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Abstract
Visual disorder is one of the non-motor symptoms found in Parkinson’s disease (PD). It can be easily identified in the early 
stages even before the spread of pathological conditions to the brain parts. Studies have revealed that loss of dopamine (DA) 
cells in retinal layers is a prime cause for both retinal disturbance and pathological conditions of PD. This reduction of DA 
in retina is due to the aggregation of phosphorylated α-synuclein (aSyn) in the intra-retinal region, which eventually results 
in visual impairment in PD. Until now, very limited studies have been focused on the mechanism of aSyn influence and 
DA depletion as a cause for both retinal layer dysfunction and PD. Thus, more research is warranted to provide the missing 
connection between the exact role of DA and aSyn as a risk factor for visual problems in PD. Hence, the current review’s 
focus is on the function and effects of DA degeneration in retinal cells of PD. Further, we suggest that iron plays a major 
role in regulating the aggregation of aSyn in the DA cells of retina and brain in PD. The study finds that the unidentified 
pathophysiological role of retinal degeneration in PD is an essential biomarker that needs further investigation to use it as a 
novel therapy in treating retinal dysfunctions in PD.
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Abbreviations
PD	� Parkinson’s disease
AD	� Alzhiemer’s disease
DA	� Dopaminergic neurons
aSYN	� α-Synuclein
OCT	� Optical coherence tomography
mfERG	� Multifocal ERG
ERG	� Electroretinograms
VEP	� Visual-evoked potentials
TH	� Tyrosine hydroxylase
MPTP	� 1-Methyl, 4-phenyl, 1-2-3-6-tetrahydropyridine
PERG	� Pattern electroretinogram
STF	� Spatial tuning function
RNFL	� Retinal nerve fiber layer

RPE	� Retinal epithelial cells
IPL	� Inner plexiform layer
INL	� Inner nuclear layer
GCL	� Ganglion cell layer
PL	� Photoreceptor layer
GPCR	� G-protein coupled receptor protein
cAMP	� Cycline adenosine monophosphate
DAT	� Dopamine transporter
LTS	� Lewy-type α-synucleinopathy
DARC​	� Detection of apoptosing retinal cells
SD-OCT	� Spectral-domain optical coherence tomography
VH	� Visual hallucination

Introduction

Retina is popularly called the “window to the brain”. Any 
abnormalities in the brain affects the normal functions of 
the retinal layers and its parts. Disorders in the brain and 
retina are associated with many conditions including Par-
kinson’s disease (PD), Alzheimer’s disease and glaucoma. 
PD is characterized by the degeneration of dopaminergic 
neurons (DA) in the substantia nigra region of the brain. 
Although motor impairment is the major drawback seen in 
PD, one of the non-motor manifestations observed in PD is 
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the visual dysfunction. Many studies have observed that PD 
patients display various forms of visual impairments includ-
ing colour discrimination, visual acuity, contrast sensitivity, 
blurred image, motion perception and loss of vision [1, 2]. 
This visual dysfunction is mainly caused due to the deple-
tion of DA levels in amacrine and inner plexiform cells of 
the retina in PD patients [3].

DA is a very important biochemical molecule necessary 
for the regulation of the brain and to the retina for retinal 
development, visual signalling and refractive development 
[4]. It has been proved that abnormal changes in DA and 
depletion of amacrine cell of retina lead to alterations in 
the receptive properties of ganglion cells, which eventually 
results in dysfunctional visual processing in PD patients [5]. 
In a recent functional study, it was observed that aSyn was 
found to be aggregated in the inner nuclear, inner plexiform 
layer and ganglion cell layer of the intra-retinal region [6]. 
Thus, it could be assumed that irreversible loss of DA in 
both the brain and retina of the PD patients is merely due to 
the accumulation of the phosphorylated aSyn [7]. Moreover 
it was found that iron plays a pivotal role in the aggregation 
of aSyn and depletion of DA neurons in the retinal cells of 
PD patients [8]. These studies suggest that identification of 
specific retinal biomarkers in PD would be a stepping stone 
to detect this neurodegenerative disease in the early stages. 
Thus, in this review we highlight the normal and irregular 
functions of DA and aggregation of aSyn in the retinal lay-
ers as a causative agent for visual dysfunctions associated 
with PD. Further, we also suggest that retina is a potential 
early biomarker in PD and more research that would unravel 
its mechanism will fill the gap and emerge as a promising 
remedial route for retinal dysfunctions in PD.

Visual dysfunctions in Parkinson’s disease

Among the non-motor symptoms of PD, visual abnormali-
ties are frequently observed during the early stages of the 
disease. Some of the visual symptoms found in the PD are 
described below.

