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Abstract 

Early screening of autism spectrum disorders (ASD) is a key area of research in healthcare. Currently artificial intel-
ligence (AI)-driven approaches are used to improve the process of autism diagnosis using computer-aided diagnosis 
(CAD) systems. One of the issues related to autism diagnosis and screening data is the reliance of the predictions 
primarily on scores provided by medical screening methods which can be biased depending on how the scores are 
calculated. We attempt to reduce this bias by assessing the performance of the predictions related to the screening 
process using a new model that consists of a Self-Organizing Map (SOM) with classification algorithms. The SOM is 
employed prior to the diagnostic process to derive a new class label using clusters learnt from the independent fea-
tures; these clusters are related to communication, repetitive traits, and social traits in the input dataset. Then, the new 
clusters are compared with existing class labels in the dataset to refine and eliminate any inconsistencies. Lastly, the 
refined dataset is utilised to derive classification systems for autism diagnosis. The new model was evaluated against 
a real-life autism screening dataset that consists of over 2000 instances of cases and controls. The results based on the 
refined dataset show that the proposed method achieves significantly higher accuracy, precision, and recall for the 
classification models derived when compared to models derived from the original dataset.
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Introduction
Autism Spectrum Disorder (ASD) is a group of neurode-
velopment conditions, which inhibit the brain’s natural 
development [4, 16, 19]. People with ASD exhibit a range 
of symptoms including impairments in social contact and 
engagement, sensory disturbances, interest in repetitive 
activities, and various degrees of intellectual disability 
[15]. Along with the symptoms exhibited, psychological 
or neurological conditions are also prevalent in people 
with ASD, with comparatively predominant hyperac-
tivity and attention deficiency, anxiety, depression, and 
epilepsy [30]. The specific causes of ASD continue being 
investigated within the medical community. In recent 
years, the number of confirmed ASD cases has increased, 
thus necessitating quicker diagnostic services [46, 47].

Recently, machine learning (ML) technology has 
become a actively researched alternative for ASD diag-
nosis as it offers several benefits including shortening the 
diagnostic time, enhancing the ASD detection rate, and 
identifying impactful features [19, 20, 45]. ML techniques 
such as a Self-Organizing Map (SOM) explore the data 
to identify useful unknown patterns, and then use this 
information in decision making including for medical 
screening and diagnosis [6, 27]. An SOM is a clustering 
approach that categorises the data instances into differ-
ent groups where instances within the same cluster are 
similar but different to instances in other groups [13, 26]. 
The SOM technique utilises an Artificial Neural Network 
(ANN) to transform data onto a two-dimensional map 
[31].

One of the challenges in using ML for medical data 
analysis, including the process of creating a data driven 
ASD diagnosis, is to create a diagnostic model with 
stronger predictive power than the screening methods 
used by clinicians [12, 25]. However, since the screening 
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class within the dataset is based upon the same screen-
ing questions, any automated classification model trained 
using ML techniques on the data will be biased towards 
the questions used in the screening methods [52]. This 
occurs because the decision attribute (class label) is 
usually assigned to the cases and controls in the data-
set using a scoring function derived from behavioural 
screening methods. For example, Quantitative Checklist 
for Autism in Toddlers (QCHAT) and Autism Spectrum 
Quotient (AQ) use scoring functions based on the avail-
able questions to produce cut-offs (class labels) to dis-
criminate between individuals undergoing behavioural 
screening [5, 10, 11]. Since classification algorithms pro-
cess the dataset to build computer-aided models for ASD 
diagnosis, we suspect that these models can be biased 
toward the class label assigned by the behavioural screen-
ing method.

To be more specific, when an individual undergoes an 
autism screening receives a score 6 out of 10 by a screen-
ing method such the AQ-Adult-10 questionnaire then 
according to AQ-Adult-10’s scoring function the target 
class of the screening will be Autistic Trait = Yes (see 
“Medical screening used” section for more details on 
scoring functions). This assignment was based on just 
adding up the points obtained from the answers of the 10 
questions rather than a comprehensive assessment by the 
clinician. Despite that the automatic scoring is beneficial 
by offering some sort of knowledge it did not consider 
the questions themselves or their relationships. There-
fore, this research investigates the above problem by 
refining autism screening datasets when class is assigned 
automatically by the screening method scoring functions 
using a data driven approach based on unsupervised 
learning.

