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Abstract The present study investigated the prevalence of

pathogenic organisms (Salmonella spp, Vibrio cholerae,

and Shigella spp) and their correlation to the abundance of

faecal indicator organisms in water and riverbed sediments

in the Apies River, South Africa. In all, 558 water and

sediment samples were collected from 10 sites in the river

(May 2013–February 2014) and analysed through culture

and molecular (real-time PCR) techniques. Concentrations

of faecal indicator organisms in sediments reached

1.39 9 105 (±standard deviation) CFU/100 mL. All three

pathogens were detected in water and sediments. Pathogens

were mostly detected in sediments at sites influenced either

by wastewater treatment works or by informal settlements.

During the wet and dry seasons (water column), a strong

positive correlation was observed between E. coli and all

pathogens; C. perfringens only correlated with V. cholerae.

Within sediments, strong positive correlations were only

observed between E. coli and Salmonella spp, E. coli and

V. cholerae (dry season); E. coli and V. cholerae and

E. coli and Shigella spp (wet season). No correlation was

observed between sediments C. perfringens counts and all

the pathogens. Thus, sediments of the Apies River harbour

pathogenic organisms. Correlation between E. coli and

pathogenic organisms in the sediments suggests that E. coli

could also be an indicator of pathogens’ presence.

However, the lack of a correlation between E. coli and

some pathogens in sediments and between C. perfringens

and all the pathogens highlights the need to investigate for

more indicators of pathogens’ presence in this complex

matrix.
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Introduction

The world’s water ecosystem continues to suffer severe

deterioration due to microbial pollution from urban run-off

(Crowther et al. 2002; Tyrrel and Quinton 2003; Reeves

et al. 2004; Signor 2005) agricultural farms (Monis and

Thompson 2003; Carey et al. 2004) or more localised

sources like wastewater treatment works (WWTWs)

(Abraham 2011; Teklehaimanot et al. 2014). Irrespective

of the source, once in the aquatic environment, the survival

of these microbial pollutants depends on a number of

factors, amongst which is the attachment to suspended

sediment particles (Gao et al. 2011). The attached bacteria,

together with the sediment particle, may then become

bigger, resulting in heavier complexes that can potentially

settle out onto the riverbed. Several studies carried out on

the role played by riverbed sediments as reservoirs of

indicator bacteria, including human pathogens, have

reported higher microbial counts in the sediments than in

the water column (Jamieson et al. 2004; Characklis et al.

2005; Fries et al. 2008).

Chase et al. (2012) reported that levels of faecal indi-

cator bacteria (FIB) in sediments could be up to 100-fold

higher when compared to the water column concentration.
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Bacteria in riverbed sediments can be shielded from the

killing effect of UV light coming from the sun (Craig et al.

2004; Stapleton et al. 2007; Koirala et al. 2008) by sus-

pended particles. Sediments have also been found to

enhance bacterial survival by providing a hiding place for

the bacteria against predation from protozoa (Decamp and

Warren 2000; Jamieson et al. 2005a, b). Furthermore,

sediments often contain high concentrations of nutrients

and other soluble organic matter essential for bacterial

growth (Jamieson et al. 2005a, b; Garzio-hadzick et al.

2010). Apart from traditional indicator bacteria like E. coli,

pathogenic bacteria, such as Vibrio cholerae, Salmonella

spp and Shigella spp have also been reported in riverbed

sediments (Santhiya et al. 2011; Vignesh et al. 2014).

Natural turbulences and/or human recreational activities

could lead to the resuspension of microorganisms found in

the bottom sediments (Craig et al. 2004; Budillon et al.

2006; Pandey et al. 2011). Several studies have reported

higher levels of FIB in the water column of water bodies

that have been associated with resuspension of riverbed

sediments following disturbance of the bed sediments

(Pianetti et al. 2004; Ibekwe and Papiernik 2010; Gonzalez

et al. 2012) suggesting riverbed sediments could serve as

an important source of microorganisms within the water

column (Kinzelman and McLellan 2009; Korajkic et al.

2011). The resuspension from sediments could therefore

represent a potential health hazard for populations using

such untreated water for recreational purposes (Gao et al.

2011) as well as for other household activities—especially

where treated pipe-borne water is not available.

