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Abstract
Hypoxic–ischemic encephalopathy, also referred as HIE, is a type of brain injury or damage that is caused by a lack of oxygen 
to the brain during neonatal period. The incidence is approximately 1.5 cases per 1000 live births in developed countries. 
In low and middle-income countries, the incidence is much higher (10‒20 per 1000 live births). The treatment for neonatal 
HIE is hypothermia that is only partially effective (not more than 50% of the neonates treated achieve an improved outcome). 
HIE pathophysiology involves oxidative stress, mitochondrial energy production failure, glutaminergic excitotoxicity, and 
apoptosis. So, in the last years, many studies have focused on peptides that act somewhere in the pathway activated by severe 
anoxic injury leading to HIE. This review describes the pathophysiology of perinatal HIE and the mechanisms that could 
be the target of innovative HIE treatments.
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HIE	� Hypoxic–ischemic encephalopathy
HNSC	� Human neural stem cells
MMPs	� Matrix metalloproteinases
MPTP	� Mitochondrial permeability transition pore
NAD+ 	� Nicotinamide adenine dinucleotide
NO	� Nitric oxide
PARP	� Poly(ADP-ribose) polymerase
PDHC	� Pyruvate dehydrogenase complex
ROS	� Reactive oxygen species
SOD	� Superoxide dismutase
TGF-β	� Transforming growth factor beta
TNF-α	� Tumor necrosis factor alpha

Introduction

Hypoxic–ischemic encephalopathy (HIE) is a term used to 
describe the complex physiological, cellular, and molecular 
changes resulting from a severe anoxic brain injury during 
neonatal period. This can lead to premature mortality or a 
variety of life-long morbidities, including acute symptoms 
such as seizures, alteration of consciousness, weak breath-
ing, poor muscle tone or metabolic derangement as well as 
chronic conditions such as cerebral palsy, epilepsy, intel-
lectual disability, and behavioral disorders [1, 2].

HIE has an incidence of approximately 1.5 cases per 1000 
live births in developed countries and 10‒20 per 1000 live 
births in low and middle-income countries [3–5].

HIE is not a single event, rather an ongoing process 
causing neuronal cell deaths over hours to day after the 
initial injury. In fact, it is possible to recognize three dis-
tinct phases [6]. The first immediate phase (primary neu-
ronal death) is determined by the primary energy failure 
during hypoxic–ischemic (HI) event, resulting in oxidative 
metabolism failure, cytotoxic edema, and accumulation of 
excitotoxins [7]. After restoration of cerebral circulation, 
the second phase begins (a latent phase lasting about 6 h). 
Between 6 and 15 h after the HI insult, occurs the secondary 
energy failure (delayed neuronal death) that is associated 
with encephalopathy and increased seizure activity. The 
mechanisms involved in this phase include excitotoxicity, 
apoptosis, and microglial activation [8].

Therapeutic hypothermia is the current standard of care 
for infants with HIE, cooling the whole body to a core tem-
perature of 33.5 °C for 72 h starting within 6 h of birth [9]. 
According to scientific evidences, therapeutic hypothermia 
inhibits key steps in the excito-oxidative cascade [1]. How-
ever, it does not provide complete neuroprotection and it is 
only partially effective. Even after treatment, there is a high 
prevalence of neurologic morbidity and mortality, affecting 
40–50% of neonates who underwent therapeutic hypother-
mia [10].

In the last years, many studies have focused on research 
of new treatments for HIE that, together with hypothermia, 
could enhance neuroprotection and lower adverse outcomes 
[11]. Since HIE pathophysiology involves oxidative stress, 
mitochondrial energy production failure, glutaminergic exci-
totoxicity, and apoptosis [12], these researches are focusing 
on peptides that act somewhere in the pathway activated by 
severe anoxic injury leading to HIE.

In this review, we conducted a literature search to better 
clarify the pathophysiology of perinatal HIE and the inflam-
matory mechanisms involved in it, those mechanisms that 
could be the target of innovative HIE treatments.

Materials and methods

A review of the literature was conducted to identify the 
most relevant studies reported in the English since 2017 
on PubMed MEDLINE electronic database. Based on the 
abstracts, we made a selection of these studies, focusing on 
articles that concerned HIE pathophysiology and inflamma-
tory mechanisms. The exclusion criteria were articles not in 
English and not relevant to the review and abstracts (Fig. 1).

