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Abstract Municipal solid waste poses a risk on sur-

rounding environment and public health, mainly because of

unscientific disposal and shortage of facilities for proper

handling and recycling of leachate. This research article

objective is to pinpoint the indigenous fungal isolates of

waste leachate samples. Therefore, we carried out

biosorption of Cd2? tested the applicability by applying

indigenous fungal isolates. The limited number of fungal

isolates was found based on their ability for biosorption of

Cd2? metal. The fungal strains Trichoderma sp., Asper-

gillus niger and Aspergillus flavus were reported as

potential strains for metal exclusion ability from the lea-

chate. Among them, the Trichoderma sp. was found as

excellent fungal agent for Cd2? absorption. The optimum

pH was 5.5 ± 1, temperature 45 �C, and spore concentra-

tion 10-5 to achieve the maximum biosorption, and

35 days of incubation period were required by three strains.

The maximum metal biosorption achieved was comparable

for the three isolates: 56.34% by Trichoderma sp., 44.74

and 42.04% by A. niger and A. flavus, respectively. Con-

cluding, the further intending application to identified

potentially fungal isolates is able to improve the efficiency

of metal biosorption. These strains are recommended for

development of consortia could become a best technique

for MSW leachate treatment if its reliability and applica-

bility should be verified prior to technology acceptance.

Keywords Solid waste � Leachate � Cadmium metal �
Biosorption � Fungi

Introduction

The pure water, clean air and uncontaminated soil are three

natural resources that we cannot live without. However,

today the growing population with its increased needs has

enlarged several industrial expansions (Saravanan et al.

2014a, 2015a, b, c). This has led to the rise in environmental

pollution. The results are an increase in toxic elements in air,

soil and water resources. Once these contaminates especially

heavy metals enter the environment, they are very hard to

eliminate (Gupta et al. 2012; Saravanan et al. 2013a, 2014b).

Presently, management of municipal solid waste (MSW)

is a critical issue in worldwide and be able to risky both the

environment and human health in both developed and less

developed countries (Worell and Vesilind 2012; Cheng and

Hu 2010; Li et al. 2016). Particularly, in most developing

countries, the open disposal practices are still carried out

for solid wastes generated from municipal cities, com-

mercial waste, sometime hospitals waste and hazardous

waste (Shekdar 2009; Gupta et al. 2015; Tang and Steenari

2016). Owing to its profitable benefits, open dumping is

still the best leading handling method used in these less
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developed countries for MSW. The global waste generation

estimated 1.7–1.9 billion metric tons (Mt) of MSW/year.

According to the World Bank, it reported that the common

practices for MSW management are composting or recy-

cling, landfilling, incineration, open dumping. The gener-

ation rate of MSW was 0.34 per capita (kg/capita/day) and

109,589 tonnes/day in 2005, and it is expected to rise up to

0.7 per capita (kg/capita/day) and 376,639 tonnes/day in

2025 (Hoornweg and Tata 2012).

The MSW leachate is generated due to microbial

degradation of MSW, including chemical reaction and

physical changes inside the solid waste (Renou et al. 2008;

Akgul et al. 2013; Li et al. 2016). MSW leachate is a highly

polluted effluent that contains a complex mixture of both

inorganic and organic compounds, heavy metals, ammonia,

inorganic salts, etc (Cecen and Aktas 2004). Cadmium

(Cd) is a non-essential toxic heavy metal with extensively

identified environmental and health risks. Many research-

ers highlighted that the risk caused by Cd could rise as a

consequence of its anthropogenic activities. Spreading of

Cd emissions from municipal solid waste treatment of Cd-

containing products could lead to a rise in its environ-

mental concentration, and hence the decrease in Cd con-

centration is a main issue (Ono 2013). However, the

composition of leachate can be different and depend on

type of waste, climatic condition, pattern of rainfall,

hydrological factors and age of disposed waste (Akgul

et al. 2013; Ghosh et al. 2015; Hassan et al. 2016).

Therefore, untreated and discharge of leachate from MSW

may possibly pollute the receipting medium both soil and

water systems.

