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Abstract 

Artificial intelligence has immense potential for applications in smart healthcare. Nowadays, a large amount of medi-
cal data collected by wearable or implantable devices has been accumulated in Body Area Networks. Unlocking the 
value of this data can better explore the applications of artificial intelligence in the smart healthcare field. To utilize 
these dispersed data, this paper proposes an innovative Federated Learning scheme, focusing on the challenges of 
explainability and security in smart healthcare. In the proposed scheme, the federated modeling process and explain-
ability analysis are independent of each other. By introducing post-hoc explanation techniques to analyze the global 
model, the scheme avoids the performance degradation caused by pursuing explainability while understanding the 
mechanism of the model. In terms of security, firstly, a fair and efficient client private gradient evaluation method is 
introduced for explainable evaluation of gradient contributions, quantifying client contributions in federated learning 
and filtering the impact of low-quality data. Secondly, to address the privacy issues of medical health data collected 
by wireless Body Area Networks, a multi-server model is proposed to solve the secure aggregation problem in feder-
ated learning. Furthermore, by employing homomorphic secret sharing and homomorphic hashing techniques, a 
non-interactive, verifiable secure aggregation protocol is proposed, ensuring that client data privacy is protected and 
the correctness of the aggregation results is maintained even in the presence of up to t colluding malicious servers. 
Experimental results demonstrate that the proposed scheme’s explainability is consistent with that of centralized 
training scenarios and shows competitive performance in terms of security and efficiency.
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Introduction
Smart healthcare  [1] refers to the use of modern infor-
mation technology, including artificial intelligence, to 
achieve intelligent, personalized, and remote medical 
services, thereby improving the efficiency and quality of 
healthcare. In recent years, an increasing number of peo-
ple have been using lightweight sensors to collect their 
own data, forming a special data network called Body 
Area Network (BAN). BAN accumulates a vast amount 
of medical data [2], however, the special nature of medi-
cal data and privacy protection issues pose challenges to 
analyzing and mining the information in BAN data  [3]. 
Federated Learning (FL), as a machine learning paradigm 
that emphasizes privacy protection, has been introduced 
to BANs, enabling multiple data holders to share data for 
modeling and analysis  [4]. By leveraging FL technology, 
entities such as users and medical institutions can collab-
oratively explore the potential value of BAN medical data 
while protecting data privacy, providing strong support 
for the development of smart healthcare.

Explainability and security are crucial in applying FL 
to smart healthcare. Explainability requires the model to 
be clear in function and easy to understand in design and 
details. In fact, all stakeholders in the smart healthcare 
field are highly interested in understanding the mecha-
nisms of artificial intelligence. Explainability can enhance 
the credibility of clinical decisions, help identify and 
correct biases, build patient trust, and support medical 
education and training. Currently, two main approaches 
are used to improve the explainability of artificial intel-
ligence: transparent design models and post-hoc explana-
tion techniques [5]. Transparent design models consider 
explainability during the model construction phase, mak-
ing the model inherently transparent and understanda-
ble. These models usually have simple structures, making 
them easy to analyze and explain. However, there is often 
a trade-off between explainability and model perfor-
mance, meaning highly explainable models may not per-
form optimally. Post-hoc explanation techniques mainly 
include local explainability, feature relevance, simplified 
explanations, example-based explanations, textual expla-
nations, and visualizations  [5], which explain the deci-
sion-making process of a model after training through 
external methods. They are suitable for complex black-
box models (such as deep neural networks) and provide 
insights into model behavior.

Security in federated learning involves multiple 
aspects. On one hand, the gradients uploaded by clients 
in federated learning contain a lot of private information, 
and tampering with aggregated gradients can severely 
impact the accuracy and security of the model. There-
fore, more protection and defense measures are needed 
for the security and integrity of gradients in federated 

learning. On the other hand, in traditional single aggre-
gation node scenarios, the failure of a single server node 
can disrupt the aggregation process. Additionally, during 
federated training, some participants may intentionally 
or unintentionally provide low-quality data, affecting the 
model’s performance and reliability, potentially leading 
to biased, inaccurate predictions, or even rendering the 
model unusable.

Currently, few federated learning schemes focused on 
smart healthcare simultaneously address both explain-
ability and security. This is because there is a certain con-
flict between explainability and security. Techniques such 
as adding noise and encryption are often used to pro-
tect the federated learning process, but these techniques 
can hinder transparent information flow among feder-
ated learning participants, complicating model explana-
tion. On the other hand, some schemes that enhance the 
explainability or security of federated learning do so at 
the expense of model performance.

To address the aforementioned issues, this paper pro-
poses a more secure and explainable federated learning 
scheme tailored for smart healthcare. Our contribu-
tions are summarized as follows: 

(1) Explainable federated learning model: This paper 
focuses on the explainability of federated learning 
by introducing post-hoc explanation techniques in 
a plug-in manner for global model explainability 
analysis. This approach avoids affecting the feder-
ated learning process and accurately identifies the 
most important predictive variables in the feder-
ated model.

(2) Explainable client contribution: Unlike traditional 
federated learning methods that accept all private 
gradients or use threshold controls for aggregation, 
our scheme analyzes the actual impact of each local 
gradient on the global gradient to assess its contri-
bution to the global model. By providing explain-
able evaluations of gradient contributions, our 
proposed scheme can distinguish clients with low-
quality data and intercept their gradient uploads.

(3) Highly robust multi-server system: This paper 
designs a multi-server verifiable federated learning 
system that effectively prevents single points of fail-
ure associated with single-server scenarios, ensur-
ing high robustness in the aggregation process. This 
system can complete aggregation tasks without 
requiring all servers to be online simultaneously, 
making the overall system more stable and reliable.

(4) Verifiable secure aggregation protocol: Utiliz-
ing Shamir’s additive homomorphic secret shar-
ing scheme, this paper proposes a verifiable secure 
aggregation protocol. This protocol, through the 
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threshold nature of secret sharing, ensures client 
data privacy even if up to t malicious servers col-
lude.