The keywords used were “hypoxic-ischemic encephalopa-
thy”, “Hypoxic-Ischemic Injury”, “developing brain”, “neo-
natal brain”, “neonatal”, “perinatal”, “pathophysiology”. 
Different combinations of the terms were used. Moreover, 
references in each article were searched to identify poten-
tially missed studies.

Results and discussion

Pathophysiology

Fetal brain requires a constant supply of energy in form of 
ATP that obtains metabolizing lactate, ketone bodies, and 
glucose. Comparing to adult, fetal brain has a greater abil-
ity to tolerate hypoxia–ischemia (HI), due to its capacity to 
reserve energy when needed. However, in case of a critical 
depletion of ATP also, the fetal brain becomes susceptible 
to injury. This critical ATP depletion can be caused by pro-
longed or sudden and important HI, originating from various 
conditions (i.e. chronic maternal hypoxia, pre-eclampsia, 
umbilical cord knotting, umbilical cord prolapse, shoulder 
dystocia and placental abruption) leading to an impairment 
of oxygenated cerebral blood flow to the fetus causing sys-
temic and cellular responses [13]. HI brain injury is an ongo-
ing process composed by several different phases. When 
the primary critical energy failure occurs, an uncontrolled 
release of excitatory neurotransmitters begins, starting the 
ischemic cascade that damages neuronal cells (both at cyto-
plasmic and mitochondrial level), disrupts the brain–blood 



279Acta Neurologica Belgica (2020) 120:277–288	

1 3

barrier (the amount of membrane peroxidation is directly 
related to the severity of ATP depletion) and activates an 
important inflammatory response. These result in failure of 
oxidative metabolism, cytotoxic edema, and accumulation of 
excitotoxins [5]. After the cerebral circulation restoration, a 
latent phase begins, lasting around 6 h, followed by (6–15 h 
after HI) a secondary energy failure that can last for days. 
Typical of this phase is seizures, renewed cytotoxic edema, 
release of excitotoxins, impaired cerebral oxidative energy 
metabolism, and finally, neuronal cell death [14].

HIE pathophysiology (Fig. 2) can be outlined in five main 
events, linked one to the others: oxidative stress, intracellular 
Ca2+ accumulation, mitochondrial dysfunction, excitotoxic-
ity, and inflammation [13].

Oxidative stress

Fetal brain is an environment particularly susceptible to 
oxidative stress, since unsaturated fatty acids and metals 
catalyzing free radical reactions are heavily present, while 
antioxidant levels are low [15]. Oxidative stress and reactive 
oxygen species (ROS) produced by HI cause an important 
damage to lipids, proteins, and nucleic acids, leading to lipid 
and protein oxidation and DNA degeneration.

Normally ROS, mainly generated in mitochondria, are 
cleared by superoxide dismutase and glutathione peroxi-
dase. During HI, ROS cannot be immediately eliminated by 
antioxidant enzymes because of interrupted metabolism, 

thus an excessive ROS accumulation occurs [16]. This, 
together with oxidative modification of lipids, proteins, 
and DNA leads to metabolic failure and mitochondrial 
dysfunction following newborn hypoxic–ischemic insult.

In HIE, ROS are generated from mitochondrial elec-
tron transport chain, NADPH oxidases, xanthine oxidase, 
arachidonic acid (12/15 lipoxygenase), and nitric oxide 
(NO) synthase.

NO synthase is activated by a mechanism enabled by 
hypoxia-induced energy depletion. This causes altera-
tions of the NMDA receptor ion channel, inducing influx 
of Ca2+ into the cytoplasm. Increase of intracellular Ca2+ 
leads to the activation of NO synthase via a Ca2+/calmo-
dulin-dependent mechanism, generating NO free radicals.

NO produced during hypoxia has several adverse 
neuronal effect through different mechanisms. First, 
NO increases the expression of apoptotic proteins, acti-
vating CREB protein, through a NO-mediated pathway 
involving CaM kinase IV activity and CaM kinase IV-
dependent phosphorylation of CREB protein, thus leading 
to increased expression of proapoptotic genes [15, 17]. 
Second, NO reaction with superoxide generates peroxyni-
trite, a toxic free radical known to alter cell membranes, to 
interfere with protein and receptor activity and to activate 
pre-apoptotic pathway [18]. In addition, NO causes lipid 
peroxidation, protein oxidation and nitration of nuclear 
membranes, DNA damage and increasing in intranuclear 
Ca2+ [15].