The conventional approach is effective, but not eco-

friendly, for the treatment of MSW leachate and, in the

same time, technologically expensive (Dursun 2006; Fan

et al. 2008; Hermosilla et al. 2009). Although several

chemical and physical methods have been already applied

for the leachate treatment (Akgul et al. 2013; Gotvajn and

Pavko 2015). Many authors have confirmed the ability of

carbons as adsorbents to exclude different pollutants both

inorganic and organic species (Saleh and Gupta 2014; Al-

Saadi et al. 2013). In this sense, the adsorption is a widely

considered approach for the separation of pollutants from

effluents. However, still detailed advanced research should

be essential on the improvement in efficiency, cost-effec-

tiveness and environmental friendly method (Gupta et al.

2013; Saleh 2011; 2015a, b). However, for reducing the

harmful effect of leachate, numerous investigators have

carried out different experiments to efficiently treat

MSWL.

One of the best ways to exclude the contamination of

leachate is by microbial treatment. Researchers have

investigated many microbes that utilize waste material to

degrade them into smaller forms. Recently, the biosorption

has been become the most promising technology owing to

their efficiency, comparatively cost-effective and eco-

friendly prospective (Das 2010; Razarinah et al. 2014;

Saetang and Babel 2010, 2012; Vijayaraghavan and Bala-

subramanian 2015). Microorganisms are able to survive in

adverse environmental conditions because of their potential

capability to catch up the contaminants as nutrients through

absorptive/adsorptive/accumulative mechanism. Indige-

nous fungi are promising agent to play an important role in

the exclusion of metals. Both fungi and bacteria like,

Aspergillus, Bacillus, Penicillium, Phanerochaete, Pseu-

domonas and Sporophyticus are reported as very suit-

able for the biosorption of heavy metals, e.g., chromium

and nickel (Abd El Hameed et al. 2015; Munoz et al.

2012). Fungal cell walls principally comprised of

polysaccharides, proteins and lipids with several functional

groups that are acting in metals binding action. Many

researchers reported different fungal biosorbents, e.g.,

Penicillium, Trametes versicolor, Lentinus sajorcajuc,

Rhizopus arrhizus, Rhizopus oryzae, Aspergillus oryzae,

Aspergillu niger and Mucor rouxii have been applied for

the heavy metal removal from sample (Yan and

Viraraghavan 2000, 2003). For instance, T. versicolor is a

basidiomycete fungus has various functional groups

responsible for the heavy metals biosorption. In addition,

this biosorbent is economically, environment friendly and

easily available (Subbaiah et al. 2011).

Dhankhar and Hooda (2011) and Zafar et al. (2007)

had suggested that the use of fungi is more convenient,

such as smooth handling and maintenance, higher metal

uptake capacity with high treatment rate, minimal sludge

production and selectivity, needs very less technical

support, and highest capabilities for reusability. Hence, if

we employ the indigenous fungus for removing heavy

metals from MSW leachate, this approach will be eco-

friendly and cost-effective. Although the mechanism of

metal removal through microorganisms is quite complex

process due to competition for surface-binding site (Sag

and Kutsal 1996; Tunali and Akar 2006). The metal

biosorption mechanism depends on combination of

chelation, ion exchange, complexion, adsorption,

absorption and micro-precipitation (Volesky and Holan

1995; Wang and Chen 2006, 2009; Volesky 2007;

Abdolali et al. 2014; Vijayaraghavan and Yun 2008).

Ahalya et al. (2003) stated that transportation of metal

from outside of cellular membrane into the intracellular

accumulation is a metabolism-dependent process by liv-

ing microbial system. The process is as active defense

system by microbes which have higher metal tolerance

ability (González-Guerrero et al. 2009). Many authors

suggested that these microorganisms, including fungi,

yeast, bacteria, are previously reported from metal-con-

taminated sites due to their continuous enrichment and
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extremely adaption ability (Srivastava and Thakur 2006;

Parvathi et al. 2007; Gabr et al. 2008; Ansari et al. 2011;

Wysocki and Tamas 2010). Ahmad et al. (2006) sug-

gested that the active and inactive biomass of different

filamentous fungi, such as Penicillium, Rhizopus,

Aspergillus and Mucor, may be used in biosorption

(Gadd 1990; Kurniati et al. 2014).