The research more specifically investigates SOM 
approach prior the classification process to derive 
new unbiased class labels based on the items and their 
answers in the medical screening questionnaire, and 
without using any scoring functions. The newly derived 
class labels, along with the clinician decision, can be used 
together to reduce any possibility of biased decisions 
when classification algorithms are employed for ASD 
screening. This paper investigates the question: Can a 
new filtering approach based on ML be used to reduce 
bias in the ASD screening process? The authors aim to 
build a refined ASD model that minimises the classifica-
tion biases in autism diagnosis systems. This is achieved 
in two phases. First, a clustering phase where a SOM is 
applied to learn new patterns, create a new class label, 
and to refine the dataset. Second, a classification phase 
where algorithms are applied to the refined dataset to 
create ASD classification models which have then been 
validated on a real dataset of over 2,000 instances. It is 

the firm belief of the authors that no models based on 
ML have utilised a SOM to reduce biased decisions, at 
least in behavioural applications such as ASD screening 
and diagnosis.

The dataset for the study was collected from recently 
developed screening systems called ‘ASD Tests’ and 
Autism AI’ [37, 46, 47], which are based on the Q-CHAT, 
AQ-10 Child, AQ-10 Adolescent, and AQ-10 Adult ASD 
screening questionnaires [4]. The ‘ASD Tests’ uses a scor-
ing function and ‘Autism AI’ utilises a classification algo-
rithm based on deep neural network (DNN). A score 
is generated based on the available cases and controls 
within the systems’ data repositories for a test instance, 
and a screening result is offered to the diagnostician.

This paper is structure as follows: In  “Introduction” 
section, background information regarding ASD and ML 
is provided for better understanding of these domains. 
“Literature review” contains a review of selected pub-
lished journals and articles which are related to ASD and 
ML, especially on utilising UL on ASD data. “Method-
ology” section presents the experimental methodology. 
“Medical screening used” section presents the ASD data-
set used in the study and its features. “Data and features 
descriptions” section describes the creation and evalu-
ation of the data subset by applying ML techniques and 
measuring their performance. Finally, in Section VIII the 
conclusions, limitations, and possible future work are 
briefly discussed.

Literature review
Stevens et  al. [41] applied hierarchical cluster analysis 
to a sample of 138 school-age children with autism to 
explore two subgroups, i.e. pre-school age and school 
age, of Autistic Disorder (AD). The study was carried out 
with the chosen variables on school-age data including 
expressive and receptive language measures, nonverbal 
intelligence (IQ), and normal and abnormal behaviour 
among many other measures. The results derived from 
hierarchical analysis for the school-age subgroup were 
further analysed against pre-school characteristics by 
repeated measures’ analysis of variance (ANOVA) [21]. 
The findings reflect the presence of two subgroups identi-
fied by different levels of social, language, and nonverbal 
ability, with the higher group displaying cognitive and 
behavioural scores that are generally average, school-age 
functioning was strongly predicted by preschool cogni-
tive function. The comparative result of two groups indi-
cated that high IQ is necessary in the presence of severe 
language impairment, but not adequate for optimal 
outcome.

Obafemi-Ajayi et al. [33] proposed a hierarchical clus-
ter analysis of the phenotype variables of ASD patients 
to identify more homogeneous subgroups to aid the 
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Diagnostic and Statistical Manual of Mental Disor-
ders’ (DSM)-5 model. The dataset used contains a sam-
ple population of 213 patients with ASD derived from 
the Simons Simplex Collection (SSC) project [36]. The 
authors chose 24 phenotype variables that spanned 
seven categories, i.e. ASD-specific symptoms, cognitive 
and adaptive functioning, language and communication 
skills, behavioural problems, neurological indicators, and 
genetic indicators. The result showed that the hierarchi-
cal model produced two significantly discrete clusters 
and one outlier cluster, and as if tree structure proceeds, 
each predominant subgroup can be further divided and 
evaluated to unravel more homogeneous and clinically 
significant groups.