Fig. 1   The screen procedure for 
article inclusion for review
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Because of all these adverse neuronal effects, the inhibi-
tion of NO synthase has been a target in HIE studies on 
neuroprotection [6, 15, 19].

Moreover, a surplus of ROS limits glucose metabolism. 
In fact, excessive ROS accumulation inhibits pyruvate 
dehydrogenase complex (PDHC) activity. Because of this 
alteration in PDHC activity and the impairment of reducing 
power transportation from glycolysis-generated NADH to 
mitochondria, lactate dehydrogenase, normally activated by 
elevated Ca2+, will use NADH to form massive amounts of 
lactate in cytosol. Acidosis is the obvious consequence of 
this lactate accumulation in neurons during HI [20].

Intracellular Ca2+ accumulation

Ca2+ extracellular concentration can reach up to 1–2 Mm, 
while intracellular Ca2+ is normally very low (about 100 nM) 
[21]. Several mechanisms contributes in maintaining the 
intracellular Ca2+ concentration (i.e. Ca2+ release from 

endoplasmic reticulum; Ca2+ release through Ca2+–ATPase 
or Na+–Ca2+ exchanger in cell membrane; Ca2+ transporta-
tion into mitochondria through an electrophoretic uniporter, 
entry of extracellular Ca2+ into cytosol through NMDA 
receptors or voltage-gated Ca2+ channels). NMDA receptor 
channel is probably one of the main pathway in intracel-
lular Ca2+ accumulations, as shown by studies on NMDA 
antagonists, found to block Ca2+ entry in neurons and thus 
significantly attenuating neurodegeneration after HI [22].

In HI condition, the deprivation of oxygen and glucose 
caused by abnormal blood circulation triggers the over-
stimulation of glutamate release. Glutamate stimulates the 
opening of NMDA receptor channels, allowing Ca2+ to flow 
inside neurons [20] (Fig. 3).

High intracellular Ca2+ concentration has various effects: 
as seen before, activates NO synthase via a Ca2+/calmodulin-
dependent mechanism; moreover, it can induce mitochon-
drial dysfunction and mediate irreversible immature neuron 
death by the activation of several Ca2+-dependent proteins. 

Fig. 2   Pathophysiology of HIE
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Among these, there are proteins, as calpains, involved in 
cell remodeling, membrane destruction and neuron degen-
eration [23, 24]. Furthermore, increase in intramitocon-
drial Ca2+ concentration, together with ROS, contributes to 
mitochondrial permeability transition and, consequently, to 
nicotinamide adenine dinucleotide loss, important for ROS 
detoxification and cellular energy metabolic processes [20].

Mitochondrial dysfunction

Mitochondria carry out many important functions and their 
alteration assumes a central role in HI-induced neurodegen-
erations, thus determining the destiny of cells subjected to 
HI. Mitochondria produce energy indispensable for multiple 
cellular activities, a process that generates ROS, and are also 
the most important intracellular Ca2+ buffers. Their dysfunc-
tion, indeed, can lead to mitochondrial energy failure and, 
consequently, to intracellular Ca2+ accumulation. This is 
caused by the reduction of the energy needed to maintain 
membrane ion gradient and worsened by the opening, in 

HI condition, of NMDA receptors and voltage-gated Ca2+ 
channels [25, 26]. Moreover, the normal functioning of elec-
tron transport chain (ETC) is interrupted because of ROS 
excess present in HI, thus amplifying the production of 
mitochondria-free species [27]. Oxidative modification of 
proteins and lipids of mitochondrial inner membrane alters 
its permeability since membrane depolarization occurs. 
This alteration uncouples oxidative phosphorylation pro-
cesses resulting in ATP production deficiency. This drastic 
energetic failure contributes to cell membrane depolariza-
tion and, consequently, to Ca2+ influx, instituting a sort of 
vicious cycle [20].

Therefore, mitochondrial dysfunction can cause a series 
of lethal problems, as oxidative stress, intracellular Ca2+ 
accumulation, and mitochondrial energy failure that lead 
to neuron apoptosis and, consequently, neurodegeneration.