Visual contrast acuity

The ability of the eye to resolve even the small details of 
stimulus is known as visual acuity. According to a study, 
it was reported that dysfunction in visual acuity might 
be a prime factor in causing chronic hallucinations in PD 
patients [9]. It has been explored that loss of amacrine 
cells and aggregation of α synuclein in the retina could 
be the reason for visual contrast acuity in PD patients. In 
2015, Lin et al. [10] reported the use of a new iPad appli-
cation to measure low contrast acuity in PD patients; it 

could serve as a quick screening tool to complement more 
formal testing of patients with PD and other neurologic 
disorders.

Colour vision

Colour vision is cone medicated and is processed by two 
pathways such as parvocellular and koniocellular visual 
pathways. Further, the achromatic information is transmit-
ted through the magnocellular pathway. Earlier it has been 
reported that in PD, there is occurrence of chromatic and 
achromatic sensitivity changes due to the parvocellular, 
koniocellular and magnocellular pathways [11]. It has been 
reported that in PD patients, the colour vision impairment 
correlates with the severity of clinical symptoms and PD 
disease progression [12]. Colour vision dysfunction in PD 
may be associated with significant loss of cells in the gan-
glion cell layer [13], but studies related to dopamine defi-
ciency and severity of colour vision impairment still remain 
unanswered.

Eye movement

Eye movement problems are important aspects of PD condi-
tions [9]. There are three kinds of eye movements, saccadic 
eye movements which directs us to gaze at a specific object 
or to read lines in prints; pursuit eye movement which allows 
us to follow moving objects; and vergence eye movement 
that allows us to move our eyes in different directions [14]. 
In a functional study, it has been reported that electrooculog-
raphy (EOG) responses are normal for PD patients when the 
eyes are in a resting condition; however, 75% of PD patients 
reported abnormalities in saccadic and smooth pursuit eye 
movements [9]. Elmar et al. [15] reported that dopaminergic 
dysfunction might not be a prime reason for impairment of 
saccadic eye movement in PD, but basal ganglia dysfunc-
tion might be the reason for the difficulty to rapidly execute 
alternating voluntary gaze shift (AVGS).

Pupil reactivity

Larger pupil diameter and unequal pupil sizes after light 
adaptation have been observed in PD patients [16]. Longer 
light reflex latencies and constriction times have also been 
observed while contraction amplitudes may be reduced, sug-
gesting early involvement of the parasympathetic system in 
PD [9]. In PD, the contraction ability of the iris muscle is 
maximum when compared to controls; this suggests that the 
muscle might have acquired adaptive sensitivity changes 
[17].
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VEP and ERG

Retinal responses to visual stimuli generate electrical activ-
ity in the eye, as does the transmission of these response to 
the primary visual cortex [18]. Measurement of the ampli-
tude and latency of such electrical responses provide infor-
mation on the functional integrity of the visual pathway and 
both electroretinograms (ERG) and visual-evoked potentials 
(VEP) which has been extensively studied in Parkinson’s 
disease [9]. In PD patients, the ERG amplitude is reduced 
in a variety of light conditions and this indicates the defect 
in visual processing involving dopamine neurons. VEP 
response to coloured stimuli, especially blue-yellow hori-
zontal gratings, are affected in PD. VEP latency and ERG 
wave alterations are evident in PD patients when compared 
to control and delay visual processing at one or more stages 
of the visual system [9].

Mechanism of DA in normal and PD retina

The retina and brain are associated over a range of neuro-
logical disorders such as Alzheimer’s disease (AD), Par-
kinson’s disease (PD) and glaucoma. Many experimental 
evidences have suggested that PD patients exhibit various 
forms of visual dysfunctions such as visual acuity, contrast 
sensitivity, colour discrimination and motion perception [1, 
2]. In PD patients, dopaminergic cell degeneration is not 
only limited inside the brain, but also in the retinal layer. 
Dopamine (DA) is an essential neurotransmitter found in 
the retina and is involved in various functions of the retina 
such as retinal development, visual signalling and refrac-
tive development [4]. Thus, the deficiency of DA, associated 
with loss of amacrine cells in retina, would result in altered 
visual processing by changing the input of ganglion cells [5].

