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Abstract 

Based on deep learning, monocular visual 3D reconstruction methods have been applied in various conventional 
fields. In the aspect of medical endoscopic imaging, due to the difficulty in obtaining real information, self-supervised 
deep learning has always been a focus of research. However, current research on endoscopic 3D reconstruction is 
mainly conducted in laboratory environments, lacking experience in dealing with complex clinical surgical environ-
ments. In this work, we use an optical flow-based neural network to address the problem of inconsistent brightness 
between frames. Additionally, attention modules and inter-layer losses are introduced to tackle the complexity of 
endoscopic scenes in clinical surgeries. The attention mechanism allows the network to better focus on pixel texture 
details and depth differences, while the inter-layer losses supervise the network at different scales. We have estab-
lished a complete monocular endoscopic 3D reconstruction framework and conducted quantitative experiments on 
a clinical dataset using the cross-correlation coefficient as a metric. Compared with other self-supervised methods, 
our framework can better simulate the mapping relationship between adjacent frames during endoscope motion. To 
validate the generalization performance of our framework, we tested the model trained on the clinical dataset on the 
SCARED dataset and achieved equally excellent results.

Keywords:  Self-supervised learning, Monocular depth estimation, Ego-motion, Three-dimensional reconstruction, 
Endoscopy

Introduction
Lung diseases seriously affect human health. Take lung 
cancer as an example; it is the leading cause of cancer-
related deaths worldwide[1]. Video-assisted Thoracic 
Surgery (VATS) is a reliable, precise, and safe minimally 
invasive treatment method for lung cancer. Doctors use 
a single-lens scope to observe the patient’s condition and 
provide visual information during surgery[2, 3]. However, 
VATS also has its disadvantages, such as limited visibility 

and an inability to accurately position the scope. Aug-
mented reality navigation systems based on computer 
vision can help doctors address these issues. Still, due 
to problems like changes in lighting and sparse features, 
accurately and densely reconstructing lung structures is 
not a straightforward task.

Three-dimensional reconstruction from monocular 
video has been a long-standing research topic[4–6]. Cur-
rently, deep learning methods are the primary research 
direction for this issue. Eigen et  al.[7], Xu et  al.[8], Cao 
et  al.[9], and Fu[10] have used fully supervised convo-
lutional neural networks for deep estimation. However, 
fully supervised three-dimensional reconstruction is 
challenging for endoscopy since obtaining true depth 
maps corresponding to endoscopy images is difficult.

Therefore, self-supervised monocular depth estima-
tion and pose estimation have more research value (Luo 
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et al.[11], Ranjan et al.[12], Casser et al.[13]). Self-super-
vised methods simultaneously estimate scene depth and 
camera pose and use the obtained results to synthe-
size frames based on distortion. Finally, the difference 
between the target frame and the synthesized frame is 
calculated as the training supervision signal. However, 
network structures used in general scenes are not suit-
able for endoscopy scenes because the frame-to-frame 
photometric consistency assumption does not always 
hold in endoscopy videos.

Several methods have been developed to address the 
issue of inconsistent lighting. Liu et al.[14] used a multi-
view synthesis method to generate sparse depth and 
camera pose first and then combine them to supervise 
the depth network. Spancer et al.[15] used learned dense 
visual representations to enhance the supervision signal 
when the photometric consistency condition fails. Yang 
et al.[16] and Ozyoruk et al.[17] used bio-inspired trans-
formers to map the target frame to the same brightness 
space as the synthesized frame. Recasens et al.[18] com-
bined traditional methods with deep learning methods, 
using photometric inconsistencies to track camera poses. 
However, these methods have drawbacks, such as high 
computational complexity, heavy reliance on visual rep-
resentations, and the inability to handle extreme lighting 
changes, among other issues.