Compared with the preliminary version of this 
paper  [6], this version further verified the applicabil-
ity and robustness of the proposed scheme in multiple 
scenarios. This extended version does not rely on the 
computationally complex Chameleon hash function, 
enabling the solution to be completed using regular 
hash algorithms as anticipated. The solution provided 
explainability in two dimensions, namely, the contri-
bution value of private gradient values themselves in 
the global aggregated gradient, and the contribution 
of each indicator in the gradient to all indicators. This 
made the model’s explainability in the BAN healthcare 
scenario diverse, helping doctors to learn the main 
indicator contributions that can be used for transfer 
learning.

Related works
With the rapid development of artificial intelligence tech-
nology, various applications of AI in the medical field 
have become increasingly common. Examples include 
using deep learning techniques to recognize handwrit-
ing in medical cases or reports, using image segmenta-
tion techniques to identify abnormal areas in radiology 
reports, and predicting the likelihood of future diseases 
based on comprehensive diagnostic reports and personal 
information.

(1) Explainable AI: In recent years, the application of 
explainable AI in smart healthcare has received 
widespread attention. Many cutting-edge studies 
aim to improve the transparency and understand-
ability of models, thereby enhancing their credibil-
ity and practicality in clinical settings. Che et al.  [7] 
applied model distillation-based explainable meth-
ods to the explainability study of medical diagnostic 
models. They proposed using gradient boosting trees 
for knowledge distillation to learn explainable mod-
els, which not only achieved excellent performance 
in predicting ventilator-free days for patients with 
acute lung injury but also provided good explain-
ability for clinicians. Rajpurkar et  al.  [8] developed 
a deep learning-based pneumonia detection system 
(CheXNet) using a large-scale patient chest X-ray 
dataset. The detection performance of this system 
even surpassed that of radiologists. By applying the 
explainable method CAM to explain the decision 
basis of the detection system and visualize the cor-
responding explanation results, this system provides 
clinicians with substantial auxiliary information for 

analyzing patient medical imaging data and quickly 
locating patient lesions. Yang et  al.  [9] built an 
RNN model with an attention mechanism based on 
ICU treatment records data to analyze the relation-
ship between medical conditions and ICU mortal-
ity, which had often been poorly studied in previous 
medical practice. Their results indicate that utiliz-
ing explainable techniques helps discover potential 
influencing factors or interactions related to certain 
outcomes in healthcare, making it possible to learn 
new diagnostic knowledge from automated medi-
cal diagnostic models. Arvaniti et  al.  [10] showed 
that, given a well-annotated dataset, a CNN model 
can successfully achieve automatic Gleason grading 
of prostate cancer tissue microarrays. Additionally, 
using explaination methods to provide the grading 
basis of the automatic grading system can achieve 
pathologist-level grading results, thereby supporting 
the simplification of the relatively cumbersome grad-
ing tasks.

(2) Federated learning: With the development of feder-
ated learning, meeting various demands in medical 
scenarios using federated learning technology has 
also become more common. Khan et  al.  [11] con-
ducted a comparative analysis using CNN, AlexNet, 
ResNet50, and VGG16 models and employed FL to 
predict pneumonia. The VGG16 model achieved the 
highest accuracy of 91% in pneumonia prediction. 
Lee et  al.  [12] proposed a thyroid prediction model 
based on ultrasound images using FL and models like 
ResNet 50 and VGG19. The training set contained 
8,457 images, and the validation set included 1691 
internal and 100 external images. Results showed that 
the accuracy of the centralized model was slightly 
higher than that of the FL model, but FL provided 
better data privacy protection. The authors suggested 
that model performance could be further improved 
through data augmentation.

To better apply federated learning to the field of smart 
healthcare, some studies focus on enhancing the explain-
ability or security of federated learning.

Raza et al. [13] designed a novel end-to-end framework 
for ECG-based healthcare using explainable artificial 
intelligence and deep convolutional neural networks in 
a federated environment, addressing challenges such as 
data availability and privacy issues. The proposed frame-
work effectively classifies various arrhythmias. Abid 
et al. [14] applied the concept of explainability to artificial 
intelligence and federated machine learning algorithms 
to enhance the efficiency and security of healthcare 
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systems. They proposed an efficient electronic healthcare 
framework and detailed model, implementing standard-
ized data-sharing protocols, developing a collaborative 
framework for federated learning, and prioritizing the 
integration of explainable AI technologies to improve 
decision transparency. Komalasari et  al.  [15] enhanced 
the security, performance, and privacy of healthcare sys-
tems by proposing a robust framework for secure, pri-
vacy-preserving federated learning using explainable AI 
in smart healthcare systems, ensuring their resilience and 
effectiveness in real-world scenarios.

In terms of enhancing security, techniques such as 
differential privacy and homomorphic encryption are 
widely applied to improve the security of federated learn-
ing. Wang et  al.  [16] developed a new differentially pri-
vate stochastic gradient descent algorithm to address 
non-convex empirical risk minimization problems, 
which involve minimizing a non-convex loss function 
over the training set. This algorithm reduces gradient 
complexity while maintaining strong privacy guarantees 
and provides utility guarantees comparable to existing 
methods. Zhang et al. [17] studied the application of dif-
ferential privacy in network-distributed machine learn-
ing and developed two differentially private protection 
methods: dual-variable perturbation and primal variable 
perturbation, for the regularized empirical risk minimi-
zation problem. Bonawitz et  al.  [18] developed a secure 
federated learning framework based on traditional fed-
erated learning algorithms using secret sharing algo-
rithms. This framework enables participants to verify 
the correctness of aggregation results, ensuring that the 
central server cannot return incorrect global gradient 
values and guaranteeing the secure update of participant 
models. Zhang et  al.  [19] designed a batch encryption 
framework by employing new local gradient encoding 
techniques. On this basis, they designed a new floating-
point to long integer conversion algorithm to achieve 
efficiency improvements while maintaining functional-
ity. Madi et  al.  [20] addressed the verifiability of feder-
ated learning aggregation algorithms by proposing a 
secure, privacy-preserving, and verifiable framework 
using homomorphic encryption and verifiable computa-
tion. Xie et al. [21] designed a verifiable federated learn-
ing aggregation scheme without bilinear operations to 
reduce computational overhead. This scheme employs 
homomorphic hash algorithms, access control technolo-
gies, and a three-party key agreement protocol to ensure 
the security and privacy of private gradients and global 
gradients.