In normal retina cells, the DA acts through the G-protein 
coupled receptor protein (GPCR) by regulating the cyclic 
adenosine monophosphate (cAMP). The activation of rod 
and cone photoreceptors are inhibited by D2—receptor fam-
ily of DA, while bipolar, horizontal, RGCs and amacrine 
cells are excited by D1—receptors of DA. Thus in a nor-
mal cell, DA is released into retinal cells by using the gap 
junction permeability concept, where first the interaction 
between the rod and cone with horizontal cells are initiated 
followed by AII:AII and AII:cone bipolar communication. 
Finally, there is a reduction in the gap junction permeability 
with simultaneous rise in DA concentration (Fig. 1) [19–22]. 
Thus, DA acts both in the outer and inner retinal layer which 
results in alterations in flow of visual information in a com-
plicated manner. In other words, dopamine is a chemical 
messenger for light adaptation, promoting the flow of infor-
mation through cone circuits while diminishing that through 
rod circuits.

The neurological evidence for deficiency of DA in human 
retina was first reported with reduction of tyrosine hydroxy-
lase (TH) in PD patients [23]. DA depletion can be found 
majorly in the three different layers of retina. Degeneration 
of retinal DA neurons and their postsynaptic AII amacrine 
cells was allied with loss of TH immune-reactivity in the 
inner plexiform layer of PD retina [24]. According to another 
study, reduction of DA levels in basal ganglia and frontal 
cortex decreased the superior colliculus region that has an 
essential role in producing saccadic eye movements in PD 
patients [25]. In PD, the inner retinal layer thinning is found 
especially in the GCL and IPL of the inferior sector with the 
loss of dopamine transporter (DAT), which proved the loss 
of retinal dopaminergic cell degeneration in PD. Thus, DA 
is involved in controlling the overall retinal visual system, 
and any impairment in DA and its metabolites would result 
in retinal degeneration associated with PD.

Some of the studies have presented the mechanism of 
dopaminergic neurons in the retina of PD subjects. MPTP 
(1-methyl, 4-phenyl, 1-2-3-6-tetrahydropyridine) in PD 
animal models causes visual impairment due to retinal DA 
morphological changes or absence of retinal DA along with 
loss of retinal amacrine cells [24]. In rotenone-treated rat 
model, inhibition of complex I was noted with a depletion of 
DA in the striatum and substantia nigra as well as in the reti-
nal amacrine cells [26]. As a therapeutic approach, in a rat 
model of hemi-parkinsonism, dopaminergic neurons were 
replaced through direct differentiation of limbus-derived 
neural progenitors that act as a potential stem cell approach 
in PD [27]. Limited studies have been conducted in animal 
models and observed for retinal alterations as depicted in 
Table 1 [28–33].

Indistinct mechanism of aSyn and iron 
in normal and Parkinson’s retinal cells

The relation of iron with aSyn and retina has a major role 
in PD-associated visual impairment. Iron is a cofactor for 
the synthesis of neurotransmitters and plays an important 
role in visual phototransduction cascade. In a previous 
study, it was shown that iron deposition alters the expres-
sion of aSyn and results in aSyn aggregation and toxic-
ity in PD patients [34]. Post-translational modifications 
of aSyn affect iron and dopamine-dependent oxidative 
stress, thereby increasing the tendency of aSyn aggrega-
tion. In retina, the iron uptake is mediated by transferrin/
transferrin receptor pathway and it is exported by ferropor-
tin along with ceruloplasmin and hephaestin. Iron uptake 
occurs in the RPE through aSyn which has an effective 
role in iron levels due to its presence on the C-terminal end 
[35, 36]. During translation, it is alleged that iron modu-
lates aSyn synthesis through an iron-responsive element 
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Fig. 1   Normal and abnormal flow of DA in retina: the figure depicts 
the normal and abnormal flow of dopamine (DA) inside and outside 
the retina. DA is a chemical messenger for light adaptation, promot-
ing the flow of information through cone circuits while diminishing 

that through rod circuits. This abnormal flow could be a reason for 
the visual problems faced by Parkinson’s disease patients. In the fig-
ure sign depicts the flow of DA, whereas the sign—resembles the 
inhibition of DA flow

Table 1   Animal model studies related with dopamine in the ophthalmology of Parkinson’s disease

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

S. No Animal model Toxin/inhibitor Ophthalmological alterations Reference

1 Rat Rotenone Depletion of dopamine in the striatum, substantia nigra and retinal amacrine cells [26]
2 Mouse 6-OHDA Decreased rotational behaviour and restored motor functions [28]
3 Rat – Reduction in amphetamine-induced rotation [27]
4 Monkeys MPTP Reduced dopamine and dihydroxyphenylacetic acid levels in the retina [29]
5 Monkey MPTP Reduction in dopamine level [30]
6 Mice MPTP Reduced level of tyrosine hydroxylase

Decreased concentration of dopamine
[31]

7 Monkey MPTP Decrease in γ-aminobutyric acidergic and glycinergic amacrine cells [24]
8 Rats – Depletion of norepinephrine and dopamine [32]
9 Rats Alpha-

methyl-para-
tyrosine

Reduced visual-evoked potential amplitude [33]
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on the 5′-UTR region. Also, more iron content aggregates 
aSyn and alters dopamine to a toxic compound that ends 
up in the poor activity of both aSyn and dopamine [8, 37]. 
This highlights the interconnection between aSyn, dopa-
mine and iron in PD [38].