In this work, we have established a new monocular 
thoracoscopic three-dimensional reconstruction frame-
work. Firstly, we address the issue of inconsistent lighting 
by using optical flow between adjacent frames. Optical 
flow introduces a generalized dynamic image constraint 

(GDIC), which includes both geometric and radiomet-
ric transformations. These two transformations help 
increase inter-frame information and compensate for dif-
ferences in inter-frame brightness. Secondly, to tackle the 
issue of changes in the appearance of lung tissue during 
thoracoscopic movement, we have added an attention 
module to the depth estimation, allowing the network to 
focus more on regions with relatively rich texture infor-
mation. Finally, we introduce inter-layer losses between 
different network layers to prevent gradient vanishing 
caused by convolutional layers. By supervising interme-
diate layers, we adequately train shallow convolutional 
layers and reduce underfitting in low-texture regions. We 
have used clinical data collected in collaboration with the 
hospital to validate the model’s accuracy, demonstrating 
that the model can provide more accurate patient tissue 
location information to doctors during surgery (Fig. 1).

Related work
Fully supervised depth estimation
Deep convolutional networks were first proposed for 
depth estimation in [19]. Early depth estimation models 
were trained in a supervised manner using depth sensors. 
Eigen et al. [7] proposed using a multi-scale network and 
scale-invariant loss to regress depth from a single static 
image. Laina et  al. [20] introduced a residual fully con-
volutional network (FCN) architecture for monocular 
depth estimation, which had a deeper architecture and 
eliminated post-processing steps. Cao et  al. [9] treated 
depth estimation as a pixel-level classification problem 
and trained a residual network to predict the category 

Fig. 1  The architecture of the proposed self-supervised 3D-dimensional reconstruction system
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corresponding to each pixel after discretizing depth 
values. Xu et  al. [23] used a Conditional Random Field 
(CRF) as a depth post-processing module. Fu et  al. [10] 
treated depth estimation as a classification problem and 
introduced more robustness losses.

However, the endoscopy environment differs from the 
external environment, and it is challenging to train with 
abundant accurate RGB-D datasets under full supervi-
sion. Using computer-synthesized data has become one 
approach to address this. Visentini-Scarzanella et al. [21] 
used CT data and background-free simulated endoscopy 
videos to train fully supervised deep learning networks. 
Chen et  al. [22] used color images and rendered depth 
maps to train a fully supervised depth network. Yang 
et al. [23] simulated the endoscopy imaging process using 
3D modeling and rendering tools to achieve full supervi-
sion of endoscopy. However, closing the gap between the 
real domain and the synthetic domain is difficult by sim-
ply mimicking appearances, which may result in a perfor-
mance drop.

Self‑supervised depth and ego‑motion estimation
Self-supervised networks indirectly train the network 
through differences in images, such as pixel, predicted 
depth, and appearance differences between image 
sequences, thus avoiding the use of depth maps. Ini-
tially, self-supervised networks were based on multi-view 
images. Xie et al. [24] introduced a model with discrete 
depth for synthetic views. Garg et al. [25] further inves-
tigated methods for predicting continuous disparity val-
ues, and Godard et al. [26] improved supervised results 
by adding left-right depth consistency. Various improve-
ments based on multi-view methods include semi-super-
vised data [27, 28], generative adversarial networks [29, 
30], additional consistency [31], temporal information 
[32–34], and real-time usage [35].

Various improvements have been made in the field of 
self-supervised estimation based on monocular images 
by researchers who enhanced network structures, loss 
functions, and more. In addition to predicting depth, 
self-supervised monocular training also requires the 
network to estimate endoscope poses between frames, 
which can be challenging in cases involving object 
motion. Zhou et  al. [36] developed a self-supervised 
framework that views the depth estimation prob-
lem as a warping-based view synthesis task. However, 
self-supervised frameworks designed for general envi-
ronments struggle to address issues like inter-frame 
brightness inconsistencies when applied to endoscopy 
environments.