Explainable AI enhances healthcare professionals’ 
trust in AI diagnostic results by providing transparency 
in model decision-making. Federated learning improves 
the model’s generalization ability on medical data by 

implementing distributed learning while protecting data 
privacy. In addition, the application of security and pri-
vacy protection technologies, such as differential pri-
vacy and homomorphic encryption, provides additional 
security guarantees for FL, ensuring the effectiveness and 
reliability of intelligent medical systems in the real world. 
Many smart healthcare federated learning schemes strug-
gle to balance explainability and security due to their 
conflicting nature. While noise addition and encryption 
are crucial for security, they can obscure the model’s 
workings and hinder explanation. Likewise, efforts to 
improve a model’s transparency or security often come 
at the expense of its performance, creating a dilemma 
between clarity and efficacy.

System model and requirements
In the context of body area networks, the data collected 
by terminal collection devices belongs to one or more 
institutions. Each institution, using its own data, cannot 
effectively construct the target model. Therefore, to uti-
lize the data collected by more devices across multiple 
institutions and to build high-quality models in medical 
scenarios, cooperation between multiple institutions is 
typically required (see Fig. 1).

In the system, m institutions, denoted as S, and n edge 
computing clients, denoted as C, are involved. To ensure 
the explainability analysis of the gradient contributions 
uploaded by clients, prevent clients from conducting 
gradient attacks on the aggregation process, and ensure 
that institutions cannot steal or tamper with the feder-
ated learning aggregation results through collusion, it is 
necessary to design a verifiable federated learning aggre-
gation system. This system should be able to achieve fair 
and efficient client contribution evaluation within the 
context of body area networks. The system should sup-
port analyzing the explainability of the global model 
using post-hoc explanation techniques. The two types of 
entities in the system have the following functions:

Fig. 1 System model
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Client: Participate in the collaborative training of deep 
learning models through cooperative computation. They 
use their private datasets, selecting a portion of data 
for training and testing in each iteration, and upload 
encrypted local gradients. Through secure multiparty 
computation, clients collectively obtain aggregation 
results without exchanging valid information. Clients 
receive encrypted global gradients returned by the server 
to update the local model and repeat this process until an 
accurate neural network model is jointly trained.

Institution: Possess strong computational and data pro-
cessing capabilities. They aggregate the data sent by cli-
ents, assisting in the federated learning training process. 
However, they also have the potential to steal private 
information contained within the gradients, necessitating 
defenses against such possibilities.

System architecture

Definition 1 Consider the scenario of federated 
learning with n clients Ci and m servers Sj , the scheme 
(Setup,KeyGen,SSGen,Agg,ConAna,Ver,Exp) is 
defined as follows:

• Public parameter generation Setup(1�) → pp : Given 
the security parameter 1� , the public parameter pp 
is generated by all servers Sj through negotiation,

• Key generation KeyGen(1�) → (pkj , skj) : Given the 
security parameter 1� , server Sj generates its own 
public-private key pair (pkj , skj) and publicly dis-
closes the public key pkj,

• Secret sharing generation 
SSGen(pp, {pkj}j∈[m], xi, t) → ({cti,j}j∈[m], chi)  : 
Given the secret sharing algorithm threshold t, public 
parameter pp, and server public key list {pkj}j∈[m] , com-
bined with its private input xi as input, the client outputs 
the ciphertext of the secret share accepted by the speci-
fied server {cti,j}j∈[m] and additional verification infor-
mation chi,

• Aggregation Agg(skj , {cti,j}i∈[n]) → (ŷj , r̂j) : Server Sj 
based on its private key skj and the ciphertext sent 
to itself {cti,j}i∈[n] as input, outputs the aggregated 
share ŷj and additional verification auxiliary value r̂j
,

• Contribution analysis 
ConAna({[[ri]]j}

j∈[m]
i∈[n] , t) → {Ci}i∈[n] : Given the shares 

{[[ri]]j}
j∈[m]
i∈[n]  and threshold t, outputs client contribu-

tion {Ci}i∈[n],
• V e r i f i c a t i o n 

Ver(pp, t, {ŷj}j∈T , {r̂j}j∈T , {chi}i∈[n]) → ({y,⊥}, y∗)  : 

Given public parameter pp, secret sharing threshold 
t, {ŷj}j∈T , {r̂j}j∈T in server subset T, and collected ver-
ification information from client {chi}i∈[n] , outputs a 
correct unweighted aggregation result y =

∑n
i=1 xi 

or ⊥ , and weighted aggregation result y∗,
• Explainability analysis Exp({Di}i∈[n],w

∗) → (sci∗) : 
Given the datasets of each client {Di}i∈[n] and the 
global model obtained from federated modeling w∗ , 
outputs the local explainability analysis result (sci∗).

In order to implement the functionality of explainability 
technology in the verifiable federated learning scenario 
in the proposed scheme, this section designs a gradi-
ent contribution analysis technique based on gradient 
integration that will be used in the subsequent text. The 
explainability analysis in this paper is performed after the 
completion of the federated modeling. When perform-
ing the explainability analysis step, different methods can 
be used to calculate (sci∗) to evaluate the impact of vari-
ables on prediction results. This paper takes the example 
of calculating (sci∗) using integrated gradients, where 
integrated gradients are a technique used to explain 
the decisions of deep learning models. It is a method of 
explainable artificial intelligence that aims at providing 
transparency and understandability of model decisions.

Definition 2 (Gradient Contribution Calculation) Inte-
grated gradients measure the contribution of each input 
feature to the final prediction by calculating the gradi-
ent of the input features with respect to the model out-
put and integrating along the path from a baseline input 
(usually a zero input or some average input) to the actual 
input. The specific steps are as follows:

• Select baseline input: Determine a baseline input, 
which is usually a zero vector, average input, or other 
representative input. The baseline input should be a 
reasonable input for the model, but should not sig-
nificantly affect the output.

• Linear interpolation path: Generate a path between the 
baseline input and the actual input. Specifically, mul-
tiple intermediate points can be generated through 
linear interpolation, with these points gradually tran-
sitioning from the baseline input to the actual input.