As reported earlier, aSyn is a highly conserved protein 
where its function remains unclear [39, 40]. The depos-
its of aSyn in Lewy bodies and Lewy neurites are con-
nected with abnormal phosphorylated aSyn [41], whereas 
the unphosphorylated state is seen in retinal cell layers 
[42]. In contrast, a confirmative study on phosphorylated 
deposition of aSyn at serine-129 in retina was explained 
by [6, 43]. The pathophysiology of aSyn in retina has not 
been elucidated, though studies have stated its presence 
in the inner plexiform layer (IPL) of mouse and human 
retinas [44, 45]. The presence of aSyn in healthy retinas 
is found to be in four retinal layers such as inner nuclear 
layer (INL) and IPL, ganglion cell layer (GCL) and photo-
receptor layer (PL) [46, 47]. In addition, colocalization of 
aSyn and synaptophysin constitute phagocytic structures 
which were observed in RPE [47]. For the first time, in 
PD, Bodis-Wollner et al. confirmed the presence of aSyn 
aggregates in INL, IPL and GCL. In PD retinal cells, phos-
phorylated aSyn, Lewy-like inclusions and neurites were 
found to be in INL and GCL [48]. Moreover, decreased 
dopamine and TH immunoreactivity were seen in IPL 
and INL [46]. Hence, the localization aSyn along with 
iron interaction in retinal layers might have a mechanistic 
behaviour on visual impairment in PD (Fig. 2).

Retina as a candidate biomarker 
in Parkinson’s disease

Early diagnosis and disease-modifying therapies in PD 
would be beneficial in understanding the disease mecha-
nism and identifying specific biomarkers [49]. Though 
numerous biomarkers have been explored, retina has 
shown optical properties and ease of access to non-inva-
sive approaches for early detection of neurodegenerative 
diseases [50]. Imaging techniques are a useful diagnostic 
tool for identifying the close relationship between the eye 
and brain; hence, the retina is a candidate biomarker in 
neurodegenerative diseases [6]. Retinas can be potentially 
assessed for the presence of synucleinopathy using optical 
coherence tomography (OCT), eye fundus and angiogra-
phy. These techniques will permit to visualize the retina 
and its changes [6].

Though varied standard measuring protocols have 
been analyzed for specific diseases, there is no particular 
method reliable for evaluating retina in PD. Lewy-type 
α-synucleinopathy (LTS) can be detected in retina using 
fluorescent dyes through intravitreal injection, where it 
results in minimal complications in clinical ophthalmol-
ogy. Based on retinal LTS fluorescent ligands, intraocular 
injection and retinal imaging analysis are used to perceive 
PD progression [6]. Visual dysfunctions such as reduced 
electroretinogram (ERG) responses and visual-evoked 
potentials have been reported in PD patients and animal 

Fig. 2   Depicts the probable mechanism of α-synuclein in Parkin-
son’s retinal cells: the probable mechanism explains when iron uptake 
occurs in retinal epithelial cells through α-synuclein and iron modu-

lates α-synuclein synthesis, thereby increasing α-synuclein accumula-
tion and aggregation in retinal cells and thus causing dopamine level 
to decrease and act as a toxic compound in retinal cells
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models [51, 52]. ERG has been used for early detection in 
two untreated PD patients, where one study revealed no 
ERG changes with significant reduction in b-wave ampli-
tude, whereas another study exhibited decreased a-wave 
and b-wave amplitude [53].

Significant differences in retinal nerve fibre layer (RNFL) 
thickness with varied OCT measurements have been 
detected in PD. Peripapillary nerve fibre layer thickness in 
PD has been detected in 17 studies, of which 12 studies 
correlated with thinning in RNFL as well as inferotemporal 
[54], temporal [55, 56], nasal [57], diffuse area [58], inferior 
nasal and temporal [59], both inferotemporal and superotem-
poral and inferior regions [60]. In contrast, five studies did 
not show RNFL thinning in PD [61, 62]. The discrepancy 
in these studies is due to sample size and different measure-
ment protocol and devices. In addition, age and disease dura-
tion with severity is a significant factor in RNFL thickness 
in PD [41]. Fourier-domain devices are consistent in identi-
fying axonal atrophy in RNFL of PD [63]. RNFL thickness 
correlated with PD and the pronounced retinal alterations 
were detected by OCT [64].