Turan et  al. [37] introduced research on self-super-
vised depth and ego-motion estimation in endoscopy 
scenes. Liu et  al. [14] used sparse depth and camera 
poses generated by a traditional SfM pipeline as super-
vision, with SfM running as a preprocessing step. Li 
et al. [38] used Peak Signal-to-Noise Ratio (PSNR) as an 
additional optimization objective during training. Ozy-
oruk et al. [17] employed bio-inspired brightness trans-
formers to enhance photometric robustness.

Compared to previous methods, we use optical flow 
to constrain image photometry, employ attention mod-
ules and inter-layer losses to handle non-Lambertian 
reflection and inter-reflection caused by changes in 
illumination inside the lung. Based on these improve-
ments, we have established a comprehensive self-super-
vised framework. Our method is direct and does not 
require additional auxiliary information, such as CT 
images or depth maps generated by structured light, 
and it also does not necessitate multi-view images.

Methodology
In this section, we first introduce the prior knowledge of 
monocular 3D reconstruction. Then the proposed optical 
flow-based 3D reconstruction framework is elaborated. 
The framework consists of three parts: A. Depth estima-
tion network with added attention mechanism, B. Motion 
estimation network based on optical flow, and C. Loss 
function. The overall framework is using a self-supervised 
approach to train the network, which can perform accurate 
3D reconstruction of endoscopic scenes.

Self‑supervised 3D reconstruction
Self-supervised 3D reconstruction involves two sub-net-
works: the depth estimation network and the pose estima-
tion network. Unlike fully supervised methods that use real 
depth and pose as supervision signals, the supervision sig-
nal in self-supervised methods comes from view synthesis 
based on distortions. First, the depth estimation network 
estimates the pixel depth values of the current frame. Then, 
using the endoscope’s intrinsic parameters, the pixel points 
on the 2D plane are projected back into the 3D camera 
space. The pose estimation network is then used to project 
the 3D point cloud onto adjacent frames. There are two 
frames, I t(p) and I s(p) , and the frame transformation rela-
tionship is:

where h(ps→t) and h(pt) are the corresponding pixel 
coordinates on the source frame s and the target frame 
t, respectively, K represents the camera intrinsic param-
eters, Ms→t represents the motion from the source frame 

(1)h(ps→t) = [K |0]Ms→t

[

DtK−1h(pt)
1

]
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to the target frame, and Dt represents the depth map of 
the target frame. With the above equation, the transfor-
mation relation equation between the source frame and 
the target frame can be obtained as follows:

Depth estimation network
The depth estimation network(DepthNet) consists of an 
encoder and a decoder that takes the original frame Is 
as the input and the corresponding disparity map Ds as 
the output. The network takes as input a 3-channel RGB 
image with a resolution of 320×256 and produces an out-
put with the same resolution as the input. The overall 
architecture of the network is illustrated in Fig. 2.

Structure of network
The initialization block of the encoder consists of 3 parts: 
a 3 × 3 convolutional layer with 64 filters (C3×3), a batch 
normalization layer (BN) and a rectified linear unit acti-
vation function (ReLU) with a slope of 0.01. After ini-
tialization, it passes through the spatial attention module 
(SAM), the details of the attention module will be intro-
duced in the next section. Then it passes through the 
max-pooling layer (MP), and finally passes through four 
ResNet basic blocks, each of which consists of C3× 3, BN, 
ReLU, C3× 3, BN, ReLU and skip connection in turn.

The decoder consists of four basic blocks, each consist-
ing of C3× 3, exponential linear unit (ELU), C3× 3, and 
ELU in turn.

The final output layer consists of two layers interleaved 
by C3× 3 and ELU, and finally Sigmoid is used as the acti-
vation function. In order to establish the information 

(2)Ft→s
δ (p) = ps→t − pt

flow between the encoder and decoder, a skip connection 
is established from layer i to layer n− i , where n denotes 
the total number of layers, i ∈ {0, 1, 2, 3}.