• Gradient computation: For each interpolated point on 
the path, calculate the gradient of the input features 
at that point with respect to the model output.

• Integration: Integrate these gradient values along the 
path to obtain the total contribution of each feature 
to the model output. The integrated gradient can be 
represented by the following formula: 
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 where xi represents the actual input, x′i represents 
the baseline input, F represents the model, α repre-
sents the coefficient of interpolation and ∂F

∂xi
 repre-

sents the gradient of the output of the model with 
respect to the i-th input feature.

Definition 3 (Correctness) The federated learning sys-
tem is considered correct if, for any set of client inputs 
{xi}

n
i=1 , the aggregation process Agg yields an output y 

that accurately reflects the collective contribution of all 
clients, i.e., y =

∑n
i=1 xi . This requires that:

• Each client’s input xi is correctly encrypted and shared 
using the secret sharing scheme SSGen without loss 
of information.

• The aggregation of shares by servers is performed cor-
rectly, using the private key skj for decryption and the 
secret sharing algorithm SS .Eval for reconstructing 
the original inputs.

• The verification process Ver confirms that the aggre-
gated result y matches the expected outcome, ensur-
ing the integrity and accuracy of the federated learn-
ing model’s output.

System requirements

Definition 4 (Explainability) The server can obtain the 
contribution value of the user gradients to the global gra-
dient by analyzing and calculating the user gradients. By 
obtaining the contribution values, it can effectively bal-
ance the contributions of all users and reduce the mali-
cious impact of users on the global model.

Definition 5 (Security) Let A be a probabilistic poly-
nomial-time adversary who can control at most t servers. 
Without loss of generality, let the controlled servers be 
{Sj}j∈[t] . The security experiment Expsec(A) is defined as 
follows: 

1. For each j ∈ [t] , the challenger C executes Setup(1�) 
and sends the public parameters pp to the adversary 
A.

2. The challenger C acts as an honest server {Sj}j∈[t+1,m] 
to execute KeyGen(1�) , generating the correspond-
ing keys (pkj , skj) , and publicly releasing the public 
key pkj . It receives the public keys {pkj}j∈[m] of the 
servers controlled by the adversary A.

IntGradi(x) = (xi − xi
′)

×

∫ 1

α=0

∂F(x′ + α × (x − x′))

∂xi
dα

3. The challenger C randomly selects xi
$
← F as the 

input for each client Ci.
4. The challenger C acts as an honest client Ci for 

each honest client Ci , where i ∈ [n] , computing 
SSGen(pp, {pkj}j∈[m], xi, t) → ({cti,j}j∈[m], chi).

5. The challenger C acts as an honest server {Sj}j∈[t+1,m] 
to interact with the adversary A , and the challenger C 
outputs an aggregated result y∗.

6. If y∗ =
∑n

i=1 xi , the experiment outputs 1; otherwise, 
it outputs 0.

If Pr[Expsec(A) = 1] � negl(�) , the protocol is consid-
ered secure.
Definition 6 (Verifiability) Let A be a probabilistic pol-
ynomial-time adversary who can control at most k (� m) 
servers. Without loss of generality, let the controlled 
servers be {Sj}j∈[k] . The verifiability experiment Expver(A) 
is considered as follows: 

1. The challenger C acts as an honest server {Sj}j∈[k+1,m] 
to execute KeyGen(1�) , generating the correspond-
ing keys (pkj , skj) , and publicly releasing the public 
key pkj . It receives the public keys {pkj}j∈[k] of the 
servers controlled by the adversary A.

2. The challenger C randomly selects xi
$
← F as the 

input for each client Ci.
3. The challenger C acts as an honest client Ci 

for each honest client Ci, i ∈ [n] , computing 
SSGen(pp, {pkj}j∈[m], xi, t) → ({cti,j}j∈[m], chi).

4. The adversary A provides a set N ∗ ⊂ [n] of clients 
participating in the aggregation result.

5. For the honest servers {Sj}j∈[k+1,m] , the challenger C 
returns the aggregated shares and additional verifi-
cation messages (ŷj , r̂j) ← Agg(skj , {cti,j}i∈[n]) to the 
adversary A.

6. The adversary A outputs the computed results 
{ŷj , r̂j}j∈[k].

7. The adversary A provides a set M∗ ⊂ [m] of servers 
available for verification, with |M∗| � t + 1.

8. Running the verification algorithm 
Ver(pp, t, {ŷj}j∈T , {r̂j}j∈T , {chi}i∈[n]) → {y,⊥} , if 
y∗ �= y =

∑n
i=1 xi , the experiment outputs 1; other-

wise, it outputs 0.

If Pr[Expver](A)=1
� negl(�) , the protocol is considered 

verifiable.

Concrete scheme and analysis
Concrete scheme
Consider the scenario of federated learning with n clients 
C and m servers S.The i-th client is represented by Ci and 
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the j-th server is represented by Sj . The federated learn-
ing process is defined as follows: 

1. Public parameter generation algorithm 
Setup(1�) → pp : Each server randomly select 
αj

$
← Zp , and calculate hj = gαj  , then follow these 

steps to calculate:

• Server Sj randomly selects rj
$
← Zp , and calculates 

aj = grj,
• Based on the hash function H(·) , calculate 

e = H(g , hj , aj),
• Calculate zj = rj + ej · α , output proof (aj , zj),
• After receiving proofs from other servers, server Sj 

calculates ej = H(g , hj , aj) according to the above 
hash function H(·),

• Verify whether the equation gzj = aj · h
ej
j  holds. If 

it holds, accept the proof and output 1, otherwise 
reject the proof and output 0,

• If the verification passes, publishes 
(p,G, g , h =

∏m
j=1 hj) as the public parameter pp of 

homomorphic hashing.