Lombardo et al. [29] applied hierarchical clustering to 
a dataset of adults: 694 with and 249 without autism, to 
create five discrete subgroups of autism spectrum condi-
tions (ASC). The authors state that there is a high level 
of variability in the aetiology, development, cognitive 
features, behavioural features, and more between indi-
viduals diagnosed with ASC. Based on this, the authors 
wanted to determine if there was a significant statistical 
basis for new ASC categories. Their approach was limited 
to the cognitive domain of mentalizing which is meas-
ured using items from the Reading the Mind in the Eyes 
test [10, 11]. Hierarchical clustering produced five signifi-
cantly discrete clusters within the ASC study population 
and four clusters in the control group. Of the five ASC 
clusters, three showed high levels of mentalizing impair-
ment with the remaining two clusters being unimpaired.

Stevens et  al. [39] applied cluster analysis to a sam-
ple dataset of 2116 instances, i.e. children with ASD, to 
recognise trends of challenging behaviours observed at 
home and medical care. The dataset was extracted from 
SKILLSTM, a proprietary data archive operated by a 
major regional provider of autism care services (Cent-
ers for Disease Control & Prevention, 2017). The authors 
then used K-means clustering algorithms [28] to extract 
common behaviour profiles through the specified catego-
ries of challenging behaviours, i.e. features. The results of 
their work indicated that (1) A dominant single challeng-
ing behaviour is present in most clusters, (2) Several pos-
sible variations were identified in challenging behavioural 
profiles between male and female populations.

Stevens et al. [40] extended their 2017 work and applied 
Gaussian Mixture Models [GMM] [34] and hierarchical 
clustering to a sample of 2400 children with ASD to iden-
tify behavioural phenotypes and to improve treatment 
reaction across those observed phenotypes. The authors 
found that when receiving treatment, the participants 
had deficits in eight domains, i.e. language, social, adap-
tive, cognitive, executive function, academic, play, and 
motor skills. Therefore, GMM analysis was performed to 

assess proficiency in one of the eight treatment domains 
and this revealed 16 subgroups. Further analysis by Hier-
archical Clustering found five distinct subgroups, and 
findings indicated two overlying behavioural phenotypes 
with unique deficit profiles consisting of subgroups that 
may differ in severity.

Baadel et  al. [8] expanding on their previous work [9] 
and other work of [49] proposed a new semi-supervised 
ML method called Clustering-based Autistic Trait Clas-
sification (CATC) to be applied to three real datasets 
(adult, adolescent, and child)—this was obtained by a 
mobile screening application called ‘ASDTest’ [44] to 
enhance the efficiency of detecting ASD traits by reduc-
ing data dimensionality and redundancy in the autism 
dataset. Their approach involved two phases: a clustering 
phase in which the Outlier-based Multi-Cluster Overlap-
ping K-Means Extension algorithm (OMCOKE) [7] was 
used, and a classification phase in which Repeated Incre-
mental Pruning to Produce Error Reduction (RIPPER) 
[16], PART [17], Random Forest [22], Random Trees [22], 
and Artificial Neural Networks [35] were used to evalu-
ate the performance of the proposed CATC method. The 
results analysis revealed that CATC offers classifiers with 
higher predictive accuracy, sensitivity, and specificity by 
reducing the error rate.

Thabtah et al. [48] developed a filtering method-based 
feature selection called Variable Analysis (VA) to detect 
influential features of autism from three datasets col-
lected using a screening application called ASDTests 
[44],these datasets contain cases and controls related to 
children, adolescents, and adults. The proposed filtering 
method was compared with five other filtering methods 
using supervised learning algorithms including decision 
trees and rule induction. The results revealed that when 
used as a feature selection method on autism screen-
ing datasets, VA selects highly influential features. To be 
exact, VA minimized the number of features chosen from 
the children, adolescent, and adult datasets to just 8, 8, 
and 6, respectively. These subsets of features, when pro-
cessed by supervised learning algorithms, derive classifi-
cation models with good predictive power, at least when 
using decision trees and rule induction approaches.