Spatial attention module
The spatial attention module guides the depth estima-
tion network by emphasizing pixel texture details with 
depth differences. The spatial attention module selects 
a specific region of the input image and processes the 
features within that region. The module operates as a 
non-local convolution process, and for any given input 
X ∈ RN×C×H×W  , the module runs with the equation:

where f represents the pixel-wise relationship between 
inputs for each pixel X. The non-local operator extracts 
the relative weights of all positions on the feature map.

In this module a dot product operation is used for the θ 
and φ convolution of the max-pooling, which is activated 
by the ReLU function:

where σrelu is the ReLU activation function. The dot 
product θ(X)φ(X)T gives a measure of the input covari-
ance, which can be defined as the degree of tendency 
between two feature maps from different channels. We 
activate the ψ convolution operation in the softmax func-
tion to perform a matrix multiplication between g and 
the output of the softmax function. Then, we apply con-
volution and upsampling to the multiplication result with 
φ to extract the attention map S. Finally, an element sum 

(3)Z = f (X ,XT )g(X)

(4)P = ψ(σrelu(θ(X)φ(X)
T ))

Fig. 2  Structure of the depth estimation network
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operation is performed between the attention map S and 
the input X to generate the output E ∈ RN×C×H×W .

where σsoftmax denotes the softmax function. A short con-
nection between the input X and output F finalizes the 
residual learned block operations.

Pose estimation network
Our pose estimation network is primarily based on the 
design by Shao et  al. [39], and it consists of three main 
components: a motion module, an appearance module, and 
a correspondence module. The motion module serves as a 
6-degree-of-freedom (6DOF) self-motion estimator, taking 
two consecutive frames as input and outputting a relative 
pose parameterized by Euler angles and a translation vec-
tor. The appearance module is used to predict appearance 
flow and adjusts brightness conditions through a bright-
ness calibration process. The correspondence module han-
dles the automatic registration step.

The encoder model of the motion module network is 
similar to the one described in Sect.  3.2.1. It begins with 
an initialization block, but it’s important to note that there 
is no attention module at this stage. Discussion about the 
effects of the attention module will be covered in chapter 4. 
The encoder then goes through a max-pooling layer, fol-
lowed by four ResNet basic blocks. The decoder consists of 
three basic blocks and one C3× 3. Each basic block is com-
posed of a C3× 3 and ReLU in sequence.

The appearance module network has a structure similar 
to the depth network. During the encoding phase, a con-
catenated image pair passes through convolution block lay-
ers with a stride of 2, forming a five-level feature pyramid. 
Jump connections then propagate the pyramid’s features 
to the decoding phase. In the decoding phase, upsam-
pling layers, concatenated feature maps, 3 × 3 convolution 
layers with ELU activation, and the estimation layer are 
sequentially connected until the network’s output reaches 
the highest resolution. Apart from the estimation layer, 
the correspondence module network maintains the same 
architecture as the appearance module network.

Loss function
The loss function consists of three parts, the residual-based 
smoothness loss, auxiliary loss, and smoothness loss. In 
order to fully utilize information across different levels, we 
also introduce inter-layer losses when calculating the loss. 
The single-layer loss function is as follows:

(5)S =φ(σsoftmaxPg(X))

(6)F =S + X

(7)L = �1lrs + �2lax + �3les

Smoothness loss based on residuals
It penalizes the first-order gradients. It uses the output of 
the appearance module network in conjunction with the 
original image to calculate the result, as follows:

where Aδ(p) represents the constraint of the appearance 
module on the light intensity.Additionally, the residual-
based gradient is used to emphasize regions with sharp 
brightness changes:

Auxiliary loss
lax provides the supervisory signal for the appearance 
module:

where I s→t(p) is reconstructed from optical flow and 
spatial converters.M(p) represents the mask for objects 
falling within the visible range.