Therefore, we have evaluated indigenous fungi from a

polluted MSW sites to assess their metal tolerance level

and metal exclusion potential from MSW leachate. The

present work has been carried between 2013 and 2014 in

India.

Materials and methods

Isolation, identification and optimization

of conditions for indigenous fungal strains

The MSW leachate samples were collected from dumping

site Municipal Corporation, Chhatarpur, MP (Madhya

Pradesh) India. All the collected leachate samples were

filtered by Whatman filter paper (Grade 42), prior to use in

further study. The both (pre-treated and post-treated) lea-

chates were analyzed by inductively coupled plasma mass

spectrometry (ICP-MS). The metal concentration founds

before and after treatment is presented in Table 1.

The indigenous fungal strains were isolated on potato

dextrose agar (PDA) medium, and spore suspensions were

prepared as described by Gautam et al. (2012). After

desired incubation period, the fungal species were further

purified by single spore culture method. These isolates

were identified by performing the slide culture technique

with the help of standard manuals (Ellis 1976; Domsch

et al. 1980; Barnett and Hunter 1998; Gillespie and Pearson

2001). All the fungal isolates were deposited in the Fungal

Germplasm Culture Collection Center (FGCC), MP

Council of Science and Technology, Department of Bio-

logical Sciences, RD University, Jabalpur, and obtained

accession number as mentioned serially from FGCC#CH1

to FGCC#CH10 is as listed in supplementary information

(SI).

The effects of environmental parameters (e.g., temper-

ature, pH, inoculum concentration, incubation period) on

the metal removal efficiency by potential fungal isolates

were considered. The experiments were carried out in a

250-mL sterilized Erlenmeyer flask containing 150 mL

broth medium in triplicate. Batch experiments were exe-

cuted at different pH ranges from 3.0 to 8.0 and also at

different temperature range 28 �C ± 1–60 �C ± 1, from

7 days to 49 days of incubation period. The Cd metal

concentration in leachate (before and after) was analyzed

by using ICP-MS and determined against the control (the

leachate sample was not inoculated any fungal spore con-

centration). The metal removal potential, i.e., the amount

of cadmium metal ion mg/g-1 was calculated by using

following equation:

Q ¼ ½Ci� Cf �v
s

ð1Þ

where Q, mg of metal ion biosorbed per g, Ci, initial metal

ions concentration (mg/l), Cf, final metal ion concentration

(mg/1), s, wet biomass, and v, volume of reaction mixture.

Statistical analysis

Data presented on the average of three replicates (± SE)

were obtained from the independent experiments by using

SPSS 15 software.

Results and discussion

Determination of fungal tolerance potential against

Cd21 metal

The data revealed that different responses of isolates in

terms of Cd2? biosorption are shown in Fig. 1. Out of ten

fungal strains, only three isolates have shown highest tol-

erance to Cd2? metal. The screening test showed that

Trichoderma sp. (FGCC#CH9), A. niger (FGCC#CH1) and

Aspergillus flavus (FGCC#CH3) have potential biosorption

ability for Cd2? (Fig. 1). Similarly, many researchers have

investigated about heavy metal biosorption (Blaudez et al.

2000; Massaccesi et al. 2002; Dursun et al. 2003; Liu et al.

2006; Tsekova et al. 2010; George et al. 2012), but it was

noted that indigenous fungal strains have more tolerance

ability than other isolates (Pandey et al. 2013; Zafar et al.

2007). Additionally, the indigenous fungal strains are well

known for their ability to survive in highly metal-con-

taminated site (Maheswari and Murugesan 2011; Joo and

Hussein 2012). On the above concern, similar findings

were reported by many authors (Fazil et al. 2015). In

addition, Fazil et al. (2015) also advocated that A. versi-

color is able to accumulate (Cd: 7 mg/1gm) mycelium of

Paecilomyces sp. (5.878), Microsporum (5.07), Tricho-

derma sp. (4.55), respectively. Similarly, several

Table 1 Effect of fungal strains (Trichoderma sp. and Aspergillus

sp.) as bio-remediating agent for cadmium metal

Tank Before After

Tank-1 1.16 ± 0.07 0.43 ± 0.03

Tank-2* 1.16 ± 0.07 0.51 ± 0.02

Tank-1: Trichoderma sp. and *Tank: Aspergillus sp. Unit: mg/L
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researchers have also proved the fungal tolerance ability

against the different heavy metals (Salinas et al. 2000; Graz

et al. 2011; Carrillo et al. 2012).