Thabtah and Peebles [50] extended the work of Thab-
tah et  al. [49] and proposed a rule induction algorithm 
called Rules-Machine Learning (RML) to quickly screen 
autism for individuals. The proposed rule induction algo-
rithm learns simple rules in the form of If–Then using 
greedy classification in which whenever a rule is gen-
erated, all its corresponding data will be discarded in a 
repetitive process. Experimental evaluation of the RML 
algorithm was compared with well-known classification 
algorithms RIPPER, RIDOR, Nnge, Bagging, CART, C4.5, 
and PRISM against the children, adolescent, and adult 
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datasets using different performance metrics. The results 
pinpointed that the RML algorithm produces a smaller 
number of rules when contrasted with other rule induc-
tion and decision tree algorithms and maintains the level 
of performance with respect to accuracy, sensitivity, and 
specificity. The RML algorithm was also compared with 
a regression-based model by Thabtah et al. [49] using the 
same autism screening datasets and showed good pre-
dictive performance. Nevertheless, the RML and other 
conventional ML approaches were sensitive to the class 
imbalance issue as demonstrated in recent research by 
Alahmari [2], and Abdelhamid et al. [1].

Tawhid et  al. [42, 43] improved the performance of 
ASD detection based on the electroencephalogram 
(EEG)—a procedure that measures the brain’s electri-
cal activity. Using deep learning technology, the authors 
developed classification systems that process images of 
time–frequency spectrogram (EEG signals). Initially, 
the unprocessed data were transformed and filtered, 
and then features that were extracted from the images 
assessed using feature engineering, i.e., principal com-
ponent analysis (PCA). Lastly, multiple convolutional 
neural networks were designed and applied to the pro-
cessed data to build predictive models for ASD pre-
diction. Empirical results show the superiority of the 
proposed deep learning systems when compared with 
other conventional machine learning techniques in terms 
of predictive power and other metrics. Table 1 shows the 
summary of the related work.

Methodology
Figure 1 below shows the methodology employed in our 
experiment. The ASD dataset obtained from the ‘Autism 
AI’ and ‘ASD Tests’ mobile application systems [37, 38] is 
first examined closely in a descriptive analysis provided 
in “Medical screening used” section. One issue identified 

in the dataset was that a new instance is generated every 
time the test is taken within the app. Therefore, some 
users may have multiple results recorded if they used the 
test more than once. Two criteria were used to detect 
such cases: first using the date feature (which also con-
tains a timestamp) and checking if two consecutive 
tests are taken within five minutes of each other,second, 
checking if demographic data (Age, Sex, Ethnicity, Jaun-
dice, FamilyASDHistory, User, and AutismAgeCategory) 
in the consecutive tests match. If these two criteria are 
met, the original test instance was kept, and the follow-
ing test instance removed. This approach is only able to 
detect if a user takes the test multiple times within five 
minutes and selects the same options for demographic 
questions. The same user could of course complete mul-
tiple tests at varying times or could try selecting differ-
ent demographic options. The approach also assumes 
that if a user completes the test multiple times in succes-
sion, their first result is the most accurate, so subsequent 
results were removed. We filtered out 93 instances, and 
the remaining instances were kept in a pre-processed 
dataset (PPDS).

After this pre-processing step, two phases were applied 
to the PPDS to build an ASD screening model to reduce 
bias. In the first phase, the SOM clustering algorithm 
was applied to create a map from the scores of test ques-
tions. The SOM algorithm is an adaptation of ANN for 
unsupervised and competitive learning. It creates a sin-
gle layer of output neurons (nodes) in a two-dimensional 
map (grid) with the input vector directly connected to 
the neurons within the map. The map nodes themselves 
are not interconnected, which means the values of each 
map node are hidden from others. The SOM clustering 
algorithm was applied on the questions Q1–Q10 from 
the PPDS to create a map that consisted of 225 (15 by 15) 
nodes. Each node on this map was then assigned a class 

Table 1 Summary of the literature review

Study Sample size Learning methods used

Literature review summary

Stevens et al. [41] 138 Hierarchical cluster analysis

Obafemi-Ajayi et al. [33] 213 Hierarchical cluster analysis

Lombardo et al. [29] 943 Hierarchical cluster analysis

Stevens et al. [39] 2116 K-means clustering

Stevens et al. [40] 2400 GMM, hierarchical cluster analysis

Baadel et al. [8] 2048 Multi-Cluster OMCOKE, RIPPER, PART, Random 
Forest, Random Trees, Artificial Neural 
Networks

Thabtah et al. [49] 2048 RIPPER, C4.5

Thabtah and Peebles [50] 2048 RML, RIPPER, RIDOR, Nnge, CART, C4.5, PRISM

Tawhid et al.  [42, 43] 4657 Convolutional neural networks
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value based on the most frequent screening class value 
for instances mapped onto that node. The application of 
SOM in this experiment is further detailed in “Data and 
features descriptions” section.