2. Key generation algorithm KeyGen(1�) → (pkj , skj) : 
Each server Sj runs the key generation algo-
rithm to generate its own public-private key pair 
(pkj , skj) ← PKE .KGen(1�) , and publishes the pub-
lic key pkj,

3. Secret sharing generation algorithm 
SSGen(pp, {pkj}j∈[m], xi, t) → ({cti,j}j∈[m], chi) : The 
client Ci takes the public parameters pp of the hash, 
its own private input xi , the threshold t, and the serv-
er’s public key set {pkj}j∈[m] as input and follows the 
following steps to calculate:

• Client Ci uses the a priori method for the first few 
rounds, and then uses the adaptive adjustment 
algorithm to obtain a sensitivity of �A = W  , ran-
domly selects noise x̃i from the geometric distribu-
tion Geom ( exp(−ε/W ) ), and obtains the secret 
input value of xi ← xi + x̃,

• Use the (t, m)-Shamir additive homomorphic secret 
sharing algorithm to generate the secret sharing 
share {[[xi]]j}j∈[m] ← SS .Share(xi, t, {Sj}j∈[m]) 
of the private input xi for the aggregation server 
{Sj}j∈[m],

• To calculate the hash value, first randomly select ri 
and calculate chi ← HASH.Hash(pp, xi, ri),

• Similarly, use the (t, m) -Shamir additive homomor-
phic secret sharing algorithm to generate the secret 
share {[[ri]]j}j∈[m] ← SS .Share(ri, t, {Sj}j∈[m]) of 

the random number ri for the aggregation server 
{Sj}j∈[m],

• For j ∈ [m] , use the public key pkj of the server 
Sj to generate the corresponding ciphertext 
cti,j ← PKE .Enc(pkj , i�[[xi]]j�[[ri]]j),

• The hash value chi and the ciphertext {cti,j}j∈[m] are 
taken as output.

4. Aggregation algorithm Agg(skj , {cti,j}i∈[n]) → (ŷj , r̂j) : 
Use the server Sj ’s own private key skj and collect the 
ciphertext {cti,j}i∈[n] generated by the client {Ci}i∈[n] , 
and calculate according to the following steps:

• Decrypt the ciphertext {cti,j}i∈[n] 
using its own private key skj to obtain 
(i�[[xi]]j�[[ri]]j) ← PKE .Dec(skj , {cti,j}i∈[n]) , where 
i ∈ [n],

• Use the secret sharing algorithm SS .Eval 
to calculate the shared aggregate value 
ŷj ← SS .Eval({[[xi]]j}i∈[n]) and aggregate random 
numbers r̂j ← SS .Eval({[[ri]]j}i∈[n]),

• output (ŷj , r̂j).

5. Contribution analysis algorithm 
ConAna({[[ri]]j}i∈[n],j∈[m], t) → {Ci}i∈[n] : Given the 
share {[[ri]]j}i∈[n],i∈[m] and the threshold t, the secret 
sharing algorithm SS .Eval is used to calculate the 
shared aggregate value xi ← SS .Eval({[[xi]]j}j∈[m]) , 
and executes the following steps:

• In order to find the optimal global gradient y∗ that 
can be obtained from all user-provided private gra-
dients, it is necessary to minimize the total distance 
between all private gradients and the estimated 
global gradient. 

 where d(·) is the distance function, g(·) is the non-
negative coefficient function, pi is the performance 
of the local private gradient, which is calculated 
based on the distance,

• Select the Euclidean distance d(y∗, xi) = ||y∗ − xi|| 
as the selected distance function, g(pi) = 1/pi as 
the non-negative coefficient function, and further 
calculate the contribution ratio of client Ci to this 
gap distance by considering the aggregation weight 
and the distance between its local model update 
and the estimated global model update. 

(1)

min
y∗,C

D(y∗, C) =
∑

i∈[n]

g(pi) · d(y
∗, xi)

s.t.
∑

i∈[n]

pi = 1
,
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• Given a set of contribution percentages {ℓi}i∈[n] , 
where 

∑

i∈[n] ℓi = 1 , calculate customer contribu-
tion {Ci}i∈[n] by solving the following linear equa-
tion: 

6. Verification algorithm 
Ver(pp, t, {ŷj}j∈T , {r̂j}j∈T , {chi}i∈[n]) → ({y,⊥}, y∗)  : 
Given public parameters pp,threshold t, collected 
hash values {chi}i∈[n] , a series of aggregated shared 
values {ŷj}j∈T and {r̂j}j∈T , where j ∈ T ⊆ [m] and 
|T | � t + 1 , the verification process is performed as 
follows:

• Use the secret reconstruction algorithm 
to recover y ← SS .Recon(t, {ŷj}j∈T ) and 
r ← SS .Recon(t, {r̂j}j∈T ),

• Use the homomorphism of the hash algo-
rithm to verify whether the equation 
HASH.Hash(pp, y, r) =

∏

i∈[n] chi holds. If the 
above equation holds, output y, otherwise output ⊥,

• According to the user contribution {Ci}i∈[n] , the 
global gradient value is set to y∗ =

∑

i∈[n] Ci · xi.

7. Explainability Analysis Exp({Di}i∈[n],w
∗) → (sci∗) : 

Given the datasets of each client {Di}i∈[n] and the 
global model w∗ obtained by federated modeling, the 
explainability analysis follows the following steps:

• Each client uses the integrated gradient to solve the 
local explainability analysis result (sci∗),

• With the help of the server, the aggregate explain-
ability analysis result 

∑

i sci∗|Di|
|∪iDi|

 is calculated,
• Each server broadcasts and cross-validates the cal-

culated aggregate explainability analysis results,
• The server synchronizes the aggregate explainabil-

ity analysis results to the client.