Edge‑aware smoothness loss
The smoothness property of the depth map is enforced 
using les with the following equation:

Inter‑layer loss
Due to the encoding and decoding processes in the net-
work, different levels focus on different image ranges. 
If only the results from the last layer of the decoder are 
used to compute the loss function, some local informa-
tion may be lost. Therefore, we introduced inter-layer loss 
by adding additional branches in the decoder to compute 
the loss for each layer. The structure of the inter-layer 
loss is reflected in Fig. 2. After adding inter-layer loss, the 
formula for the total loss function is as follows, where ki 
represents the weight parameters of the i layer and n rep-
resents the number of decoder blocks.:

(8)lrs =
∑

p

|∇Aδ(p)|

(9)lrs =
∑

p

|∇Aδ(p)| × e−∇|I t (p)−I s→t (p)|

(10)lax =
∑

p

M(p)×�(I s→t(p), I t(p)+ Aδ(p))

(11)les =
∑

p

|∇D(p)| ∗ e−∇|I t (p)|

(12)L =

n
∑

i=1

ki(�1lrs + �2lax + �3les)
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Experiments
To evaluate the depth estimation accuracy of the pro-
posed framework and to investigate different design con-
siderations, we conduct extensive experiments in this 
section.

Dataset

•	SCARED[40].The SCARED dataset was collected from 
fresh pig cadaver abdominal dissections and contains 
35 endoscopic videos as well as realistic depth and 
pose information.

•	Clinical Data Set. In collaboration with the hospital, we 
used Olympus’ endoscope, which comes with a video 
recording function, when performing lung surgery, 
and asked the surgeon to film the patient’s thora-
coscopy from as many angles as possible before the 
surgery. Included is endoscopic video of 11 complete 
surgeries.

For depth estimation and pose estimation, we conducted 
extensive experiments on clinical datasets. Faced with 
the challenge of not having access to ground truth depth 
and endoscope motion paths in clinical datasets, we uti-
lized normalized local cross-correlation as a quantitative 
evaluation metric, which will be detailed in Section 4.2. 
Then, to demonstrate the generalization capability of this 
model, we will use the model trained on clinical datasets, 
without any adjustments, directly for experiments on the 
SCARED dataset.

Training parameter
Training: Our framework is implemented in the Pytorch 
library and trained on a single NVIDIA RTX 3060. We 
use the Adam optimizer, where β1 = 0.9,β2 = 0.99 , the 
batch size is 4,α = 0.85,�1 = 0.1,�2 = 0.01,�3 = 0.001 . 
For inter-layer losses, the number of decoders n = 5 , and 
the loss factor ki = 0.2 for each layer. We employed a 
pre-trained ResNet-18 encoder on ImageNet. The input 
image resolution for the entire network is 320×256. In 
each epoch, we divided the training into two stages. First, 
we trained the correspondence module network using 
edge-aware smoothness loss. After backpropagation and 
parameter updates, we proceeded to train the depth net-
work, motion module network, and appearance module 
network. A total of 20 epochs were trained. In these two 
stages, the initial learning rate was set to 1e-4 and was 
scaled by a factor of 0.1 after 10 epochs.

Performance metrics: In response to the challenge of 
not having access to real depth and motion trajectories in 
clinical data, we use the cross-correlation coefficient [41, 
42] to quantitatively evaluate the model’s performance. 

This metric has been employed in medical image reg-
istration research to measure the similarity between 
images before and after registration. We adapt this met-
ric for monocular endoscope 3D reconstruction. After 
inputting the original image s into the model, we obtain 
estimated depth and pose. Then, using depth and pose, 
we warp s to the target image t, resulting in a synthesized 
frame t̂ . We then calculate the cross-correlation coeffi-
cient between t and t̂ , and after normalization, a coeffi-
cient closer to 1 indicates greater similarity between the 
synthesized frame and the target frame, reflecting better 
model performance. The formula for the cross-correla-
tion coefficient is as follows:

where p denotes the pixel point on the image, and ŝ and 
t̂ are the synthetic frames obtained from the estimated 
depth and bit pose warping of the original image s and 
the target image t, respectively.