After creating the new cluster class, it was important 
to examine the instances where three different screening 
approaches (‘Autism AI’-DNN class, Cluster SOM class, 
and the Medical Screening Method class) gave the same 
outcome. By investigating whether data instances where 
the (‘Autism AI’-DNN class, Cluster SOM class, and the 
Medical Screening Method class) do not match, it may be 
possible to reduce possible class labels bias in the dataset. 
To that end, 274 instances were removed from the PPDS 
where the screening, DNN, and cluster class values did 
not match to create a new ‘Matching class’ (MCDS) data 
subset containing 1681 instances with matching class val-
ues. MCDS is the refined dataset where all class labels, 
including the new cluster label, match with respect to 
their values for the cases and controls.

In the second phase of the methodology, classification 
models were trained on the MCDS using two different 
learning algorithms: Naïve Bayes [18] and Random For-
est [14]. These algorithms were selected due to their 
popularity, ease of implementation, and good predic-
tive performance in multiple previous medical applica-
tions [32, 51, 53]. A model’s performance is measured 

by predictive accuracy, precision, and recall. In particu-
lar, we compare models trained on the original PPDS 
dataset with those derived from the refined MCDS 
dataset using the chosen ML algorithms (See Table 4). 
This process was performed in two trials: first, building 
classification models to predict the screening classes, 
and second, building classification models to predict if 
the subject has been diagnosed with ASD by a clinician. 
The building and evaluation of classification models is 
further outlined in Section V.

The proposed approach is unique and differs from 
existing work related to improving ASD classification 
using intelligent techniques such as AI and machine 
learning. In particular, the proposed approach is one of 
the first attempts to assess whether the ASD screening 
decision assigned by the automated medical assessment 
method using data driven methodology (unsupervised 
learning) could be biased. The proposed approach 
improves the screening detection by reducing the class 
bias by only assessing behavioural features (the medi-
cal screening elements) using SOM, and without con-
sidering the final score computed from these elements. 
However, most of the existing research works on ASD 
classification using behavioural indicators have focused 
on building classification systems from the dataset in 
which the class label was primarily or partly assigned 
using the medical screening score.

Fig. 1 Methodology followed
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Medical screening used
Autism Spectrum Quotient (AQ) is a behavioural screen-
ing method for autism that is self-administered and can 
be conducted by adults with an average intelligence level. 
In its original version, AQ consisted of 50 questions 
that cover different social and behavioural areas such 
as attention, social skills, communication, and imagina-
tion among others. When the adult goes through the 
AQ method a score of all questions answered that range 
between 0 and 50 will be given in which the higher the 
value of the score the higher autistic traits.

To simplify the autism screening process, and to reduce 
the screening time of AQ methods Allison et  al., [4] 

proposed different short versions of AQ methods that 
also can cover besides adult, children, adolescent called 
AQ-Adult, AQ-Child, and AQ-Adolescent respectively. 
In these versions, each short questionnaire will contain 
10 questions instead of 50 that have been designed to fit 
the age category of the individual undergoing the screen-
ing process. The AQ adolescent questionnaire is intended 
for individuals with age between 12 and 15  years, and 
the AQ-Child is a parent-administered questionnaire 
intended for children between 4 and 11 years. Tables 2, 
3, 4, 5 shows the list of questions for each age category. 
Evaluation of the AQ-Adult, AQ-Child, and AQ-Adoles-
cent autism screening questionnaires have shown similar 

Table 2 Features collected and their descriptions for adults based on AQ-10 Adult medical questionnaire [4]

Feature Type Question description

Question 1 Answer Multiple choice—4 options—after encoding: Binary (0, 1) I often notice small sounds when others do not

Question 2 Answer 4 options—after encoding: Binary (0, 1) I usually concentrate more on the whole picture, rather than the 
small details