Fungal exposure to heavy metals can lead to physio-

logical adaptation (Gadd, 1993), and these alterations

possibly will be increased the metal sorption capability.

Fungi able to grow in the occurrence of heavy metals

(50 lg ml-1) were recovered. Particularly, fungus belongs

to the genera Alternaria, Aspergillus, Fusarium, Geo-

trichum, Penicillium, Rhizopus, Trichoderma, Monilia the

Mycelia sterilia group, etc. Zafar et al. (2007) stated that

the minimum inhibitory concentration (MIC) values advise

that the tolerance level against specific metals was

dependent on the related fungal stains. The fungal genera

Monilia and Geotrichum exhibited comparatively low tol-

erance to every metal in contrast to other fungal strains,

while the genus Aspergillus (two isolates Aspergillus sp.1

and Aspergillus sp.2) presented a noticeable metal toler-

ance levels. Among the tolerance level by filamentous

fungi was detected in following pattern

Cu[Cr[Cd[Co[Ni. The existence of different

fungi—Aspergillus, Chaetomium, Fusarium Geomyces,

Rhizopus, Penicillium, Paecilomyces—species in land

polluted with heavy metals (Cd, As, Cu, Pb and Zn) has

conveyed by many researchers from worldwide (Babich

and Stotzky 1985; Gadd 1993). The deviation in the metal

resistance might be owing to the occurrence of either one

or more kinds of resistance mechanisms showed by various

fungi. In this context, the fungi Aspergillus (Deuter-

omycetes) and Rhizopus (Zygomycetes) exhibit different

metal tolerance.

Optimization of biosorption conditions

for individual fungal isolates

Several microbial agents are able to bind heavy metal; few

of them are sufficient for high metal binding ability. In

addition, maximum metal biosorption can be obtained

through optimization of favorable environmental growth

condition (Murugesan et al. 2009).

Effect of pH on metal biosorption

The pH is an important factor in biosorption process

because it affects the equilibrium by disturbing the metal

ion(s) speciation in solution, the normal chemistry of the

active binding sites on the fungal biomass and the con-

centration of competing hydrogen ions. The fungal cell

wall comprises of carboxyl sulfhydryl, amino, thiol and

phosphate functional reactive groups. The phosphate

groups and carboxyl groups bring negative charges that

permit the fungal cell wall constituents to be potential

scavengers of metal ions. The pH factor has been known as

one of the most important parameter that is active on metal

Fig. 1 Metal removal potential for cadmium metal by various indigenous fungal isolates
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sorption. It is directly associated with competition capa-

bility of hydrogen ions with metal ions to active sites on the

fungal biosorbent. The effect of pH on the biosorption of

Cd metal onto three fungal strains (Trichoderma sp.; A.

niger and A. flavus) were studied at pH 3–8, and the results

are given in Fig. 2. The biosorption efficiency was better

from 18.23 to 56.34% for Cd(II) ion at pH level of 3–5.5.

The highest biosorption was observed to be 56.34% for

Cd metal at pH 5.5. Thus, the all biosorption tests were

carried out at different pH level. Amini et al. (2008) sated

that the biosorption mechanisms on the biomass surface

reveal the nature of the physicochemical interaction of the

species in solution and the biosorptive sites of fungal sor-

bent. Iqbal and Edyvean (2004) said that at very acidic pH

level (pH\ 2.0), the surface charge on the active bio-

sorbent sites became positive and metal cations and protons

compete for binding sites on cell wall, which results in

lower uptake of metal. In another hand, the biosorbent

surface was more negatively charged as the pH increased

up to 5.5. Dursun (2006) explained the functional groups of

the fungal biomass were highly deprotonated and as a

result accessible for the metal ions. Mainly, carboxyl,

phosphate and amine groups are the key functional groups

participated in biosorption of heavy metals (Kapoor and

Viraraghavan 1995, 1997). Yan and Viraraghavan (2001)

added that during reduction in biosorption rate at higher pH

(pH[ 5.5) is not individually associated with the forma-

tion of soluble hydroxilated complexes of the cadmium

ions in form of Cd(OH)2). In addition, a number of

researches have already described the almost closely rela-

ted pH effect on biosorption of Cd through diverse fungus

(Akar and Tunali 2005).