Additionally, to validate the model’s generalization, 
experiments were conducted on the SCARED dataset 
using other evaluation metrics, as specified in Table  1. 
In this table, d and d∗ represent the predicted depth val-
ues and the corresponding ground truth values, and D 
represents a set of predicted depth values. During vali-
dation, we use the median scaling method to scale the 
predicted depth values, and the formula for this scaling 
is as follows:

On the SCARED dataset, the depth maps are scaled pro-
portionally with an upper limit of 150  mms. We have 
chosen 150 mms as the scaling limit.

For pose estimation, we evaluate using the Absolute 
Trajectory Error (ATE) [43], as well as the mean and 
standard deviation of angle errors.

(13)CC(s, t) =
∑

p∈�

(

∑

pi (s(pi)− ŝ(p))(t(pi)− t̂(p))
)2

(

∑

pi (s(pi)− ŝ(p))
)(

∑

pi (t(pi)− t̂(p))
)

(14)
Dscaled = Dpred ∗ (median(Dgt)/median(Dpred))

Table 1  The error and accuracy metrics for depth evalua-
tion

Metric Definition

Abs Rel 1
D

∑

d∈D
|d∗ − d|/d∗

Sq Rel 1
D

∑

d∈D
|d∗ − d|2/d∗

RMSE
√

1
D

∑

d∈D

|d∗ − d|2

RMSE log
√

1
D

∑

d∈D

|logd∗ − logd|2

δ 1
D

{

d ∈ D|max( d
∗

d
, d
d∗

< 1.25)

}

× 100%



Page 7 of 11Zhang et al. Health Information Science and Systems            (2024) 12:4 

Quantitative evaluation of the cross‑correlation coefficient
We evaluated the depth estimation accuracy of our 
framework against several typical self-supervised meth-
ods used for endoscopy, including EndoSLAM[17], Endo-
Depth-and-Motion[18], and AF-SFM[39]. We sliced the 
clinical data collected from hospital surgeries and organ-
ized 6370 endoscopic RGB images from 8 surgeries. We 
selected six of these surgeries containing 4410 images for 
training. Images from the remaining two surgeries were 
used to evaluate the training effect. Additionally, to dem-
onstrate the generality of our model, we selected data 
from 4 scenes in the SCARED dataset and conducted the 
same tests. The experimental results on both datasets are 
shown in the following Table 2:

In the evaluation based on the cross-correlation coef-
ficient, values closer to 1 indicate a higher degree of 
similarity between the synthesized frames computed 
from estimated depth and pose and the target frames. 
This suggests better accuracy of the method. In the table 
above, entries 1 and 2 represent results from clinical data, 
while entries 3 to 6 represent results from the SCARED 
dataset. Comparing the results among different methods, 
except for the experiment at entry 5 where our method 
slightly underperformed compared to AF-SFM, our 
framework showed a significant advantage in the other 
test groups. This demonstrates that our framework can 
more accurately simulate camera motion within the tho-
racic cavity, enabling more precise 3D reconstruction.

Depth quantitative evaluation of conventional indicators
In addition to comparing using the cross-correlation 
coefficient, we also conducted a quantitative evaluation 
on the SCARED dataset using conventional metrics. We 
directly validated the model trained on clinical data on 
the SCARED dataset without any fine-tuning. The exper-
imental results are as shown in the following Table 3:

From the table above, it is evident that our method 
achieved better results in various parameters, demon-
strating its strong performance across different patients 
and endoscopes.

Figure  3 provides a qualitative comparison. It can be 
observed that the three methods do not differ signifi-
cantly on the SCARED dataset, with our method and 
AF-SFM showing slightly better results. However, on 

the clinical dataset, the Endo D &M method is no longer 
capable of accurate depth estimation, while our method 
can effectively capture the depth values of two protrud-
ing regions.