Question 3 Answer Multiple choice—4 options—after encoding: Binary (0, 1) I find it easy to do more than one thing at once

Question 4 Answer Multiple choice—4 options—after encoding: Binary (0, 1) If there is an interruption, I can switch back to what I was doing very 
quickly

Question 5 Answer Multiple choice—4 options—after encoding: Binary (0, 1) I find it easy to ‘read between the lines’ when someone is talking to 
me

Question 6 Answer Multiple choice—4 options—after encoding: Binary (0, 1) I know how to tell if someone listening to me is getting bored

Question 7 Answer Multiple choice—4 options—after encoding: Binary (0, 1) When I’m reading a story I find it difficult to work out the characters’ 
intentions

Question 8 Answer Multiple choice—4 options—after encoding: Binary (0, 1) I like to collect information about categories of things (e.g. types of 
car, types of bird, types of train, types of plant etc.)

Question 9 Answer Multiple choice—4 options—after encoding: Binary (0, 1) I find it easy to work out what someone is thinking or feeling just by 
looking at their face

Question 10 Answer Multiple choice—4 options—after encoding: Binary (0, 1) I find it difficult to work out people’s intentions

Table 3 Features collected and their descriptions for adolescents based on AQ-10 Adolescent medical questionnaire [4]

Feature Type Question description

Question 1 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he notices patterns in things all the time

Question 2 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he usually concentrates more on the whole picture, rather than the 
small details

Question 3 Answer Multiple choice—4 options—after encoding: Binary (0, 1) n a social group, s/he can easily keep track of several different peo-
ple’s conversations

Question 4 Answer Multiple choice—4 options—after encoding: Binary (0, 1) If there is an interruption, s/he can switch back to what s/he was 
doing very quickly

Question 5 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he frequently finds that s/he doesn’t know how to keep a conversa-
tion going

Question 6 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he is good at social chit-chat

Question 7 Answer Multiple choice—4 options—after encoding: Binary (0, 1) When s/he was younger, s/he used to enjoy
playing games involving pretending with other children

Question 8 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he finds it difficult to imagine what it would be like to be someone 
else

Question 9 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he finds social situations easy

Question 10 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he finds it hard to make new friends
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performance in terms of sensitivity and specificity when 
compared with the original AQ method.

Each question of the short versions of the QA-10 is 
associated with 4 possible answers for the respondents: 
‘Definitely Agree,’ ‘Slightly Agree,’ ‘Slightly Disagree,’ 
and ‘Definitely Disagree.’ Conventionally, the screen-
ing method will consider a single point per question 
in AQ-Adult, AQ-Child, and AQ-Adolescent. To be 
more specific if the respondent’s answer to questions 
1, 7, 8, and 10 is ‘Slightly Agree’ or ‘Definitely Agree’ 
1 point will be added. Further, when the respondent’s 
answer to questions 2, 3, 4, 5, 6, and 9 is ‘Slightly’ or 

‘Definitely Disagree’, a point is added. Then, the points 
are added up to derive a final score for the respondent. 
The final score will then be utilised to indicate whether 
the respondent is associated with autistic traits that is 
when the final score is above 6. It should be noted that 
the score computations for each short version of the 
AQ are different.

Q-CHAT-10 is a shorter version of the Q-CHAT 
(Baron-Cohen et  al., 1992) which is a questionnaire 
administred by a medical specialist based on a report 
submitted by the child’s parents observing the child’s 
behaviour. Q-CHAT-10 consists of 10 questions with 
the below sets of possible resposnes:

Table 4 Features collected and their descriptions for children based on AQ-10 Child medical questionnaire [4]

Feature Type Question description

Question 1 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he often notices small sounds when others
do not

Question 2 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he usually concentrates more on the whole picture, rather than the 
small details

Question 3 Answer Multiple choice—4 options—after encoding: Binary (0, 1) In a social group, s/he can easily keep track of several different peo-
ple’s conversations

Question 4 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he finds it easy to go back and forth between different activities

Question 5 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he doesn’t know how to keep a conversation going with his/her 
peers

Question 6 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he is good at social chit-chat

Question 7 Answer Multiple choice—4 options—after encoding: Binary (0, 1) When s/he is read a story, s/he finds it difficult to work out the charac-
ter’s intentions or Feelings