Studies based on mitochondrial energy failure have 
focused on AMPK role [28]. AMPK is a sort of cell energy 
sensor and is activated when there is an imbalance in the 
AMP:ATP ratio, as happens in HI. Once activated, AMPK 

Fig. 3   Effect of Ca2+ surge in 
neurons
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acts to inhibit energy consumption (fatty acid/cholesterol 
synthesis) and promote energy production (e.g. glycoly-
sis), trying to restore energy balance. AMPK activation is 
due to two kinases: LKB1 and CaMKKβ [29]. The latter is 
activated by intracellular Ca2+ excess. Moreover, another 
AMPK mediates apoptosis during excitotoxicity, through 
the expression of the proapoptotic protein Bim [30]. More 
specifically, excitotoxicity and ROS overload seen in HI 
cause calcium surge that not only activates CaMKKβ and, 
consequently, AMPK, but also, at the same time, challenges 
the mitochondrial respiratory chain. In this way, the imbal-
ance in AMP:ATP ratio increases and AMPK activation is 
reinforced. This AMPK activation restores energy balance, 
explaining the return to basal level of ATP after the primary 
energy failure [28]. Later, the other mechanisms involved 
in HI, such as inflammation, damage mitochondrial func-
tion once again, causing the second energy failure and the 
rebound of AMPK over activation. These deleterious events 
could cause a final mitochondrial challenge, leading to mito-
chondria membrane permeabilization and cellular apoptosis.

Apoptosis too, as many other HI events, is linked to Ca2+ 
accumulation in cytoplasm together with ROS. As a mat-
ter of fact, accumulation of Ca2+ and ROS activates the 
mitochondrial permeability transition pore (MPTP) within 
the mitochondria inner membrane, inducing mitochondrial 
permeability transition (MPT). The role of MPTP in HI has 
been confirmed by studies on MPTP inhibitor cyclosporine 
A. It helps in protecting against HI neurodegeneration by 
binding a component of MPTP (cyclophilin D, CypD) thus 
interrupting its involvement in MPTP construction [31, 
32]. Despite these studies, the exact role and entity of MPT 
involved in neonatal HIE is still unclear and the CypD-based 
treatment remains controversial.

MPTP releases in cytoplasm nicotinamide adenine dinu-
cleotide (NAD+), a cofactor important for energy metabolic 
reactions and ROS detoxification. Mitochondrial distress 
will determine the formation of Bax/Bak megapores inside 
the mitochondria outer membrane, causing release of mito-
chondrial contents, including proapoptotic proteins such as 
cytochrome c (CytC), apoptosis-inducing factor (AIF), endo-
nuclease (endo) G and Smac/Diablo. Each protein has differ-
ent downstream targets, but they all contribute to cell death. 
CytC and Smac/Diablo triggers caspase activation, deter-
mining an irreversible apoptosis [33], while AIF, after inter-
acting with cyclophilin A, translocates to the nucleus where 
it causes DNA fragmentation [34]. Caspases, ROS, and 
AIF induce DNA fragmentation that activates poly (ADP-
ribose) polymerase (PARP), a DNA repairing enzyme. The 
DNA repairing process consumes NAD+ . This NAD+ loss 
plus oxidative failure will worsen mitochondrial dysfunc-
tion, by depleting NAD+ needed to maintain mitochondrial 
energetics, and will extend the impairment of neonatal 
hypoxic–ischemic brain injury.

During neurodegeneration, two forms of neuron death 
could happen: necrosis or apoptosis.

Many studies, focusing on high expression of proapop-
totic proteins, such as Caspase-3, Bax, and BCl, have eluci-
dated that apoptosis is the more prevalent form in immature 
brain injury compared with adult models [20, 35].

Subsequently, largely due to advances in cell biology and 
to experimental animal studies, emphasis has been switched 
also to autophagy mediated by programmed cell death 
(PCD) mechanisms as important forms of degeneration in 
HIE. For instance, preclinical evidence has now shown that 
hypoxic–ischaemia exacerbates autophagic flux in neonatal 
rats and leads to learning and memory impairment. Moreo-
ver, recent clinical data showed an upregulation of MALAT1 
after HIE which controls the HIF-1α axis and autophagic 
cell death [36–40].