South Africa’s water resources are negatively impacted

by low average annual precipitation. Uneven distribution of

surface and groundwater as a result of climate and geog-

raphy makes the country water scarce (Molobela and Sinha

2011). The country entirely depends on surface water

resources for most of its urban, industrial and irrigation

water requirements (Basson 2011). Aquatic ecosystems and

water resources on which most rural communities depend

for domestic, recreational and agricultural uses are still

being subject to heavy microbial pollution from different

sources resulting in severe environmental, health and eco-

nomic damage (Basson 2011). Several studies carried out in

South Africa have focused on the quality of surface water

(Kinge and Mbewe 2010; Chigor and Okoh 2012; Seanego

and Moyo 2013; Sibanda and Okoh 2013; Teklehaimanot

et al. 2014), and there is little information on the microbial

quality of riverbed sediments. Like many countries in the

world, South Africa’s aquatic ecosystem monitoring bodies

have not taken microbial sediment quality into considera-

tion in the development and modification of their water

quality guidelines (Republic of South Africa, Department of

Environmental Affairs 2012). It has been shown recently

that the sediments of the Apies River, a widely used river in

the Gauteng Province of South Africa, were heavily pol-

luted with E. coli (Abia et al. 2015b). The sediments were

found to contain as high as 105 times higher concentrations

of E. coli than the water column. However, given the

complex nature of the sediment matrix within the riverbed,

choosing an appropriate indicator of faecal pollution, and

possibly of pathogenic organisms (POs), could be an

essential step for the successful monitoring of the microbial

quality of bed sediments within the aquatic ecosystem.

Based on this, another recent study carried out on the Apies

River suggested that E. coli alone, though recognised as a

good indicator of microbial quality within water bodies,

was not sufficient to predict the microbial quality of sedi-

ments within these ecosystems (Abia et al. 2015b). The

authors of this study concluded by recommending that in

order to have a better picture of both recent and past effects

of microbial pollution within riverbed sediments, it was

necessary to check for the presence of both E. coli and other

potential indicators of faecal pollution such as Clostridium

perfringens within the sediments (Abia et al. 2015a).

Despite these findings regarding the microbial quality

(presence of E. coli and C. perfringens) of sediments in

South African water bodies, there is still no data on the

possible presence of POs within the riverbed sediments.

Such information could improve the understanding of the

possible contribution of sediments to the overall microbial

load of water catchments thus providing the necessary

preliminary evidence needed to motivate the need for

increased allocation of funds for water resource protection

initiatives within developing countries.

With the main aim of filling up this paucity of infor-

mation regarding microbial sediment quality, the present

study was carried out with objectives: (1) to investigate the

extent to which riverbed sediments and water in the Apies

River are contaminated with pathogenic microorganisms

(Salmonella spp, V. cholerae and Shigella spp) and (2) to

investigate any correlation between the abundance of

indicator organisms (E. coli and C. perfringens) and the

presence of the pathogens in the sediments and the over-

laying water. The study was conducted from May to

August 2013 (dry season) and January to February 2014

(wet season). The river is situated in the Gauteng Province

of South Africa.

Materials and methods

Study site

The present study was conducted on the Apies River,

which is one of the main watercourses within the Gauteng

Province of South Africa (Fig. 1). The study site and

characteristics of the river as well as the various land uses
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around the river have been described in previous studies

(Abia et al. 2015a, b). During the dry season, most parts of

the river are fully accessible by communities that use its

water for activities such as laundry and bathing. During the

wet season, the river usually overflows its banks, especially

after heavy rainfall (attached picture, Fig. 1). During both

seasons, the water and sediments of Apies River are

sources of spiritual cleansing and empowerment to many

traditional healers and other religious groups. Important to

note is the presence of four WWTWs—Daspoort, Rooiwal,

Babelegi and Temba along the river that discharge their

effluents directly into the river system. These WWTWs

account for about 80 % of the total river discharge during

the dry season (Venter 2007). Also, parts of the river’s

course pass through informal settlements which completely

lack sanitary facilities, thus making the river the only point

of waste disposal in these areas.