Pose evaluation on the SCARED dataset
It can be seen that, except for the standard deviation, 
our framework slightly underperforms EndoSLAM. In 
other metrics, our model outperforms the others. This 
may be because the EndoSLAM model uses an attention 
module in its pose estimation network, which allows the 
pose estimation network to handle regions with missing 
textures more effectively. We also attempted to incorpo-
rate this into our framework, but experimental results 
showed that the performance gain was not significant. 
This could be due to the complexity of adding an atten-
tion module in the pose network in the challenging clini-
cal environment, which might decrease accuracy rather 
than improve it (Table 4).

Figure  4 shows qualitative experiments for pose esti-
mation. Figure (a) displays the predicted trajectory for 
the AF-SFM method, where the blue line represents the 
ground truth trajectory and the green line represents the 
estimated trajectory. From the image, it is evident that 
our predictions are closer to the actual results.

Ablation experiments
We divided our framework into four models: the base-
line model (ID1) without an attention mechanism and 
without inter-layer loss, directly computing the loss only 
on the last layer; the attention model (ID2) with only 
the attention mechanism and no inter-layer loss; the 

Table 2  Quantitative comparisons of correlation coefficient

Methods 1 2 3 4 5 6

EndoSLAM 0.5991 0.6732 0.8173 0.7470 0.7134 0.6214

Endo D &M 0.6006 0.6712 0.8221 0.7485 0.7001 0.6635

AF-SFM 0.5991 0.6694 0.8165 0.7746 0.7638 0.6618

Ours 0.6007 0.6739 0.8415 0.8205 0.7435 0.7204

Table 3  Quantitative comparison of depth on the SCARED 
dataset

Methods Abs Rel Sq Rel RMSE RMSE log δ

EndoSLAM 0.062 0.606 5.726 0.093 0.957

Endo D &M 0.070 0.761 5.221 0.084 0.970

AF-SFM 0.074 0.807 6.442 0.097 0.922

Ours 0.051 0.337 4.797 0.072 0.986
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inter-layer model (ID3) without an attention mechanism, 
using only inter-layer loss; and our full model (ID4). We 
compared these models and conducted experiments 
on both the SCARED dataset and clinical dataset. The 
Table  5 shows the quantitative depth evaluation results 
on the SCARED dataset:

The table clearly demonstrates that the proposed 
improvements indeed enhance the accuracy of depth 
prediction. After incorporating the attention module and 
inter-layer loss, all the experimental metrics improve, 
with δ values approaching 1. This indicates that more 
predicted values fall within the range of 75% to 125% of 
the true values. By comparing the differences between 
ID2, ID3, and ID1, it is apparent that inter-layer loss has 
a more significant impact on the entire framework. This 

may be because inter-layer loss leverages features at dif-
ferent resolutions, providing the framework with a bet-
ter understanding of both image details and the overall 
structure.

Table  6 represents six experiments conducted on the 
clinical dataset, using the cross-correlation coefficient 
as the evaluation standard.It’s evident that on the clini-
cal dataset, there is a similar trend in the data among dif-
ferent models (ID1-4), leading to the same conclusions as 
observed on the SCARED dataset.

We performed a quantitative evaluation of the pose 
under the same conditions, and Table 7 shows the results 
of the quantitative evaluation of the pose:

In terms of bit pose, there is not much difference 
between ID1 and ID2, indicating that the attention mod-
ule in the deep network cannot have a positive effect on 
bit pose prediction. In contrast, the results of ID3 and 
ID4 are better than those of ID1 and ID2, with the best 
result for ID4, which also shows the superiority of our 
complete model on the bit-pose prediction.