Accordingly, several recent studies have focused on mito-
chondrial-related therapeutic targets, such as Bax-inhibit-
ing peptide (BIP), PARP inhibition, MPT inhibition, NAD 
administration, with promising results for future applications 
[20]. In summary, the mitochondrial dysfunction is the key 
point of neurodegeneration in HIE.

Excitotoxicity

Excitotoxicity, a term first used in the 1970s, refers to cell 
death mediated by excessive stimulation of extracellular 
excitatory amino acid receptors [41]. These receptors medi-
ate the glutamate physiologic excitatory effects. During HI, 
they are excessively stimulated by elevated glutamate levels 
and membrane depolarization, leading to their inappropriate 
opening and, consequently, to a lethal flow of Ca2+ inside 
neurons. In fact, following prolonged HI, cellular homeosta-
sis is disrupted due to ATP depletion and to the incapacity to 
maintain ionic gradients. This causes neuronal depolariza-
tion and glutamate release into the synaptic cleft, with an 
overload of extracellular glutamate, due also to a reduced 
activity of the glial pumps that normally keep synaptic gluta-
mate levels low [26]. This leads to excitotoxicity in neurons 
and other cells (glial progenitor cells) that express glutamate 
receptors [13], with their inappropriate opening. As depicted 
above, the consequent Ca2+ flow inside neurons and glial 
progenitor cells results in activation of calcium-dependent 
proteases, lipases, and deoxyribonucleases, ROS production, 
oxidative stress, cytotoxic edema, mitochondrial dysfunc-
tion and, eventually, stimulation of proapoptotic cellular 
pathways.

Inflammation

In the immature brain, within minutes after an HI injury, an 
innate immune response takes place. Microglia, neutrophils, 
lymphocytes, cytokines, selections, and immunoglobulins, 
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all have a role in the inflammatory process activated by 
hypoxia.

Microglia

Microglia provides immuno-surveillance to the brain. When 
HI happens, microglia activates and develops macrophage-
like abilities, such as phagocytosis, antigen presentation, 
inflammatory and anti-inflammatory cytokines produc-
tion and matrix metalloproteinases (MMPs) release, which 
lead to blood–brain barrier (BBB) breakdown [42]. Conse-
quently, peripheral leukocytes have free access to the brain, 
and the normally immune-privileged brain environment is 
exposed to systemic responses, further exacerbating inflam-
mation and brain damages [8].

The role of microglia in HIE is supported by different 
studies: some, focusing on postmortem examinations of 
neonatal brains, have found that patient died from HIE had 
a dense infiltrate of microglia in the hippocampal dentate 
gyrus, whereas those neonates who died of other acute 
causes (trauma or sepsis) had significantly fewer micro-
glia [43]. Other studies, instead, have focused on cytokines 
released by activated microglia after HI, e.g. IL-18 and Cas-
pase-1. Genetic deletion of IL-18 or of Caspase-1 attenu-
ates brain injury [44]. However, it is important to highlight 
that no intervention targets microglia selectively. Indeed, 
pharmacological depletion of microglial prior to neonatal 
stroke aggravates rather than improves outcome, exacerbat-
ing the release of inflammatory cytokines. This suggests 
that at least a part of microglia has beneficial effects [45]. 
Indeed, for example, microglial phagocytosis of remains has 
been hypothesyzed to be critical for tissue recovery dur-
ing the second delayed phase after HI. These contrasting 
findings can be explained with different microglial activa-
tion phenotypes. Some microglia participates in acute early 
pro-inflammatory responses and aggravates injury, whereas 
others might be involved in the late anti-inflammatory 
responses and protect against injury [44]. According to lit-
erature [8, 46], indeed, there are two microglial activation 
phenotypes. Classical activation (M1), responsible of innate 
immune response, that leads to the production of cytokines, 
chemokines, and reactive intermediates. Another activation 
phenotypes (M2) responsible of anti-inflammatory signaling 
(M2a) and clearance of ROS and nitrogen species (M2b). 
The M1 phenotypes can lead to increases neuronal death 
compared to M2, this is why nowadays there is a growing 
interest in controlling the classical activation pattern of 
microglia.