Sample collection and processing

Sampling was conducted in the dry (May to August 2013)

and the wet (January to February 2014) seasons. A total of 10

sampling sites were chosen for the study. In order to identify

the possible sources of the pollution observed within the

Apies River, study sites were selected based on the various

land uses around them. This was done following an initial

field visit to the river. Sites DAS, AP1, AP2, AP6, AP7, AP8

and AP9 were all located on the main Apies River. Sites AP3,

AP4 and AP5 are tributaries to the Apies River. Water and

sediment samples were collected during 14 sampling rounds

in each season and analysed for E. coli, C. perfringens, V.

cholerae, Salmonella spp and Shigella spp, using culture and

molecular techniques. Site AP9 was only sampled during 13

rounds as the sampling site was not accessible on one of the

rounds due to heavy rains that caused flooding of the river

beyond it banks. Water samples were collected using clean

sterile 1 L plastic containers following standard procedures

(APHA/AWWA/WEF 2001). A sterile polypropylene

autoclavable scooper was used to scoop the sediments

samples from the top 5 cm of the riverbed. All samples were

collected approximately 1 m (or further when possible)

away from the river bank. This was the approximate distance

the users would go during activities such as laundry or

bathing. The collected sediments were transferred into sterile

100 mL polypropylene containers with lids. Both water and

sediments were collected in triplicates at each sampling point

and transported to the laboratory in a cooler box containing

ice packs. All samples were processed and analysed within

6 h upon arrival to the laboratory. Prior to analysis,

microorganisms were separated from the sediment samples

using the water displacement approach as previously

described (Abia et al. 2015c). The supernatant from

Fig. 1 Map of Apies River showing sampling sites and wastewater treatment works (Source: Google Earth) and pictures of site Ap 9 during the

dry and the wet season
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resuspended sediment samples was then used for the enu-

meration of the FIOs and for enrichment in appropriate

media depending on the pathogen of interest. For the water

samples, after inverting the sampling bottle several times to

allow for proper mixing of the water, the samples were used

directly for culture and enrichment in appropriate media.

Enumeration of indicator organisms

Escherichia coli was enumerated using the Colilert�

18/Quanti-tray� 2000 defined substrate method and con-

firmed by real-time PCR as previously described (Abia

et al. 2015b). C. perfringens was enumerated using the

pour plate technique on D-cycloserine supplemented TSC

agar and confirmed molecularly as described by Abia et al.

(2015a).

Identification of pathogens

Sample enrichment and DNA extraction

Equal volume (50 mL) of water (50 mL of supernatant

in the case of the sediment samples) was added to equal

volume of double-strength broth (Environment Agency

2002). Selenite broth was used for Salmonella spp

(Chitanand et al. 2008), peptone water for Shigella spp

(Theron et al. 2001) and alkaline peptone water for V.

cholerae (Nandi et al. 2000; Goel et al. 2005; Akoachere

et al. 2013) and incubated at 35.0 ± 0.5 �C for 24 h. All

culture media were purchased from Merck (South

Africa). After incubation, 1 mL of the overnight broth

culture was transferred into a centrifuge tube and spun at

13,000 g for 3 min. DNA was extracted from the har-

vested cells using the InstageneTM Matrix (Bio-Rad

Laboratories, South Africa) following the manufacturer’s

instruction. The supernatant from the tubes was then

used as a source of template DNA for the real-time PCR

reactions.

Primers and real-time PCR conditions

Genes targeted for the identification of the various patho-

gens were the outer membrane protein (ompW) and the

cholera toxin (ctxAB) genes for V. cholerae, the invasive

gene A (invA) for Salmonella spp and the invasive plasmid

antigen H (ipaH) gene for Shigella spp (Table 1).

PCR reactions were carried out on a Corbett Life Sci-

ence Rotor-Gene 6000 Cycler (Qiagen, Hilden, Germany).

Amplification reactions were performed in a total volume

of 20 ll consisting of 10 ll of a 29 SensiFASTTM HRM

Mix (final concentration, 19) (Bioline GmbH, Germany),

1 ll (final concentration, 1 lM) of each primer (Forward

and Reverse) 5 ll of DNA template and 3 ll of nuclease-

free water (1 ll of nuclease-free water in the case of V.

cholerae). The PCR conditions for V. cholerae were opti-

mised as described by le Roux and van Blerk (2011). This

included an initial activation at 95 �C for 10 min followed

by 50 cycles involving denaturation at 95 �C (10 s),

annealing at 64 �C (15 s), extension at 72 �C (25 s) and

acquiring after each cycle and a final extension at 72 �C for

5 min. Melting was done by ramping from 72 to 90 �C,

with a 0.1 �C rise at each step, a pre-melt hold for 90 s on

the first step followed by a hold for 2 s on the next steps.