OCT imaging technique has been utilized in patients 
to identify the thinning of ganglion cell layer, inner plex-
iform layer, and inner nuclear layer [65, 66]. By OCT 
imaging,structural alterations in retinal layers such as retinal 
dopamine loss and foveal dysfunction in PD can be detected 
[41]. Several PD studies used automated OCT measures in 
which three studies were excluded, since the thickness of 
vertical retinal layers was identified manuallyfrom OCT 
images or with software [41, 67]. Another study showed the 
changes in the foveal region using advanced method [68]. 
The thickness of retinal vertical layers was determined in 
four studies, in which two studies detected the thinning in the 
inner layer [69, 70] and one in interocular differences [68], 
and the other study did not show any difference between PD 
and controls [71]. The inner layers in the foveal pit was iden-
tified with thinning in PD. Retinal imaging using OCT and 
DARC (detection of apoptosing retinal cells) was carried out 
in rotenone-induced PD rat model, where the study found an 
increased ganglion cell apoptosis and swelling of the retinal 
layers. In addition, a follow-up study showed neurodegen-
erative changes in the substantia nigra and striatum which 
concludes that retinal changes are early manifestations in PD 
[72]. DARC has been applied in various animal models of 
retinal neurodegeneration, where it has been shown to suc-
cessfully detect ganglionic cell apoptosis [73]. While various 
studies have evaluated the retinal changes in PD, till date 
there have been incomplete clinical trial studies conducted 
using OCT in PD.

Immunohistological studies show the presence of aSyn 
and Lewy bodies in the inner plexiform layer and RNFL 
with retinal thinning using OCT, and ERG responses were 
altered effects with decreased dopamine levels observed in 

the retina [43, 48]. In a study, 49 eyes from PD patients were 
analyzed for retinal alterations using spectral-domain optical 
coherence tomography (SD-OCT) which showed decreased 
retinal microvascular density [74]. In one group, the pres-
ence of aSyn showed thickening of the outer plexiform layer 
in PD [75]; conversely, the other group showed thinning of 
the outer plexiform layer [76].

Visual hallucination (VH) is one of the features in PD, 
where decreased visual perception and decreased contrast 
sensitivity as well as colour vision are related to VH in PD 
[10, 41, 51]. RNFL has been associated with VH and PD 
severity [41]. Visualizing the retinal layers would be a ben-
eficial biomarker and forecaster of VH in PD [41]. Low con-
trast sensitivity was detected in PD with larger acuity reduc-
tion [10]. The colour vision is used for disease staging [77], 
whereas visual field is used as an adjunct in PD [53, 78].

Thus, the mechanisms of retinal thinning and the defect 
in visual information processing in PD are yet to be identi-
fied. It is stated that the retina acts as a window that reflects 
the brain pathology and serves as a PD biomarker. Hence, 
from these findings, it is inferred that more research has to 
be conducted in creating a track for therapeutic strategies.

Future perspectives

In the research of ophthalmic condition associated with 
Parkinson’s disease, conflicting results appear regarding 
the study of retinal thinning using OCT and the exact role 
of phosphorylated aSyn in the retina. There were no exact 
results correlating the severity and duration of disease with 
structural changes on OCT and accumulation of phosphoryl-
ated aSyn. Relatively low number of sample size and qual-
ity of post-mortem retinas and different study protocols for 
retinal studies on PD do not allow making a final conclusion 
about the specificity and importance of aSyn in PD. Future 
studies should include patients with different stages of dis-
ease and it should be age matched to assess the involvement 
of aSyn in PD progression. Most importantly in future, there 
is also a need to develop non-invasive, high-resolution, pref-
erably label-free, αSYN-imaging techniques to visualize and 
quantify aSyn reactivity in the retina of PD patients.

Conclusion

PD results in progressive retinal degeneration and accumu-
lation of phosphorylated aSyn in the retinal layers. Retinal 
layer thinning can be seen in the early stages of disease and 
it could be measured by non-invasive SD-OCT technique 
and DARC (Detection of Apoptotic Retinal Cells) for evalu-
ating retinal cell apoptosis. The mechanism of dopamine 
regulation by phosphorylated aSyn in the retinal layers might 
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cause retinal neurodegeneration as in the brain. Neuropatho-
logical, structural and electrophysiological alterations in the 
PD retina and also phosphorylated aSyn aggregation in PD 
retina give some evidences for suggesting that the retina can 
be used as a biomarker for PD. However, we need some 
strong research proof to confirm this idea.
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