Astrocytes

As well as microglia, astrocytes are activated within minutes 
after injury by pro-inflammatory mediators, cytokines, and 

ROS secreted by injured cells. Astrocytes have opposite role 
in HI: from one side, they release glutathione and super-
oxide dismutase (SOD) [47] and enhanced extra-synaptic 
glutamate uptake [48]; from the other, they produce and 
release pro-inflammatory cytokines (IL-6, TNF-α, IL-1α, 
and β and interferon γ). This cytokines exacerbate HI injury 
directly inducing neuronal cells apoptosis, inhibiting neu-
rogenesis, and increasing toxic NO levels [8]. Moreover, 
astrocytes release chemokines that attracts immune cells to 
the ischemic site, thus worsening the brain injury.

Neutrophils

Neutrophils can worsen brain injury determined by HI 
through multiple mechanisms, such as ROS production, 
release of cytotoxic agents, MMP-9 secretion, and decreased 
microvascular flow due to neutrophils accumulation inside 
vessels. Differently from adult brain, where neutrophil infil-
tration can be massive, neonates have a lower capacity to 
mount a neutrophil response after ischemia, as proven by 
the fact that neonatal neutrophils have reduced extravasation 
from blood vessels [8].

This finding can explain why treatment based on neutro-
phil inhibitory factor, neuroprotective in adult animals, is not 
so efficacious in neonatal rats [49].

Lymphocytes and mast cells

Differently from microglia and neutrophils, the role of lym-
phocytes and mast cells in HI is not yet totally clear. Lym-
phocyte infiltration of neonatal brain after HI seems to be, 
differently from what happens in adult, less profound or only 
briefly present, reflecting the immaturity of lymphoid pro-
genitor cells. Studies suggest that a lymphocytic response is 
involved in the more chronic immunoinflammatory activa-
tion following HIE, since CD4 have been found in damaged 
areas 7 days after HIE, persisting there for 14–35 days [50]. 
However, it is still unknown whether this lymphocytic pres-
ence enhances injury or, conversely, neuron restoration.

Mast cells, on the other side, seem to promote inflamma-
tion acutely after damage and to contributes to excitotoxic 
injury early releasing TNF and exacerbating transforming 
growth factor β1 (TGFβ1) toxicity. However, the contribu-
tions of mast cells to the ongoing evolution of damage or 
reparation are still unclear.

Cytokines and chemokines

Activated microglia, astrocytes, and endothelial cells release 
chemokines and pro-inflammatory cytokines, such as tumor 
necrosis factor α (TNF-α), transforming growth factorβ 
(TGF-β), IL-1, IL-6, IL-8, and IL-10. Cytokines attract 
leukocytes and facilitate their stop in the brain stimulating 
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the production of adhesion molecules on leukocytes and 
endothelial cells. TNF-α and IL-1 β, often expressed simul-
taneously, are two of the best-characterized early response 
cytokines and are secreted by microglia, astrocytes, and neu-
rons [8, 51]. These cytokines determine the accumulation 
of inflammatory cells in the injured brain attracting them. 
Neonates with HIE have higher level of TNF-α and IL-1 β 
in peripheral blood samples compared to control and IL-1 
β correlates positively with HIE severity [52]. Studies on 
administration of IL-1 receptor antagonist in HIE models 
have demonstrated the neuroprotective potential of this treat-
ment, reaffirming the damaging involvement of this cytokine 
in HIE [53, 54].

Chemokines also play a central role in cerebral injury in 
HIE controlling inflammatory cell traffic. They act through 
specific receptors belonging to the family of G-protein-
coupled receptors [55]. Studies on HIE in rats have dem-
onstrated the upregulation of α- and β-chemokines before 
the expression of lymphocytes receptor in the damaged area 
[50].

Neuroprotective agents for neonatal hypoxic–
ischemic brain injury and future prospects 
with neural regeneration agents

Different potential neuroprotective treatments are being 
studied to prevent the cascade of injurious effects after 
hypoxia–ischemia. These promising neuroprotective agents 
tested on animal models and pilot clinical studies of neonatal 
H–I brain injury target different phases of injury: the early 
phase of excitotoxicity, oxidative stress and apoptosis as well 
as late-phase inflammatory reaction and neuronal and oligo-
dendrocyte regeneration.