The same conditions were applied for Salmonella and

Shigella. However, the PCR for Shigella was semi-nested

as described by Theron et al. (2001). Melt curve analysis of

the PCR product was carried out using the Rotor-Gene Q

Series Software version 6.1 (Qiagen, Hilden, Germany) to

detect the presence of the genes of interest for each

organism. Samples for the POs were analysed in duplicate.

All PCR reactions included a positive (genomic DNA of

a reference strain) and a negative control (made of the PCR

reaction mixture without the template DNA). Reference

strains used were Salmonella ser Typhimurium (ATCC�

14028) (American Type Culture Collection, Manassas,

VA, USA), Shigella flexneri (ATCC� 12022) and V. cho-

lerae O1 (NCTC 5941) (National Collection of Type

Table 1 Primers used for the

real-time PCR reactions
Organism Gene Primera sequence References

V. cholera ompW F-CACCAAGAAGGTGACTTTATTGTG Nandi et al. (2000)

R- GAACTTATAACCACCCGCG

ctxAB F-GCCGGGTTGTGGGAATGCTCCAAG Goel et al. (2005)

R- GCCATACTAATTGCGGCAATCGCATG

Salmonella spp invA F-GTGAAATTATCGCCACGTTCGGGCAA Malorny et al. (2003)

R- TCATCGCACCGTCAAAGGAACC

Shigella spp ipaH H8-GTTCCTTGACCGCCTTTCCGATAC Theron et al. (2001)

H15-GCCGGTCAGCCACCCTC

H10-CATTTCCTTCACGGCAGTGGA

a All primers were obtained from Inqaba Biotechnologies Ltd, Pretoria, South Africa
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Cultures, London, UK). All positive strains were obtained

from the microbiology laboratory of the Natural Resources

and the Environment Department of the CSIR (Council for

Scientific and Industrial Research), Pretoria, South Africa.

Statistical analysis

Data analysis was performed using Microsoft Excel and

SPSS statistical analysis software version 20 (IBM Cor-

poration, Armonk, New York, USA). Concentrations of

microorganisms were expressed as Log10 Geometric mean.

For the calculation of the geometric means, all MPN values

of E. coli below the detection limit were assumed to be 1.

The Spearman’s rank correlation was used to determine the

correlation between the abundance of each FIO and the

presence of the various pathogens. For the pathogens, a

sampling point was considered positive for any of the

organism of interest when both duplicate samples from that

site were positive at any given time. The one-way analysis

of variance (ANOVA) was used to check for any statistical

differences between data sets. All analyses were under-

taken at a level of significance of a = 0.05.

Results and discussion

Abundance of indicator organisms and prevalence

of pathogenic organisms in water and sediments

The importance of sediments as a reservoir and as a pos-

sible source of FIOs and POs within the water column in

aquatic ecosystems has been studied for many years and

still represents an issue of concern in the present day

(Labelle et al. 1980; Burton et al. 1987; Santhiya et al.

2011; Walters et al. 2014). This is particularly a major

problem in most developing countries that still rely on

untreated water from polluted surface water bodies for their

personal, domestic and recreational activities.