Explainability analysis
Due to the issue of insignificant gradient contributions 
in marginal value scenarios when traditional methods 
directly analyze the gradient contributions, the gradi-
ent marginal value is shortened and then analyzed step 
by step until it is reduced to the minimum value of Base-
line. Finally, all gradients are summed, and a coefficient 
interval △xi is multiplied in the summation to avoid the 
occurrence of ∞ values when summing the infinitely 
divided gradients. The segmented gradient values with a 

(2)ℓi =
g(pi) · d(y

∗, xi)
∑

i∈[n] g(pi) · d(y
∗, xi)

(3)
∑

i∈[n]

Ci = 1
ℓi

ℓk
=

Ck

Ci
, ∀i, k ∈ [n]

length of Baseline are denoted as x′ = {x′1, x
′
2, ..., x

′
n} , and 

the linear interpolation number is m. The importance of 
feature xi is then given by:

Then, taking the limit of the gradient importance as 
m → ∞ , the above equation is transformed into integral 
form:

The above operation essentially calculates the total con-
tribution of the gradient curve between x and x′ , that is, 
f (xi)− f (x′i) = φIG

i

(

f , x, x′
)

 , and this equation holds for 
each dimension of the feature. Therefore, the integral 
gradient has completeness, i.e.,

The most important thing is that, given 
θi
(

f , x, x′
)

=
∫ 1
0

δf (x′+α(x−x
′))

δxi
dα , we have

Therefore, the relative importance of any sample with 
respect to the baseline can be linearly expressed by the 
difference in characteristics x − x′ and the result of the 
integral variational path θ(f , x, x′) , which is equivalent 
to finding a linear model to explain the prediction of 
the sample x. Thus, the proposed method of integrating 
gradients can effectively identify the contribution of the 
integral.

Correctness analysis

Theorem  1 (Correctness) Under the assumption of 
the existence of (t,  m)-Shamir additive homomorphic 
secret sharing scheme (SS .Share,SS .Eval,SS .Recon) 
and the homomorphic hash functions 
(HASH.Gen,HASH.Hash,HASH.HashCheck) , the 
secret sharing generation algorithm SSGen correctly gen-
erates ciphertext shares {cti,j}j∈[m] and corresponding veri-
fication values for {xi}i∈[n] , and outputs the final aggre-
gated result y =

∑n
i=1 xi using correct aggregation shares.

φIG
i

(

f , x, x′
)

=

m
∑

k=0

∂f (x′ + k
n

(

x − x
′
)

)

∂xi
�xi

=

m
∑

k=0

∂f (x′ + k
n

(

x − x
′
)

)

∂xi

1

n

(

xi − x′i
)

φIG
i

(

f , x, x′
)

=

∫ 1

0

δf (x′ + α(x − x
′))

δxi
dα(xi − x′i)

=(xi − x′i)

∫ 1

0

δf (x′ + α(x − x
′))

δxi
dα

φIG
i

(

f , x, x′
)

=

∫ 1

0

δf (x′ + α(x − x
′))

δxi
dα(xi − x′i)

f (x)− f (x′) = φIG(f , x, x′) =
〈

(x − x
′), θ(f , x, x′)

〉
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Proof The correctness of this protocol relies on the 
correctness of the additive homomorphic secret shar-
ing algorithm, the correctness of public key encryp-
tion algorithms, and the homomorphic property of 
hash functions. When servers Sj and clients Ci(xi) 
faithfully execute the protocol, server Sj decrypts 
to obtain secret shares {[[xi]]j}i∈[n] and {[[ri]]j}i∈[n] . 
According to the correctness of the additive homo-
morphic algorithm, they can reconstruct the secrets 
y =

∑

i∈[n] xi and r =
∑

i∈[n] ri . On the other hand, 
based on the homomorphic property of the hash func-
tion, HASH.����(pp, x, r) =

∏

i∈[n] chi = HASH.
����(pp, xi, ri) , ensuring the final output y =

∑

i∈[n] xi . 
�

Security analysis

Theorem  2 (Security) Under the assump-
tion of the existence of the discrete logarithm prob-
lem, (t,  m)-Shamir additive homomorphic secret 
sharing scheme (SS .Share,SS .Eval,SS .Recon) 
and the homomorphic hash functions 
(HASH.Gen,HASH.Hash,HASH.HashCheck) , the 
above protocol implementation is secure.

Proof The security proof of the protocol can be 
achieved using a proof by contradiction. Assume there 
exists an adversary A that can break the experiment 
Expsec(A) with non-negligible probability. Then, we can 
show that there exists an adversary RA that can break the 
discrete logarithm assumption with the same probability.

Given the public parameters pp = (p,G, g , h) , the reduc-
tion algorithm R receives the challenge X∗ = gx

∗ from 
the challenger C . Reduction algorithm R first acts as 
an honest server interacting with the adversary, exe-
cuting KeyGen(1�) to generate the corresponding 
keys {(pkj , skj)}j∈[t+1,m] and revealing the public keys 
{pkj}j∈[t+1,m] to the adversary. Simultaneously, it receives 
the public keys {pkj}j∈[t] from the adversary. Reduction 
algorithm R randomly chooses {xi}i∈[2,n] as inputs for cli-
ents {Ci}i∈[2,n] such that 

∑n
i=2 xi = 0.

For i ∈ [2, n] , R acts as an honest client running 
SSGen(pp, {pkj}j∈[m], xi, t) → ({cti,j}j∈[m], chi) . For 
i = 1 , reduction algorithm R chooses a random num-
ber {[[xi]]j}j∈[m] as the secret share and randomly 
selects r1 as the hash random number, denoted as 
ch1 = X∗ · hr1 . Additionally, it generates secret shares for 
r1 , {[[r1]]j}j∈[m] ← SS .Share(r1, t, {Sj}j∈[m]) . It encrypts 
ct1,j ← PKE .Enc(pkj , 1�[[x1]]j�[[r1]]j) and publishes ct1,j 
and chi.

Note that the adversary A controls at most t servers. 
Based on the security of secret sharing, adversary A can-
not distinguish between the reduction algorithm R ran-
domly selecting secret shares {[[xi]]j}j∈[m] and the true 
secret shares of x∗ . Furthermore, due to the collision 
resistance property of the hash function, the adversary 
cannot efficiently find colliding results that satisfy the 
conditions. Combining the security of secret sharing, 
it can be observed that the adversary A cannot distin-
guish between the generated distribution and the true 
distribution.
Subsequently, reduction algorithm R acts as an honest 
server {Sj}j∈[t+1,m] interacting with adversary A until A 
outputs the aggregated result y∗ . It is observed that

Therefore, it is evident that the adversary can break the 
security of the discrete logarithm X∗ = gx

∗ , which con-
tradicts the discrete logarithm assumption. �

Theorem 3 (Verifiability) Let A be a probabilistic polyno-
mial-time adversary capable of controlling at most k (� m) 
servers, without loss of generality, let them be {Sj}j∈[k] . Based 
on the collision resistance property of the homomorphic hash 
function, the above protocol is verifiable.