The metal biosorption potential can be affected by dif-

ferent environmental parameters, such as pH, which is

shown in Fig. 2. The results indicating that the Cd2?

removal gradually increased with pH when fungus, such as

Trichoderma sp. (FGCC#CH9), A. niger (FGCC#CH1),

and A. flavus (FGCC#CH3), are employed, and maximum

biosorption reported at pH 5.5 and reduced from 6.0 to 8.0

pH, although, the lower pH (pH\ 4) can affect the heavy

metal removal efficiency (Fan et al. 2014). Additionally,

the metal removal rate also reduces at pH[ 6, which

might be due to complexation with soluble organic ligands.

The biosorption of metal is extremely related to solution

pH because it might cause impact on metals chemistry,

activity of functional groups (carboxylate, phosphate and

amino groups) on the cell wall, because of competition

among metal ions and binding sites (Baldrian 2003).

Studies conducted by Liu et al. (2006) suggested that

biosorption of metal capacity is too much low at lower pH

owing to hydrogen ions competition with metal ions at cell

wall site. When the pH increases, subsequently the nega-

tive cell surface numbers will increase. On the other hand,

those metals involved in higher pH level could cause the

inhibition of metal contact between biomass of metals.

However, metal precipitates at a higher pH, inhibiting the

contact of metal with most fungal biomass (George et al.

2012).

Fig. 2 Influence of diverse pH

on cadmium metal removal by

potential fungal strains
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Effect of temperature on metal biosorption

Temperature is also very important parameter which can

amend the whole biosorption development. The data

revealed from present study that the Cd2? biosorption rises

within temperature range from 28 to 45 �C and afterword

rapidly falls from 45 to 60 �C. The highest Cd2? removal

(56.34%) was reported at 45 �C when employing Tricho-

derma sp. (FGCC#CH9), as shown in Fig. 3. This study

established that temperature plays an important role in the

metal removal practice. Similarly, previous reports that

deal with microorganism (bacteria: Bacillus jeotgali and

E. coli) suggested that the optimum temperature for Cd2?

is not similar to our findings (Green-Ruiz et al. 2008; Kao

et al. 2009; Pan et al. 2009). Liu et al. (2006) advocated

that metal uptake activity is related to rise in temperature

level, owing to higher affinity of sites for metal binding on

available cell wall. Sun et al. (2010) estimated that the

highest biosorption activity by Aspergillus terreus for

cadmium metal at temperatures ranges between 25 and

28 �C. Vijayaraghavan and Yeoung (2008) stated that the

room temperature is suitable for conducting the biosorption

process. Our findings are not getting support from studies

conducted by other researchers, indicating that biosorption

ability is not very clearly defined, which means needed

more detail investigation.

This is well known that the energy cannot be gained or

lost under thermodynamically in isolated system; the

entropy change is the driving force. In addition to the

practice of environmental engineering, both entropy and

energy factors ought to be considered in order to define the

procedures that occur spontaneously (Fan et al. 2008; Liu

and Liu 2008; Anayurt et al. 2009; Subbaiah et al. 2011).

The magnitude of Gibbs free energy change of adsorption

(DG�) also increased with rise in temperature level which

shows that the biosorption was more favorable at higher

temperatures. The positive values of enthalpy (DH�) indi-

cate the endothermic nature of the biosorption of Cd(II)

ions onto fungus (T. versicolor) between temperature ran-

ges of 303–323 K (Subbaiah et al. 2011). These findings

are quite similar and also supported by other researchers

reports such as Phanerochaete chrysosporium—

23.0 mg g-1 (Say et al. 2001), Mucor rouxii—

20.31 mg g-1 (Yan and Viraraghavan 2003), Phane-

rochaete chrysosporium—15.2 mg g-1 (Li et al. 2004).