In the current study, the mean concentration of E. coli in

the water ranged between 3.80 and 7.03 9 102 ± SD

(Standard deviation) MPN/100 mL during the dry season

and between 1.65 9 101 and 4.05 9 103 ± SD MPN/

100 mL in the wet season as previously described by (Abia

et al. 2015a). Sediment concentrations ranged between 3.90

and 1.47 9 103 ± SD MPN/100 mL and between 3.65 9

102 and 3.37 9 104 ± SD MPN/100 mL in the dry and the

wet season, respectively. For C. perfringens, mean water

concentrations for the dry season and wet season ranged

from 4.18 9 102 to 1.72 9 104 ± SD CFU/100 mL and

from 4.70 9 102 to 7.32 9 103 ± SD CFU/100 mL,

respectively. The sediment concentrations ranged from

2.86 9 103 to 6.02 9 104 ± SD CFU/100 mL and 2.72 9

104 to 1.39 9 105 ± SD CFU/100 mL for the dry and wet

season, respectively. There was a statistically significant

difference (p\ 0.05) between the mean water and the

mean sediment counts for both FIOs and during both sea-

sons. The wet season also recorded an overall statistically

significant higher count (p\ 0.05) than the dry season for

each FIO. The pathogens were detected on a presence/

absence basis targeting the ompW and ctxAB of V. cho-

lerae, invA gene of Salmonella spp and the ipaH of Shi-

gella. The overall prevalence of all the pathogens is shown

in Table 2. The most detected pathogen during the entire

sampling period (water and sediment) was V. cholerae

(58.8 %) while Shigella spp recorded the lowest prevalence

(10.1 %). Site AP1 recorded the highest prevalence of V.

cholerae (52/56; 92.9 %), while site AP2 recorded the

highest prevalence for Salmonella spp (24/56; 42.7 %), and

site AP8 recorded the highest prevalence for Shigella spp

(28/56; 49.6 %). Figure 2 shows the contribution of water

and sediments to the overall observed prevalence of each

pathogen at the individual sampling sites during the dry

and the wet season. The pathogens were more detected at

sampling sites during the wet season (January–February

2014) than during the dry season (May–August 2013)

(Fig. 2). None of the pathogens was detected at site DAS

and AP5 during the dry season.

All the sites that recorded the highest abundance of FIOs

and prevalence of the POs were located along the main

river course. The sites on the main river were either

characterised by informal settlements (AP1) or located

downstream a WWTW (DAS, AP2) or had a combination

of both (AP8). The highest prevalence for V. cholerae was

at site AP1 (Table 2) which is characterised by an informal

settlement. Site AP8 is located downstream from two

WWTWs (Babelegi and Temba) and also around agricul-

tural areas; this site also demonstrated a similarly high V.

cholerae prevalence as was observed at site AP1. These

sites that recorded high prevalence of the POs equally

recorded high abundance of the FIOs. The negative impact

of informal settlements (Paulse et al. 2009; Khan and Khan

2012; Ndlovu et al. 2015) and agriculture (Kay et al. 2008;

Páll et al. 2013) on the microbial quality of surface water

bodies has been reported. However, considering that none

of the V. cholerae isolated from the sediments and water of

the Apies River carried the gene for cholera toxin pro-

duction (ctx), it could be unlikely that this high prevalence

(58.8 %) was solely due to human influence. Non-

pathogenic strains of V. cholerae are widely distributed in

the aquatic environment (Finkelstein 1996). Studies have

shown that V. cholerae forms an integral part of the aquatic

ecosystem and is usually associated with zooplanktons

(copepods) that can contain up to 105 V. cholerae cells on

their carapace and in their gut (Rawlings et al. 2007; de

Magny et al. 2011; Kirschner et al. 2011). Although the ctx

gene of V. cholerae was not isolated in this study, the
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detection of the ompW still represents a possible health

threat as it has been shown that environmental stains of V.

cholerae could contain other virulence factors that would

allow them to induce infection under appropriate condi-

tions within the intestines of rabbits (Faruque et al. 2004).

Similarly, Bag et al. (2008) demonstrated that non-O1 and

non-O139 strains of V. cholerae isolated from surface

water in India showed haemolytic activity when exposed to

human erythrocytes. Thus, these strains might have the

potential of causing disease once in the human system,

especially in immune-compromised individuals.

Sites AP2 and AP8 that recorded highest prevalence of

Salmonella and Shigella, respectively, are located down-

stream from WWTWs. This site (AP2) also recorded the

highest concentration of both FIOs in the sediments. Site

AP2 is located downstream from the Rooiwal WWTW

which has been reported to function above its operational

capacity (South African Department of Water Affairs

2012). Teklehaimanot et al. (2014) earlier reported high

prevalence of Salmonella spp in effluents from three

WWTWs in South Africa and their respective receiving

water bodies. However, just like V. cholerae, Salmonella

spp have been found to survive in the environment for long

periods and have also been found to infect other domestic

animals and birds (Jeong et al. 2010). Some water

amphibians and reptiles have also been reported to be

carriers of Salmonella spp (CDC 2013) although humans

are the only known natural hosts and reservoir for some

strains like Salmonella enterica serovar Typhi (S. Typhi)