Proof We prove the verifiability of the protocol by con-
tradiction. Assume there exists an adversary A that can 
break the above experiment with non-negligible prob-
ability, then we can show that there exists an adversary 
RA that can break the collision resistance property of the 
hash function with the same probability.

The reduction algorithm R receives the public parameters 
of the hash function pp = (p,G, g , h) given by the chal-
lenger C and passes these parameters to the adversary 
A . Subsequently, reduction algorithm R acts as an hon-
est server j ∈ [k + 1,m] , performs KeyGen(1�) to gen-
erate the corresponding keys (pkj , skj) , and reveals the 
public key pkj . Simultaneously, it receives the public keys 
{pkj}j∈[k] from servers controlled by the adversary. For 
each client Ci , R randomly selects xi as input.
R acts as an honest client Ci . For i ∈ [n] , it computes 
SSGen(pp, {pkj}j∈[m], xi, t) → ({cti,j}j∈[m], chi) . It 
receives the set N ∗ provided by A , which is the set of chal-
lenged clients. Acting as an honest server j ∈ [k + 1,m] , 
R sends the computation information of Sj to A , 
Agg(skj , {cti,j}i∈[n]) → (ŷj , r̂j) , and A outputs its compu-
tation result {ŷj}j∈[k] , {r̂j}j∈[k] . A provides a series of veri-
fiable server sets {Sl}l∈M∗ to C . Using {Sl}l∈M∗ to run the 
verification Ver(pp, t, {ŷj}j∈M∗ , {r̂j}j∈M∗ , {chi}i∈N∗) → y∗ , 

(4)y∗ =

n
∑

i=1

xi = x∗ +

n
∑

i=2

xi = x∗
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it is ensured that with non-negligible probability 
⊥ �= y∗ �=

∑

i∈N∗ xi , and running the verification algo-
rithm results in r∗ satisfying

Therefore, RA can output with non-negligible prob-
ability two distinct pre-images of 

∏

i∈N∗ chi , namely 
(
∑

i∈N∗ xi,
∑

i∈N∗ ri) and (y∗, r∗) . This contradicts the col-
lision resistance property of the hash function. �

Analysis
Theoretical analysis
This section compares the proposed scheme with the 
NIVA scheme  [22], Ma et  al.’s scheme  [23], and Zhang 
et  al.’s scheme  [24]. The comparison is conducted from 
multiple aspects, including functionality, computational 
overhead, and communication overhead. The number 
of servers in all these four schemes is set to m, while the 
number of clients is set to n. The functionality compari-
son results are shown in Table  1, which indicate that, 
compared with other schemes, the proposed scheme 
has higher advantages in security. It can resist attacks 
from servers and users, as well as collusion attacks to 
some extent. Moreover, the scheme ensures the explain-
ability of private gradients and the verifiability of global 

(5)

HASH.Hash(pp,
∑

i∈N∗

xi,
∑

i∈N∗

ri)

=
∏

i∈N∗

chi = HASH.Hash(pp, y∗, r∗)

gradients. This demonstrates that the proposed scheme 
has clear advantages over other schemes.

In Tables 2 and 3, the communication performance and 
computational efficiency of the client algorithm, server 
aggregation algorithm, and public verification algorithm 
are theoretically compared and analyzed. For the schemes 
by Ma et al. [23] and Zhang et al. [24], where there is no 
SSGen situation, the modules with similar functions in 
the proposed scheme are analyzed as substitutes for the 
corresponding overhead. Here, we use F to represent the 
transformed large integer of the gradient vector and G to 
represent the group element.

As shown in the theoretical analysis of the communi-
cation overhead at each stage in Table  2, the proposed 
scheme is more efficient than all other schemes. The 
main reason for this is that both users and servers do not 
need to send too much information, only a small amount 
of core information is needed for verification to meet the 
scheme’s requirements. Regarding computational effi-
ciency, from Table 3, it is clear that the proposed scheme 
is also superior to other ones. This is largely due to the 
high optimization of the aggregation algorithm in the 
proposed scheme, which does not require excessive aux-
iliary information to help with verification, thus complet-
ing the aggregation task efficiently.

Experimental analysis
In experiments, the proposed scheme runs in a sce-
nario with n clients and m servers. As shown in Table 4, 
the experiments are conducted on a platform running 
Ubuntu 22.04, with code executed on hardware featur-
ing an Intel(R) Xeon(R) CPU E5-2603 v2 1.80GHz and 
64GB RAM. The experimental code is written in Python 
3.10. For cryptographic schemes, we use RSA encryption 
with a key length of 512 bytes for the public key encryp-
tion scheme, a (t,  m)-Shamir additive homomorphic 
secret sharing scheme, and a homomorphic hash func-
tion based on the elliptic curve SECP256K1. To verify 
the effectiveness of the scheme in the field of BANs, the 
scheme needs to be trained using datasets collected by 
private medical institutions. In the experiments, the clas-
sic lightweight heart disease dataset from IEEE  [25] is 
used for model validation. The dataset contains common 
indicators, which can also be obtained in BANs, making 

Table 1 Comparison with related schemes

Schemes NIVA [22] Ma et al. [23] Zhang 
et al. [24]

Our scheme

Resist collusion 
attacks

√
× ×

√

Resist other S 
attacks

× × ×
√

Resist curious C 
attacks

√
×

√ √

Verifiability
√ √ √ √

Explainability × × ×
√

Table 2 Communication overhead comparison

Schemes SSGen Agg Ver

NIVA [22] (m+ 1)F + (2m+ 3)G (n+ 1)F + (2n+ 4)G (µ+ 1)F + (n+ 3)µG

Ma et al. [23] (2m+ 1)F + 4mG (2n+ 1)F + (2n+ 1)G 2F + (n+ 1)µG

Zhang et al. [24] (m+ 1)F + (2m+ 2)G (2n+ 1)F + (n+ 1)G 2F + (2n+ 1)µG

Our scheme (2m+ 1)F + 3G (2n+ 2)F (2µ+ 1)F + (n+ 2)G
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this dataset somewhat representative of BAN datasets. 
The batch size for learning is set to 64, and the training 
epochs are set to 100. The learning rate is initialized to 
0.001 and is dynamically adjusted: if no improvement 
in validation accuracy is observed within a specified 10 
epochs, the learning rate is reduced by a factor of 10%.