Furthermore, the study conducted by (Fan et al. 2008)

suggested that biosorption of Cd(II) can reach up to

61.35 mg g-1 employing Penicillium simplicissimum. Zaki

et al. (2000) stated that the negative value of DG� with a

proliferation in temperature shows the Cd(II) ion adsorp-

tion on fungus (Trichoderma), which turns into more

promising at higher temperature level. Bazrafshan et al.

(2016) classified the adsorption mechanism can be possi-

ble, either physical adsorption (less than 84 kJ/mol) or

chemisorption (between 84 and 420 kJ/mol), through the

degree of enthalpy change. Gupta (1998) said that if DS�
value is positive, few structural alterations occur on the

adsorbent.

Effect of inoculum concentration on metal

biosorption

The most often recovered fungal isolates are Aspergillus

sp. followed by Alternaria sp., Curvularia sp., Fusarium

Fig. 3 Influence of different

temperature on cadmium metal

removal through diverse

potential fungal strains
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sp., Mucor sp., Rhizopus sp. and other fungal strains from

the leachate sample (SI). The maximum cadmium metal

uptake by potential fungus can be represented in following

order Trichoderma sp. (FGCC#CH9), A. niger (FGCC#CH1)

and A. flavus (FGCC#CH3) which are shown in Fig. 4.

Several authors have reported different fungi, such as

Ganoderma austral, A. niger, Aspergillus terreus, A. len-

tulus and Rhizopus oryzae, from MSW leachate (George

et al. 2012; Kapoor et al. 1999; Mishra and Malik 2014a;

2014b; Razarinah et al. 2014). In this study, the potential

fungal isolate belongs to deuteromycetes (Trichoderma sp.,

A. niger and A. flavus).

Furthermore, during standardization stage, themaximum

biosorption of Cd2? metal was achieved by Trichoderma

sp. (FGCC#CH9) (56.34%) followed by A. niger

(FGCC#A1), (44.74%) and A. flavus (FGCC#CH3)

(42.04%) (Figs. 4, 5).

The promising use of fungi in biosorption of Cd2? metal

has been reported previously (Fazil et al. 2015; Kumar

et al. 2015; Shakya et al. 2015). Several studies showed

that heavy metals biosorption based on fungi has great

capability owing to their cell wall composed of proteins,

lipids, polysaccharides and diverse functional groups that

are responsible for the metal binding (Akar and Tunali

2006; Pacheco et al. 2011). Skorik et al. (2010) added that

chitin and chitosan (mixed polysaccharides) play important

role in metals binding. In this sense, fungi such as A. niger

remove metals by spores that act as an excellent biosorbent

for metals (Dursun et al. 2003; Yang et al. 2004). The level

of Cd2? metal biosorption employing different fungi have

been well reported (Veglio and Beolchini 1997; Kapoor

and Viraraghavan 1998; Kapoor et al. 1999). However, the

findings might be varied in different investigations owing

to type of microbes used, inoculum concentration, tem-

perature, pH and type of method used. Yazdani et al.

(2010) observed that metal exposure by heavy metal (e.g.,

Cd) can cause alteration in fungal morphological in all the

indigenous fungal strains. Shakya et al. (2015) claimed that

fungus forming colorful mycelia owing to admits of heavy

metal on media. Jarosz-Wilkołazka et al. (2006) previously

argued that supplementation of Cd2? is in growth media

able to form an orange brown pigment which is directed to

the coloration of mycelium of Abortiporus biennis,

accompanied with the cell-free culture medium (Jarosz-

Wilkolazka et al. 2006).