(Kaur and Jain 2012). Considering that the detection of this

pathogen was done through the identification of the invA

gene which is highly specific for all members of the genus

Salmonella, it would be impossible to determine whether

the genes detected were of animal or human origin. Nev-

ertheless, studies have reported human infections

originating from Salmonella spp of animal origin (Olsvik

et al. 1985; Zhao et al. 2003; Hendriksen et al. 2004). Thus,

the detection of Salmonella in the sediments and water of

the Apies river still represents a health threat if these waters

are used untreated by surrounding communities.

Unlike V. cholerae and Samonella spp, the ipaH gene of

Shigella spp was only detected at sites located on the main

river course. Samples from the tributaries (AP3, AP4 and

AP5) were all negative for the ipaH gene. Again, these

tributary sites had little or no direct human influence sug-

gesting that human activities around the Apies River may

contribute to the pollution observed in the river. Shigella

has been reported in other hosts such as monkeys, rabbits,

calves, piglets and even chickens (Jiang et al. 2005; Pan

et al. 2006; Shi et al. 2014). However, several studies using

animal models have demonstrated that Shigella acquired

through the oral route in these animals would hardly result

in a disease condition in immuno-competent hosts due to

immune clearance by the animals’ defence systems. The

organism could only cause disease in immuno-suppressed

experimental animals (Rabbani et al. 1995; Jeong et al.

2010; Mostowy et al. 2013; Shi et al. 2014). In humans,

this is not the case as the organism can bypass the human

immune system and invade the large intestine thus estab-

lishing an infection (Ashida et al. 2011). Therefore, con-

sidering that the faecal–oral route is the main mode of

transmission of Shigella and that the organism has minimal

ability of evading the immune system of non-human hosts,

it is likely that the presence of this pathogen in the aquatic

environment could be predominantly of human origin. Shi

et al. (2014) also demonstrated that Shigella of human and

chicken origins shared similar pathogenicity and that there

was the possibility of human–poultry cross-infection. This

means that even if the ipaH genes of Shigella isolated in

the current study were of animal origin, they could still

Table 2 Number of positive

samples for each pathogen at

each sampling site during the

entire sampling period

Sampling site Number of samples collected Number of samples positive*

V. cholerae Salmonella spp Shigella spp

DAS 56 19 (33.9 %) 6 (10.9 %) 7 (12.9 %)

AP1 56 52 (92.9 %) 15 (27.8 %) 4 (7.0 %)

AP2 56 40 (71.4 %) 24 (42.7 %) 18 (32.1 %)

AP3 56 21 (37.5 %) 15 (26.8 %) 0 (0.0 %)

AP4 56 18 (32.1 %) 18 (31.8 %) 0 (0.0 %)

AP5 56 11 (19.6 %) 3 (5.0 %) 0 (0.0 %)

AP6 56 40 (71.4 %) 7 (12.9 %) 2 (4.0 %)

AP7 56 34 (60.7 %) 22 (39.7 %) 2 (4.0 %)

AP8 56 50 (89.3 %) 13 (22.8 %) 28 (49.6 %)

AP9 52 42 (75.0 %) 14 (24.8 %) 2 (4.0 %)

Overall 556 327 (58.8 %) 133 (23.5 %) 56 (10.1 %)

* Values are a summation of the water and sediment positive samples for both dry and wet season
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imply a possible threat to human. When compared to

Salmonella ([105 CFU) and V. cholerae (*104 CFU) the

infective dose of Shigella is relatively very low

(\10–100 CFU) (Kothary and Babu 2001; Lemarchand

et al. 2004; WHO 2005; Al-bashan 2012). Thus, the pres-

ence of Shigella in the aquatic environment even at low

prevalence still represents a threat of public health

importance, especially in areas where such surface water is

used for drinking without prior treatment (Mulamattathil

et al. 2014). Studies have also shown that Shigella is

quickly inactivated when out of its host and does not sur-

vive for longer than 7 days in the environment when

compared to other enteric pathogens (Mcfeters et al. 1974;

Islam et al. 2001; Al-bashan 2012). This could therefore

imply that the presence of the organisms in the environ-

ment may be indicative of recent faecal pollution. How-

ever, this could not be confirmed in this study considering

that the detection of pathogens was carried out using PCR

and not isolation of viable cells through culture. Although

the ipaH gene detected in the present study is also carried

by enteroinvasive E. coli strains (EIEC) (Theron et al.