First, we compare the proposed method with the cen-
tralized method, observing the importance of variables 
under different methods. The importance of variables 
reflects the sensitivity of the prediction results to the 
variables. The integrated gradient is used to evaluate the 
importance of variables under the centralized method as 
well. The dataset used in the experiments includes eleven 
variables such as ST slope, sex, etc., with the average 
value set as the baseline. The importance of variables is 
arranged in descending order.

Figure 2 shows the comparison of variable importance 
using the proposed method and the centralized train-
ing method. We observe that the explainability analysis 
results clearly show the importance of each variable, with 
the importance of ST slope being significantly higher 
than other variables, warranting special attention. Addi-
tionally, we find that the importance of each variable is 
essentially consistent between the proposed method and 
the centralized training method. This validates that under 
the proposed method, although no raw data is transmit-
ted, the model’s explainability is not compromised.

Regarding computational overhead and communica-
tion overhead, it is assumed that the size of the server set 
T participating in the verification algorithm in the pro-
posed scheme is µ . In the experiments, to ensure consist-
ency with the NIVA protocol  [22], small integer vectors 
are packed into larger integer vectors for processing, as 
done in the NIVA protocol  [22]. The length of the con-
verted large integer is set to B = 36 bytes.

In terms of computational overhead and communi-
cation overhead, as shown in Figs.  3 and    4, it can be 
observed that under the same experimental condi-
tions such that B = 36 bytes and the SECP256k1 ellip-
tic curve group element size of 48 bytes, the proposed 
scheme exhibits significant advantages compared to the 
NIVA protocol [22], Ma et al.’s scheme [23], and Zhang 
et al.’s scheme [24]. The figures show that both the com-
putational and communication overheads increase in 

an approximately linear relationship with the number 

Table 3 Computational overheads comparison

Scheme SSGen Agg Ver

NIVA [22] O(m2) O(n2 +m) O(m2 + nm)

Ma et al. [23] O(2m2 +m) O(n2) O(2m2 + n)

Zhang et al. [24] O(2m2) O(2n2) O(m2)

Our scheme O(m2) O(n) O(m2 + n)

Table 4 Experimental parameters

Parameters Value

Run platform Ubuntu 22.04

Hardware Intel(R) Xeon(R) 
CPU E5-2603 
v2 1.80GHz and 
64GB RAM

Cryptographic scheme RSA encryption

Key length 512 bytes

Datasets the classic light-
weight heart 
disease dataset

Learning rate 0.001

Batch size 64

Training epochs 100

Fig. 2 Explainability analysis results

Fig. 3 Comparison of computational overheads
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of clients, indicating that the experimental results are 
highly consistent with the theoretical analysis.

To verify the effectiveness of the designed explain-
ability algorithm in identifying anomalous gradients 
from users, two scenarios were selected to validate 
the model’s performance. In the first scenario, dif-
ferent users hold different quantities of labels under 
non-independent and identically distributed (non-IID) 
conditions. There are a total of eight users, with the first 
six users holding the same number of labels, while the 
last two users hold the same number of labels but more 
than the first six users. In the second scenario, two 
malicious users were selected from a total of eight users 
in the federated learning experiment. These malicious 
users have the ability to amplify their private gradients. 
By analyzing the explainability of the gradients, we test 
the effectiveness of the proposed scheme. Shapley val-
ues, Leave-One-Out (LOO) values, client contribution, 

and global weighted gradient values are used as com-
parison values, and the results are presented in Figs. 5 
and 6.

From Fig. 5, it can be seen that the aggregation weights 
are most sensitive to the information content of the last 
two users, which is greater than that of the first six users. 
Therefore, the corresponding values are lowered to main-
tain the optimal direction of the gradients during aggre-
gation. The client contribution is somewhat inferior, as 
it cannot fully distinguish the gradient changes. From 
Fig.  6, there is a clear distinction between the attack-
ers and the regular clients, successfully identifying the 
attackers. By assigning higher values to non-attackers 
and much lower values to attackers, the scheme effec-
tively mitigates the impact of the attackers. Overall, the 
experiments demonstrate that the proposed scheme has 
significant importance in the explainability of gradients, 
providing high value in practical applications.

The complete training process is simulated along-
side scenarios where some users’ metrics are missing, to 
simulate the potential decline in model accuracy due to 
the loss of part of the user datasets and further verify the 
model’s robustness. The results are shown in Fig. 7.

By comparing the test accuracy results with complete 
data and the accuracy results with partially missing train-
ing metrics on the full category test set, it is verified that 
federated learning, to some extent, ensures that users 
can obtain training results with all metrics, even if some 
training set categories are missing. The proposed scheme 
not only enhances the accuracy of users within the group 
using federated learning but also achieves an accuracy 
level of 84.34% with the heart disease recognition classi-
fier, indicating that the proposed scheme can be deployed 
in federated learning systems within BANs.

Fig. 4 Comparison of communication overheads

Fig. 5 Uneven label distribution

Fig. 6 Gradient malicious attack
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Conclusion
This paper proposed a more secure and explainable fed-
erated learning solution tailored for smart healthcare, 
addressing the explainability and security challenges 
faced when applying federated learning in the field of 
smart healthcare. Through post-hoc explaination tech-
niques, our proposed method can analyze the sensitivity 
of prediction results to input variables, thereby under-
standing the model’s operating mechanism. Experimental 
validation confirms that the federated environment does 
not compromise explainability.

In terms of security, this paper addressed common 
security issues in federated learning under a single-server 
model. A validated federated learning aggregation system 
for federated network data within a fair and efficient cli-
ent contribution assessment system was proposed, which 
effectively resolves server loss issues and optimizes sin-
gle-point failure problems. Also, using additive homo-
morphic secret sharing schemes and homomorphic hash 
functions, we achieved a verifiable secure aggregation 
protocol under an explainable gradient model.
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