The interaction of fungi with heavy metals possesses

some alterations in the physiological developments and

some conditions it can even damage the mycelium. Thus,

fungi evolved dynamic defense mechanisms that alleviate

the toxicity of metals. The protection is usually based on

immobilization of heavy metals expending intracellular

and extracellular chelating compounds. In diverse taxo-

nomic groups of fungi, the heavy metals are intracellularly

chelated by peptidic low molecular weight compounds—

Fig. 4 Influence of inoculum

concentration level on cadmium

metal removal by three potential

fungal isolates (C1–C10 means

is 10-1 to 10-10)
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phytochelatins or metallothioneins (Tomsett 1993). Even

though the production of these low molecular weight

chelators was identified in basidiomycetes group of fungi

(Munger and Lerch 1985), it appears that their part in

wood-rotting fungi is restricted and their production by

these fungi was never proven. While in brown-rot and

white-rot fungi, the extracellular metal chelation is perhaps

significant. Though it is not very clear, this is an active

defense method. The metal chelators produced by both

brown-rot and white-rot fungi are oxalate. The oxalic acid

production by fungi offers a soluble metal ions or com-

plexes as insoluble oxalates, as a result reducing

bioavailability and growing tolerance to metals (Sayer and

Gadd 1997). Similarly, metal oxalates may be also formed

with Cd. Since the oxalate production is more usual by

brown-rot fungi, it has a significant role in the white-rot

fungi with lignin peroxidase. Mn-peroxidase of P.

chrysosporium or a low molecular weight compound con-

tributes to the Fenton-based breakdown of wood compo-

nents. Among white-rot fungi, higher amounts of oxalate

are produced by P. ostreatus, P. chrysosporium and

T. versicolor (Shimada et al. 1997; Machuca et al. 2001). It

is consequently not unexpected that diverse fungal species

can change in the degree of their heavy metal tolerance. In

this context, Sanglimsuwan et al. (1993) investigated 21

fungal strains of 16 species of wood-rotting fungi for their

tolerance to metals and found that minimum inhibitory

concentrations (MIC) were lowest in case of Cd

(0.5–5 mM). Hence, the tolerance level varied from one

species to other species with P. cystidosus and P. ostreatus

showing the maximum resistant.

Many authors have been discussed biosorption potential

of fungi and other biological materials (He and Chen 2014;

Kumar et al. 2015). Vijayaraghavan and Balasubramanian

(2015) underlined that most of the studies those carried out

previously had some drawbacks for metal removal (Al-

Garni et al. 2009). In addition, some authors explained that

biosorption of metal is related to ion exchange which is one

of the main mechanisms for metal exclusion. Fan et al.

(2014) stated that the microbes can vary based on type of

membrane lipid composition, cell wall composition and

cell membrane in different growth phases which may be

directly affect their susceptibility to toxic substances.

The application of microorganisms for the biosorption

of metals from municipal waste water has been suggested

as a promising unconventional way to make heavy metal

management strategies. While the clear mechanism of

metal uptake and sorption by microorganisms is still not

fully understood, the sorption to polysaccharides, proteins

or other molecules happening in the outer layer of the cell

wall undoubtedly plays the most significant role. The tests

with chemically altered cell walls confirmed that different

functional groups may contribute to cation binding. The

heavy metals adsorption on the fungal mycelia fits the

Fig. 5 Influence of incubation

period on removal of cadmium

metal employ potential fungal

strains
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Langmuir adsorption isotherm. From the kinetic viewpoint,

it is a two-stage process with a rapid surface adsorption

with a slow intracellular diffusion. At the starting time of

interaction, pH declines owing to the release of protons.

The ion exchange mechanism also plays an important role

in metal binding. The fungal cell wall has the significant

role in sorption of heavy metals and accounted between 38

and 77% of metal uptake. In addition, the heavy metal

binding ability is also dependent on the age of fungal

mycelia, composition of culture media. The overall char-

acters are possibly owing to the changes in composition of

fungal cell wall. Furthermore, the metal binding may be

affected by physical or chemical treatment of mycelia

(Yetis et al. 2000; Wu and Li 2002).