Question 8 Answer Multiple choice—4 options—after encoding: Binary (0, 1) When s/he was in preschool, s/he used to enjoy playing games 
involving pretending with other children

Question 9 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he finds it easy to work out what someone is thinking or feeling just 
by looking at their face

Question 10 Answer Multiple choice—4 options—after encoding: Binary (0, 1) S/he finds it hard to make new friends

Table 5 Features collected and their descriptions for toddlers based on Q-Chat-10 medical questionnaire [4]

Feature Type after encoding Question description

Question 1 Answer Multiple choice—5 options—after encoding: Binary (0, 1) Does your child look at you when you call his/her name?

Question 2 Answer Multiple choice—5 options—after encoding: Binary (0, 1) How easy is it for you to get eye contact with your child?

Question 3 Answer Multiple choice—45 options—after encoding: Binary (0, 1) Does your child point to indicate that s/he wants something (e.g. a 
toy that is out of reach)?

Question 4 Answer Multiple choice—5 options—after encoding: Binary (0, 1) Does your child point to share interest with you (e.g. pointing at an 
interesting sight)?

Question 5 Answer Multiple choice—5 options—after encoding: Binary (0, 1) Does your child pretend (egg care for dolls, talk on a toy phone)?

Question 6 Answer Multiple choice—5 options—after encoding: Binary (0, 1) Does your child follow where you’re looking?

Question 7 Answer Multiple choice—5 options—after encoding: Binary (0, 1) If you or someone else in the family is visibly upset, does your child 
show signs of wanting to comfort them (e.g. stroking their hair, 
hugging them)?

Question 8 Answer Multiple choice—5 options—after encoding: Binary (0, 1) Would you describe your child’s first words as: Very typical, Quite 
typical, Slightly unusual, Very unusual, My child doesn’t speak

Question 9 Answer Multiple choice—5 options—after encoding: Binary (0, 1) Does your child use simple gestures (e.g. wave goodbye)?

Question 10 Answer Multiple choice—5 options—after encoding: Binary (0, 1) Does your child stare at nothing with no apparent purpose?
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• Set 1: Questions (3,4,5,6,9,10)- Many times a day, A 
few times a day, A few times a week, Less than once a 
week, Never

• Set 2: Questions (1,7)- Always, Usually, Sometimes, 
Rarely, Never

• Set 3:Question 8—Very typical, Quite typical, Slightly 
unusual, very unusual, My child does not speak

A point of 1 is given when the respondent answers 
C, D or E for questions 1–9. For question 10, if the 
respondent answers A, B or C a point is considered. If 
the total score of the questions yields more than 3 or 
above then the child is classified as being associated 
with autistic traits, and he/s will be referred for further 
assessments.

Data and features descriptions
The dataset in the study was gathered using recently 
developed screening systems called ‘Autism AI’ and ‘ASD 
Tests’ [38, 45]. It contains 2,048 instances (rows) and 
23 attributes (columns). The screening systems contain 
questionnaires based on the autism screening question-
naires according to Allison et  al. [4], namely, Q-CHAT, 
AQ-10 Child, AQ-10 Adolescent, and AQ-10 Adult. The 
behavioural attributes Q1–Q10 are based on question-
naires described in Tables  2, 3, 4, 5 respectively. These 
attributes along with others have been used to form the 
dataset described in Table  7. We encoded the answers 
given by the participants in the dataset by assigning ‘1’ 
if the respondent has answered “slightly agree” or “defi-
nitely agree”, and ‘0’ (zero) if he/s answered “slightly disa-
gree” or “definitely disagree” during the screening process 
using the screening systems. The age category for infants, 
children, adolescents, and adults contains instances for 
individuals between 0 and 3 years, 4 and 11 years, 12 and 
16  years, and above 16  years, respectively. A respond-
ent answers the screening questions using ‘Autism AI’ or 
‘ASD Tests’ systems, and a score is determined based on 
the responses they submit with a score between 0 and 10. 
The ‘Class’ attribute is then given a YES or a NO depend-
ing on the score. The screening systems are designed 
to deliver YES if the score is above three in infants and 
above six in all other age categories, otherwise, the class 
is labelled as NO.

