increases from 0

to 1.

Computation of weights

Construction and use of composite indices of multidi-

mensional data for measuring spatial differentials in social

and economic development issues have been widely prac-

ticed (Iyengar and Sudarshan 1982; Ahsan and Warner

2014). Assignment of weights to selected indicators is a

key issue in the vulnerability assessment model. Wilhelmi

and Wilhite (2002) selected the weights based on the rel-

ative contribution of each factor in the vulnerability. Li

et al. (2006) and Chen et al. (2013) used principal com-

ponent analysis to generate weights for the variables.

Brooks et al. (2005) assigned equal weights to each indi-

cator in their study on vulnerability and adaptive capacity

assessment at national level. The method of simple aver-

aging gives equal importance to all the input variables

which may not be necessarily correct. In this study, the

method given by Iyengar and Sudarshan (1982) was used to

construct a statistically sound composite index from mul-

tivariate data.

Composite Index 
generator 

Drought HazardsIndex (DHI) 
and Analysis

Computation of Weights

Data Normalization

CPC Rainfall Data Series

Generation of Input Indicators
Mean  of season’s rainfall 
Mean  of season’s rainy days 
CV of season’s rainfall 
CV of season’s rainy days 
Rainfall based drought frequency
Rainy days based drought frequency

Fig. 2 Methodology framework of the study
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It is assumed that there are N spatial units (10 km pixels

in the current study), K indicators and xij, i = 1, 2,…. N

and j = 1, 2,…. K are the normalized scores. The level or

stage of hazard of ith zone, �yi, is assumed to be a linear sum

of xij as

�yi ¼
XK

j¼1

wjxij ð3Þ

where w’s (0\w\1 and
PK

j¼1 wj ¼ 1) are the weights. In

the method suggested by Iyengar and Sudarshan (1982),

the weights are assumed to vary inversely as the variance

over the spatial units in the respective indicators of hazard.

That is, the weight wj is determined by

wj ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðxijÞ
p ð4Þ

where c is a normalizing constant such that

c ¼
XK

j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vari xij

� �q

2
64

3
75

�1

ð5Þ

By assigning the weights in this manner (Table 1), the

large variation in any of the indicators will not unduly

dominate the contribution of the rest of the indicators or

distort inter-regional comparisons. The resulting index

ranges between 0 and 1, with a 1 indicating the maximum

and 0 indicating minimum intensities.

The composite index of drought hazard was generated

for each pixel by summing the product of the indicators and

respective weights as given in Eq. (3). The DHI was scaled

between 0 and 1 representing the minimum and maximum

hazard, respectively.

The composite index of drought hazard was generated

for each pixel by summing the product of the indicators and

respective weights as given in Eq. (3). The DHI reflects

relative differences among the pixels, rather than repre-

senting specific conditions of drought. Based on the inter-

vals of the composite index, pixels were categorized into

different levels of hazard.

Results and discussion

Contrary to single-indicator-based drought hazard analysis

reported in various studies, this study, through a novel

approach, synthesized a composite index from six con-

tributing indicators. After normalization, all the input

indicators range from 0 to 1 with the same direction of

change. The spatial distribution of scaled input indicators is

shown in Fig. 3.

The mean rainfall distribution shows isolated pockets of

high rainfall in north-east, east and west coast regions. CPC

rainfall over NE states is considerably less and hence not

used for interpretation. North-west India and southern most

areas show very low rainfall. CV of rainfall is less in the

eastern half of the nation and more in the western part of

the nation. The rainfall-based drought frequency is higher

in isolated pockets of the western part. Mean of rainy days

shows higher dynamic range. CV of rainy days shows

smaller variability, with most part of the country having

lesser values. Rainy days-based drought frequency does not

show larger spatial variability with much of the area having

lesser values.

Drought hazard map of India derived from DHI is

shown in Fig. 4. DHI class\0.5 indicates less hazardous

and that [0.8 indicates highly hazardous area. The DHI

classes show a typical pattern with the increasing haz-

ardous area from east to west. Large areas of Rajasthan,

Gujarat, Haryana, Punjab and J&K followed by parts of

Andhra Pradesh, Karnataka, Maharashtra, Uttar Pradesh

and isolated pixels of Madhya Pradesh are under highly

hazardous class. CPC rainfall is conspicuously low in the

parts of north-eastern region where the rainfall is high in

general, and hence, it has resulted in very high hazard

index in these areas. The reasons for such a low CPC

rainfall need to be investigated.

In Punjab and Haryana states (at s. no. 9 and 10 in

Fig. 4), drought hazard does not have serious implications

for agriculture because of irrigation support from snow-fed

(monsoon independent) irrigation systems. The northern

most states of Jammu and Kashmir, Himachal Pradesh and

Uttarakhand have very less arable lands, and hence, higher

hazard index does not have much impact on agriculture.

Significant area with a higher level of hazard in Tamil

Nadu (at s. no. 25 in Fig. 4), the southern state, is due to the

fact that rainfall and rainy days of the south-west monsoon

season do not have much relevance to the state, since the

state is largely influenced by a different monsoon season.