Saleh et al. (2015) evaluated the efficiency of activated

carbon loaded with zinc oxide nanoparticles (AC/ZnO) for

eliminating carbon tetrachloride, dichloromethane, tri-

chloro methane from aqueous solutions. For this experi-

ment, the thermo-chemical process was used for the

production of activated carbon (AC) from the waste tires as

a raw material. The removal of these pollutants by AC/ZnO

was defined well by the pseudo-second-order model, and

the hydrophilic fraction adsorption fitted the intra particle

diffusion model. The reusability of the composite was

evidenced when no substantial reduction in its adsorption

ability was witnessed even subsequently numerous times of

regeneration. In similar context, Saleh (2016) tested

nanocomposite of carbon nanotubes/silica nanoparticles

and their application sorption mechanism for adsorption of

metal Pb(II) from surface properties. Saleh and Gupta

(2012a) said that the MnO2/CNT nanocomposite is utiliz-

able as a fixed into bed in a column system. The experi-

mental situations were examined and also the optimized pH

range among 3–7 was studied and the best results was

reported at pH was identical to 6 and 7. Saleh and Gupta

(2012b) stated a composite of multi-walled carbon nan-

otube/titanium dioxide (MWCNT/TiO2) has been produced

in order to hybridize photocatalytic activity of TiO2 with

adsorptivity of MWCNTs. This catalytic composite was

used by degradation of methyl orange taken as a model

compound, under UV irradiation. The outcomes deter-

mined appearance that the application of carbon nanotube

as a backing for TiO2 is good for higher degradation level

of methyl orange dye in aqueous solutions (Saravanan et al.

2011, 2013b, c, d, e; Joicy et al. 2014). Saleh and Gupta

(2011) added that the use of sunlight-induced photocat-

alytic degradation process is simple way with easy safe

handling, and cost-effective, consequently has the higher

potential to be an advantageous technology for environ-

mental decontamination. The complex of MWCNT/MnO2

was effectively produced that the material has an excep-

tional characteristic that syndicates the oxidation properties

of MnO2 with adsorption features of MWCNTs. The

findings suggested that the composite has shown high

effectiveness for exclusion of As(III) and As(V) and it was

observed that the produced composite of MWCNT/MnO2

is an useful oxidizing agent with adsorbent for the decon-

taminating of sample containing As(III) and As(V) (Saleh

et al. 2011). Saravanan et al. (2015d) stated that the

developed nanocomposites are between the supreme effi-

cient catalysts in effluent treatment and in the degradation

of industrial pollutants. In addition, the low-cost synthesis,

maximum efficiency and sensitivity create the catalysts an

appropriate material for the pollutant degradation as well as

allow us to transfer a step additional toward a greener

environment (Saravanan et al. 2014b, c). Saravanan et al.

(2011) suggested that the photocatalytic activity of ZnO/

CdO was verified through the decomposition of methylene

blue (MB) in aqueous medium under visible light as well as

the effectiveness of the catalyst has been evaluated in fact.

In addition, the used method is very simple, rapid and cost-

effective, while other methods are not.

It is understandable that the interference of heavy metals

with enzymatic, physiological and reproductive processes

of fungi has its ecological significances. The restrictions in

growth in the existence of metals lead to the alterations of

community structure and the heavy metals effects on their

enzymatic actions effects the energy change in the envi-

ronment. The amino, hydroxyl amide and carboxyl groups

of the biosorbent played as the adsorption sites for

metal (Fig. 6). This inference also clarified the effect of

solution pH on biosorption ability. Low pH was favorable

for protonation of the biosorbent’s functional groups and

hydrogen bond formation which resulting in the observed
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increase in metal biosorption. In addition, other feeble

intermolecular forces via hydrophobic–hydrophobic and

van der Waals interactions may also take part in the metal

biosorption.

Conclusion

In this research, we have validated that some of the

indigenous fungal strains grown well and also have an

excellent Cd2? biosorption. Cadmium tolerant isolates,

especially Trichoderma sp., A. niger and A. flavus, can

survive well. According to the literature discussed in this

article, we can have assumed that intracellular compart-

mentalization is critical to the detoxification of Cd2?. Most

of the cadmium is stored in the cytoplasm, either in cytosol

or vacuoles. Our work has demonstrated that the indige-

nous fungal isolates have a great potential for biosorption

of metal from MSW leachate. The further work is to see

how this investigated work can be scale up to a larger scale.
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