2001), Shigella and EIEC are both causative agents of

bacillary dysentery in humans (Hsu et al. 2010) and thus

the presence of the ipaH gene in riverbed sediments is still

indicative of possible negative health implications to users

of the untreated river water.

The overall (water and sediments) seasonal pattern in

the detection of all the three pathogens (V. cholerae,
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Fig. 2 Contribution of water and sediments to the overall prevalence of (i) V. cholerae, (ii) Salmonella spp and (iii) Shigella spp at individual

sampling sites during the (a) dry and (b) wet season (Data labels represent overall number of positive samples for each sample type)
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Salmonella spp and Shigella spp) was similar to that

observed with the FIOs, with the wet season recording

higher prevalence than the dry season. This observation

strengthens the role played by seasonal variation on pol-

lution in the aquatic environment. The higher prevalence of

POs in the river system during the summer (wet) months

observed in this study contradicts those of Kinge and

Mbewe (2010). In their study, the authors recorded higher

prevalence of Shigella spp during the winter (dry months)

compared to the summer months in river catchments of the

Northwest Province of South Africa. On the other hand,

findings of this study agree with those of Mulamattathil

et al. (2014), who reported a higher prevalence of Shigella

in surface water in the Mafikeng area in the Northwest

Province of South Africa during the summer months.

However, results of the studies by Kinge and Mbewe

(2010) and by Mulamattathil et al. (2014) were only based

on surface water and did not include the detection of the

pathogens in the bed sediments in these catchments. As

opposed to the FIOs, the pathogens were more detected in

the water column than in the riverbed sediments. However,

a strong positive correlation (p\ 0.01) was observed

between the water prevalence and the sediment prevalence

for all three pathogens. This indicates that there could be

vertical movement of the organisms between the water

column and the sediments with the sediments either acting

as a sink for or a source (or both) of microorganisms within

the aquatic environment.

Correlation between indicator organisms

and pathogens in water and sediments

While several studies have investigated the correlation

between FIOs and POs within the water column in aquatic

environments, data demonstrating strong correlation

between FIOs and pathogens in the sediments are rare

(Weaver and Sinton 2009). Also, long debates surrounding

the use of the term ‘‘indicator organisms’’ and the

ambiguous use of the term ‘‘microbial indicator’’ led to the

reclassification of indicator organism into process indica-

tors (demonstrates how efficient a treatment process is—

e.g. total coliforms), faecal indicators (indicate faecal

contamination—e.g. E. coli) and index and model organ-

isms (indicative of pathogen presence and behaviour,

respectively—e.g. F-RNA coliphages) (Ashbolt et al.

2001).

In the present study, we investigated whether the

abundance of E. coli and C. perfringens correlated with the

detection of V. cholerae, Salmonella spp and Shigella spp,

especially within the sediments. The nonparametric

Spearman rank correlation coefficient was used to establish

any relationship between the FIOs and the POs during the

dry season (Table 3) and during the wet season (Table 4).

During both seasons within the water column, a strong

positive correlation was observed between E. coli and each

of the pathogens while C. perfringens only correlated with

V. cholerae (Tables 3, 4). Within the sediments, strong

correlations were only observed between E. coli and Sal-

monella spp, E. coli and V. cholerae (dry season) and

E. coli and V. cholerae and E. coli and Shigella spp (wet

season) (Tables 3, 4). These results corroborate with find-

ings of Abdallah et al. (2005). In their study, the authors

reported that faecal coliforms were strongly correlated to

Salmonella and V. cholerae in beach sand of the Gaza

Strip. On the other hand, no correlation was observed

between C. perfringens and any of the pathogens within the

sediments. This could be due to the ability of C. perfrin-

gens to survive for very long periods in the environment

even after a pollution event has occurred (Gemmell and

Schmidt 2013; Shibata et al. 2004). Most bacterial patho-

gens survive for shorter periods in the environment than C.

perfringens (WHO 2008). In a study by Tyagi and Chopra

(2006), the authors also reported a lack of correlation

between C. perfringens and other POs and suggested that

while C. perfringens is not a good indicator of bacterial

pathogens in the aquatic environment, it is a good index

organism for viruses and some parasites that survive in the

environment for longer periods.