Point clouds for SCARED and clinical datasets
After obtaining depth estimation results and endoscope 
ego-motion results, along with the camera intrinsic 
parameters, you can derive a 3D point cloud represen-
tation of the endoscopic scene. We use the Truncated 
Signed Distance Function (TSDF) proposed by Recasens 

Fig. 3  Qualitative comparison results of different methods

Table 4  Quantitative comparison of motion on the 
SCARED dataset

Methods Trajectory Rotation

Error Std Error Std

EndoSLAM 0.0376 0.0117 0.0027 0.0014

Endo D &M 0.0743 0.0729 0.0030 0.0024

AF-SFM 0.1075 0.0936 0.0036 0.0024

Ours 0.0272 0.0220 0.0017 0.0015
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et  al. [18] to represent and fuse the depth predictions 
into a high-quality surface reconstruction. Quantitative 
evaluation of point cloud reconstruction results may be 
challenging, but qualitatively, you can observe the recon-
struction results in Fig. 5. Figures (a) and (c) are results 
from the SCARED dataset, while (b) and (d) are from the 
clinical dataset. It is apparent that our framework can 
faithfully and accurately reconstruct the 3D structure of 
the endoscopic scenes in both environments.

Fig. 4  Qualitative comparison of motion on the SCARED dataset

Table 5  Experimental study on the ablation of attention modules and inter-layer losses

ID Attention Module Inter-layer Loss Abs Rel Sq Rel RMSE RMSE log δ

1 0.109 0.683 9.428 0.146 0.841

2 � 0.109 1.373 8.772 0.138 0.867

3 � 0.087 0.956 8.507 0.127 0.928

4 � � 0.051 0.337 4.797 0.072 0.986

Table 6  Validation of ablation experiments on a clinical data set

ID 1 2 3 4 5 6

1 0.4808 0.5799 0.6569 0.6786 0.5934 0.5478

2 0.5189 0.6115 0.7035 0.6826 0.6100 0.5505

3 0.5749 0.6344 0.7557 0.7419 0.6813 0.5811

4 0.6007 0.6694 0.8165 0.7746 0.7638 0.6618

Table 7  Validation of pose estimation by ablation experi-
ments on the SCARED dataset

ID Trajectory Rotation

Error Std Error Std

1 0.0375 0.0270 0.0137 0.0088

2 0.0329 0.0319 0.0122 0.0088

3 0.0316 0.0230 0.0095 0.0053

4 0.0272 0.0220 0.0017 0.0015
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Conclusion
In this research, a novel self-supervised framework was 
designed. Leveraging an optical flow network as a base, 
we incorporated an attention module and introduced 
inter-layer loss into the network to address the challenges 
presented by endoscopic clinical datasets, such as severe 
inter-frame brightness fluctuations and significant scene 
variations. When faced with the difficulty of obtaining 
real depth and camera motion in clinical datasets, we 
used the cross-correlation coefficient as a quantitative 
evaluation metric. After assessing the performance using 
the cross-correlation coefficient, our framework exhib-
ited superior mapping relationships between frames, 
which was attributed to the accuracy of depth estima-
tion and endoscope ego-motion estimation. Finally, we 
conducted generalization experiments on the SCARED 
dataset, which also demonstrated the accuracy and gen-
eralization capabilities of our network.

Limitations and future work
 In current research, researchers have primarily focused 
on static environments. For instance, datasets like 
SCARED and SERV-CT are collected on deceased pigs. 
However, in actual surgeries, the intraoperative envi-
ronment is subject to real-time changes. Especially in 
the lung region, the lungs expand and contract periodi-
cally with the patient’s breathing. Our study, compared 

to previous research, has increased scene complexity 
but hasn’t addressed the dynamic aspects. Establishing 
dynamic lung models is currently a relatively underdevel-
oped aspect of endoscopic 3D reconstruction research. 
While some progress has been made in typical environ-
ments, incorporating these achievements into the field 
of endoscopic 3D reconstruction is a direction for our 
future research.
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