The present neuroprotective agents for early treatment of 
neonatal hypoxic–ischemic brain injury are classified into 
four categories according to currently known mechanisms: 
antiexcitotoxicity, antioxidation, anti-inflammation, and 
antiapoptosis [56, 57].

Xenon

Xenon has two therapeutic effects (antiexcitotoxic and antia-
poptotic). Acute hypoxic–ischemic insult leads to NMDA 
receptor activation. Xenon inhibits NMDA signaling and 
thus may play a role in reducing the acute cell injury. Stud-
ies of birth asphyxia in the piglet model suggest a benefit 
in the association of treatment with hypothermia and xenon 
[58, 59]. But a proof of concept, open-label, randomised 
controlled trial (Total Body hypothermia plus Xenon-TOBY-
Xe) [60] concluded that xenon is unlikely to enhance the 
neuroprotective effect of cooling after birth asphyxia. Addi-
tionally, considering that xenon is an expensive noble gas 

(it requires a specialized delivery system) [61], alternative 
therapies are currently being evaluated.

Argon

Argon is a less expensive noble gas with antiapoptotic 
effect that has demonstrated significant neuroprotection in 
animal models of HIE. An extensive piglet study of perina-
tal asphyxia showed that inhaled 45–50% argon augments 
hypothermic brain protection [62].

Melatonin and erythropoietin (EPO)

Melatonin and erythropoietin (EPO) have three therapeutic 
effects (anti-inflammatory, antioxidative, and antiapoptotic). 
In a randomized controlled pilot trial evaluating melatonin 
with cooling in term infants with HIE, compared to con-
trols, combination of melatonin to therapeutic hypothermia 
was efficacious in reducing oxidative stress and improv-
ing survival with favorable neurodevelopmental outcomes 
at 6 months of age [63]. Melatonin seems to be safe and 
beneficial in protecting neonatal brains from perinatal HIE. 
However, larger randomized controlled trials in humans are 
required.

Erythropoietin and darbepoetin (a long acting erythro-
poietin analogue that offers the additional benefit of once 
weekly administration) have neuroprotective properties in 
animal models of hypoxic–ischemic brain injury and neo-
natal stroke [57]. High doses of erythropoietin, both in con-
junction with hypothermia and as monotherapy, have shown 
promise in preliminary randomized trials for reducing brain 
injury and improving motor outcomes in infants with HIE 
[64]. A small randomized trial evaluating the use of darbe-
poietin as adjunctive therapy to hypothermia in the first 12 h 
of life and repeated at 1 week of life demonstrated a good 
safety profile of this medication [65]. However, confirmation 
from larger trials is needed.

Allopurinol

Allopurinol is a xanthine oxidase inhibitor with one thera-
peutic effect (antioxidative). It reduces the production of 
oxygen radicals as superoxide, which contributes to second-
ary energy failure and apoptosis in neurons and glial cells 
after reperfusion of hypoxic brain tissue.

Preclinical studies in animal models of HIE have shown 
neuroprotective effects with use alone and as a complement 
to TH. A review in 2012 did not reveal any statistically sig-
nificant difference in the risk of death or a composite of 
death or severe neurodevelopmental disability.

Currently, the ALBINO trial, a European double-
blinded randomized placebo-controlled parallel group 
multicenter trial (Phase III), is evaluating the effect of 
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postnatal allopurinol administered in addition to standard 
of care (including therapeutic hypothermia if indicated) 
on the incidence of death and severe neurodevelopmental 
impairment at 24 months of age in newborns with perinatal 
hypoxic–ischemic insult and signs of potentially evolving 
encephalopathy [66, 67].

Magnesium sulfate

Magnesium sulfate is an NMDA receptor antagonist with 
two therapeutic effects (antiexcitotoxic and antiapoptotic) 
that is widely used antenatally for neuroprotection in preterm 
deliveries. A prospective, longitudinal, placebo-controlled 
trial of MgSO4 use in infants with severe asphyxia, without 
hypothermia therapy, demonstrated good short-term out-
comes compared to standard supportive treatment [68]. A 
systematic review of preclinical evidence for MgSO4 use in 
HIE demonstrated no benefit and little consensus in dose 
and timing of administration [69]. Another meta-analysis 
evaluating MgSO4 in HIE concluded that there was improve-
ment in short-term outcomes and no increase in side effects 
[70]. However, further large studies are needed to determine 
if there are long-term benefits of magnesium and to confirm 
its safety.