Higher level of hazard intensity in parts of Andhra

Pradesh, Telangana, Karnataka, Maharashtra, Madhya

Pradesh, Gujarat, Uttar Pradesh and Haryana states affects

large tracks of the agricultural area, and hence, it has

serious economic implications. Large parts of Odisha,

Table 1 Weights for the input parameters

S. no. Variables Weights

1 Mean of season’s rainfall 0.16

2 Mean of season’s rainy days 0.13

3 CV of season’s rainfall 0.17

4 CV of season’s rainy days 0.17

5 Rainfall-based drought frequency 0.18

6 Rainy days-based drought frequency 0.19
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Chhattisgarh, Bihar, Jharkhand, Eastern Madhya Pradesh,

West Bengal and Assam show much less hazardous area

compared to the areas of the western region. Very less

hazardous area is limited to other parts of West Bengal,

Assam, Jharkhand and Chhattisgarh. The composite index

has thus effectively captured the drought hazard patterns in

the country.

The drought hazard map of the current study and the

climatic classification map generated by Brooks et al.

(2005) based on precipitation and potential evapotranspi-

ration has some interesting commonality and class agree-

ments. The climate map contains six classes: arid, semi-

arid, dry sub-humid, moist sub-humid, humid and per

humid. The arid regions of the map are closely associated

with a higher hazard index of[0.8, and these regions are

distributed in the western part of the country. The semi-arid

region has the hazard index of 0.7–0.8, less than that of arid

regions. Parts of the two southern states, namely Andhra

Pradesh and Karnataka, contain some pockets of arid areas

amidst dominant semi-arid area, and the same is also

reflected in the hazard map as pockets of area with

index[0.8 in the dominant class of 0.7–0.8 index. The

contiguous distribution of arid and semi-arid areas, west to

central India, corresponds to top two hazard index classes.

The dry sub-humid area is associated with the hazard index

of 0.6–0.7, and their location is almost same in the central

and the eastern parts of the country. The moist sub-humid

and humid regions show the hazard index of 0.5–0.6, and

these are located in the eastern regions. There are some

disagreements also between the two classifications, but

they are to a very limited extent.

The drought-prone districts map shows significant

commonality with the hazard map of the current study.

Most of the drought-prone districts have the hazard

index[0.7. The spatial patterns in these two maps show

interesting agreement over most parts of the country.

Thus, the hazard index of the current study goes well with

the climatic variability as well as the drought proneness

maps of the other studies. Thus, the reliability of com-

posite index generation has been established through the

above comparisons. The index can be improved further by

adding more variables and fine tuning the variables or by

adopting improved techniques for deriving the weights to

inputs.

Average Seasons
Rainfall (2001-12)

CV for Rainfall
(2001-12)

Drought Frequency for
Rainfall (2001-12)

Average Seasons Rainy
day (2001-12)

CV for Rainy day 
(2001-12)

Drought Frequency for
Rainy day (2001-12)

Fig. 3 Scaled input indicators of the composite index
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This study is justified with respect to its relevance and

value, and the analysis presented has originality with

respect to the technique adopted. The current study was

motivated by the ample scope for developing composite

indices to address the multidimensional nature of drought

hazard, spatial perspective of its variability and scale

requirements. Hazard assessment is a crucial component of

any disaster preparedness. Construction and use of com-

posite indices from multidimensional data for measuring

spatial differentials in social and economic development

issues have been widely practiced, and these techniques

were explored in the current study for drought hazard

mapping. A composite index is formed by synthesizing the

individual indicators to summarize the complex and mul-

tidimensional realities, and there is no model-independent

approach to describe such complex realities. The method-

ology for measuring and scaling drought hazard in this

study is unique: exhaustive inputs, data-driven weights,

statistical soundness and application over a large area. The

basic methodology can be extended to other regions and

disasters.

The uncertainty-related issues in the methodology

essentially include the indicator selection and weights

generation. While the current study draws the input indi-

cators from rainfall and rainy days, the use of potential

evapotranspiration (PET) and rainfall together representing

both demand and supply component of water would further

improve the hazard map. When data from multiple sources

are used data quality and scale bring uncertainty in the

model. Weights generation should follow data normaliza-

tion. Different methods are used for weights generation.

Subjectivity cripples into the model, if appropriate method

is not employed. Data-driven methods for weights gener-

ation are better than the expert-driven methods.

Conclusion

Meteorological drought hazard analysis was carried out

using time series rainfall data at disaggregated level. The

methodology has two unique features—composite index

approach and geospatial analysis. The routinely available

satellite-based rainfall products are effectively used.

Combined use of both rainfall and rainy days together is

the real strength of the current methodology. Thus, the

index presents an aggregated description of drought hazard

through a combination of rainfall and rainy days.

The composite index has effectively captured the

drought hazard pattern in the country. The drought hazard

map shows marked separability. The general agreement of

the map with climate classification map and drought-prone

map, generated by other studies, is an evidence of the

plausibility of drought hazard mapping using the composite

index. The 12 years of time series rainfall data are still

adequate to represent the current level of average rainfall/

rainy days in the study area. Use of long time series data is

desirable to make the input indicators more robust. The

current study has thus showcased the way for generating

hazard index using the currently available geospatial data

sets in a simple but novel perspective. The index can be

applied to new observational data without any serious

limitation. Such indices are potential inputs for primary use

such as in disaster management and for secondary use such

as in environmental modelling.
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