Within the water column, however, E coli demonstrated

a strong positive correlation with all three pathogens during

both seasons while C. perfringens only correlated with V.

cholerae. V. cholerae has been reported to survive longer

in the environment than many other bacterial pathogens

like Salmonella (Djaouda et al. 2013). This could possibly

explain its correlation with C. perfringens as observed in

our study. In a recent study by Gemmell and Schmidt

(2013) on the microbiological quality of the Msunduzi

River in KwaZulu-Natal, South Africa, the authors reported

that E. coli was a suitable indicator of POs, especially

Salmonella spp in river water. The level of detection of

Salmonella dropped with a corresponding drop in the

E. coli counts within the river. In their study, they also

reported the lack of correlation between C. perfringens and

pathogenic bacteria. Several other studies have reported a

correlation between E. coli and other pathogenic bacteria

(Abdallah et al. 2005; Devane et al. 2014; Leclerc et al.

2001).

Thus, the findings of the present study together with

previous studies suggest that although E. coli is considered

a faecal indicator organism, it could also be a good indi-

cator of other bacterial pathogens, especially in the water

column. Sediments represent a more complex environment

than the water column in terms of microbial diversity and

chemical composition. The fact that E. coli only correlated

with some organisms in the sediments during the dry and

wet season further emphasises the need for better indicators
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of pathogens in the sediments. The strong correlation

between E. coli and the pathogens supports the classifica-

tion of E. coli as a good index organism for pathogens like

Salmonella. However, there exist no data on suitable index

organisms of V. cholerae and Shigella spp in the environ-

ment. Also, the notion of index organisms should be

studied extensively within a given environment before it is

fully used.

Conclusion

The water from the Apies river is unsafe for use for

recreation and if untreated, for any household use. The

sediments of the Apies River are polluted with indicator

and pathogenic bacteria. There is a strong correlation

between E. coli and pathogenic bacteria (V. cholerae,

Salmonella and Shigella) in the water column suggesting

that E. Cole is not only a good indicator of faecal pollution,

but could also be a good indicator for the presence of other

pathogenic bacteria. However, the lack of correlation

between E. coli and some pathogens in the sediments

depending on the season as observed in the present study

highlights the need to investigate for more indicators that

could better indicate the presence of pathogens in this

complex matrix. The lack of correlation between C. per-

fringens and the pathogens does not eliminate its suitability

as an indicator of long-term faecal pollution indicator.

Although no toxigenic V. cholerae strain was detected in

this study, due to the high percentage of V. cholerae

detected we recommend that further research be carried out

to investigate if the environmental strains of V. cholerae in

sediments and water of the Apies River carry other viru-

lence genes that could allow them to initiate infection

under appropriate conditions. It would also be necessary to

investigate how long these organisms can survive in the

sediments of the Apies River and if human-induced or

increased flow conditions may cause their resuspension.
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Table 3 Correlation between

indicator and pathogenic

organisms in water and

sediments during the dry season

Organism V. cholerae Shigella spp Salmonella spp

Correlation between indicator and pathogenic organisms in the water column during the dry season

E. coli rs .580 .295 .344

p .000 .000 .000

C. perfringens rs .268 .043 .067

p .003 .638 .466

Correlation between indicator and pathogenic organisms in the sediments during the dry season

E. coli rs .515 .282 .151

p .000 .001 .074

C. perfringens rs -.085 -.085 -.025

p .356 .355 .786

Positive correlations are in bold

Table 4 Correlation between

indicator and pathogenic

organisms in water and

sediments during the wet season

V. cholerae Salmonella spp Shigella spp

Correlation between indicator and pathogenic organisms in the water column during the wet season

E. coli rs .401 .347 .456

p .000 .000 .000

C. perfringens rs .305 .043 .125

p .001 .640 .174

Correlation between indicator and pathogenic organisms in the sediments during the wet season

E. coli rs .355 .119 .291

p .000 .162 .001

C. perfringens rs -.017 -.015 .042

p .855 .867 .649

Positive correlations are in bold
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