Stem cells

Different studies recently suggested that after an HI event, 
there is increase of regeneration pathways, opening up new 
research into therapies not only to attenuate brain damage 
but also to promote cell repair and regeneration in a devel-
opmentally disorganized brain long after the perinatal insult 
[71, 72]. Exogenous stem cell transplantation for neonatal 
HIE shows promising preliminary results. The delivery 
routes for stem cell transplantation include intracerebral, 
intrathecal, arterial, intravenous, intraperitoneal, and intra-
nasal approaches.

Stem cell-based therapy has the potential to rescue and 
replace the ischemic tissue caused by HI and may facilitate 
endogenous brain repair [73]. The implantantion of neural 
precursor cells (derived from embryonic stem cells) into the 
deep motor cortex of HIE newborn rats can improve motor 
function, within 3 weeks post-implantation [74].

Intranasal delivery of human neural stem cells (HNSC) 
could improve neurobehavioral outcomes in neonatal HI 
rats, which is possibly related to the modulation of NF-κB 
signaling [75].

The noninvasive nasal cavity implantation provides a sim-
ple method to perform stem cell transplantation in the future. 
The clinical application of HNSC has been preliminarily 
attempted in infants with HIE. Luan et al. [76] reported that 
HNSC were transplanted into one 75-day old male infant 
with neurological disability that was caused by severe HIE; 

28  days after transplantation, remarkable improvement 
occurred not only in his myotonia but also in his intelligence 
and movement, which became similar to those of the nor-
mal infants of the same age. Positron emission tomography 
(PET) showed significantly increased radioactivity at tem-
poral and occipital lobes which suggested that the cellular 
metabolism had increased greatly.

In another study, HNSC were implanted in six cases of 
neonatal HIE; the second day after cell transplantation, all 
patients’ sucking and swallowing reflexes appeared, con-
vulsions stopped, and muscle tension was improved. All 
patients were evaluated at 12 months of age; four cases 
showed normal mental motor development, whereas two 
cases presented with cerebral palsy [77]. The above studies 
have provided very valuable experience for further research 
and clinical applications.

Cord blood mononuclear cells

Cord blood cell transplantation may be the most potent ther-
apeutic candidate for neonatal HIE, with wide application 
prospects.

These cells show a strong potential for nerve regeneration 
and they are easier to obtain than other stem cells. Animal 
experiments have demonstrated that cord blood mononuclear 
cells can reduce the activity of microglia, inhibit neuronal 
cell death, and promote the recovery of sensorimotor reflex 
function [78]. Also, they can promote the differentiation of 
endogenous neural stem cells into mature neurons to aid 
in the recovery and development of damaged neurons [79] 
and the upregulation of neurotrophic factor in the brain after 
cell transplantation [80]. The optimal timing, dosage, and 
delivery of stem cell transplantation for neonatal HIE will 
require further study.

Conclusions

HIE is the result of severe anoxic brain injury during neona-
tal period that can lead to premature mortality or can result 
in life-long morbidity.

Nowadays, the only recognized treatment for neonatal 
HIE is hypothermia that, although positively influencing the 
neurological outcome of neonatal HIE [81], is only partially 
effective. In fact, no more than 50% of the neonates treated 
achieve an improved outcome [11, 82].

At the present, efforts are focusing on finding adjuvant 
therapies for HIE and understanding the pathophysiology 
of HIE is the first, indispensable, step to better clarify the 
mechanism underlying it.

Pathophysiology of HIE involves several different events, 
strictly linked one to the others. Mitochondrial dysfunc-
tion, excitotoxicity, calcium surge, reactive oxygen species 
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accumulation, and inflammation are the five main events 
caused by severe anoxic brain injury. Starting from them, 
a variety of complex pathways begins. Some gaps in our 
knowledge concerning the pathophysiology and the timing 
of important endogenous neuroprotective and neuroregen-
erative mechanisms still exist.

Although there have been significant steps in the basic 
sciences to create novel neuroprotective and intervention 
strategies to combat HIE, there is still much more research 
needed to be conducted to translate potential life-saving and 
brain damage-limiting therapies.
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