During the data gathering of the screening systems 
(apps), there was no direct contact with participants; the 
screening systems offer information to the participants 
about the use of data in a disclaimer. More importantly, 
the apps pinpoint that the data collected is strictly for 
research purposes and the participants consent to the uti-
lization of data during undergoing the screening process. 
The participants are anonymous as no sensitive informa-
tion such as names, date of birth, etc. are collected. The 

data is public, and the authors have obtained an ethical 
approval from the University of Huddersfield, United 
Kingdom [46, 47].

Apart from the screening class label, there are two 
other class attributes present in the dataset, i.e. ‘DNN 
Prediction’ and ‘Is ASD Diagnosed’. ‘DNN Prediction’ is 
the prediction provided by algorithms based on the his-
torical data of the ‘ASD Tests’ application, ‘Is ASD Diag-
nosed’ is the answer provided by the respondent to the 
query: ‘Has the respondent received a formal ASD diag-
nosis?’ appears at the close of the test. Other attributes 
include ‘ID’, ‘Date’, ‘Sex’, ‘Ethnicity’, ‘Jaundice’ (was the 
baby born with jaundice?), ‘Family ASD History’ (has 
anyone in the immediate family been diagnosed with 
autism?), ‘User’ (who is completing the test—categorised 
as self-test, parent, healthcare professional, etc.). The 
complete features used in the dataset is shown Table 6.

Classification of the ethnicity of the respondents by 
‘Class’ was carried out to identify the demographics of 
the participants as well as to learn which region of the 
world has more participants with ASD traits. The out-
come revealed that white Europeans represent slightly 
more than 50% of data, i.e. 1092 participant records 
of which 640 identified as having ASD. The reason for 
more data observations associated with white European 
is because the screening systems has been used more in 
countries where respondents were majority white. We do 
not expect that this may impact the classification results 
or have any variations since we have good representations 
in the dataset for other ethnicities including Asian, Black, 
and Middle Eastern among others; however, we intend in 
near future to consider evaluating whether some demo-
graphic attributes like gender and ethnicity can impact 
the outcome of the screening.

Figure 2 indicates ASD by age. The size of the dataset 
varies between the four categories, however, ASD traits 
are present primarily among infants. It was observed that 
142 infants have ASD traits, and all other categories fall 
below 40 cases for each age group.

Experiments and results analysis
The clustering process using SOM was completed in R 
Studio development environment [3, 24] on a device with 
a 2.81 GHz processor and 16 GB of RAM. The SOM train 
function was called from the SOM.nn library. All default 
parameter settings were used apart from alpha (training 
rate) which was set to 0.2, length (training steps) which 
was set to 10,000, xdim and ydim (map dimensions) 
which were both set to 15.

Figure 3 shows the map created by the SOM algorithm 
with blue depicting the share of instances mapped onto 
each node with screening class ‘YES’ and red depicting 
instances with screening class ‘NO’. This map is then used 
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to create a new class where each instance mapped to a 
node is assigned the most frequent screening class value 
within that node. This new class will be referred to in this 
paper as the cluster class.

The SOM validate function was used to find the level 
of similarity between the screening class and the clus-
ter class generated from the SOM algorithm. The clus-
ter class was able to predict the screening class with an 
accuracy of 85.57%. The resulting predicted values were 
exported as a new cluster class. The MCDS was then 
created by filtering out 274 instances where the screen-
ing class, DNN class, and the new cluster class did not 
match.

Table  7 shows the two datasets (PPDS and MCDS) 
description. The first trial of experiments sought to eval-
uate the created MCDS by deriving classification models 
using two algorithms, Naïve Bayes and Random Forest as 
shown in Table 8. Table 8 includes the results derived by 
the algorithm in the following scenarios.

1. Dataset = MCDS; Class label = The screening diag-
nosis assigned by the medical questionnaires

2. Dataset = PPDS; Class label = The screening diagno-
sis assigned by the medical questionnaires

3. Dataset = PPDS; Class label = The DNN algorithm 
assigned class

Table 6 Feature Description in the dataset

No Attribute Data type Possible values (count)

1 ID Numeric Range:
100,078—102,165

2 Date Date and Time Range:
05/08/2018–12/02/2020

3 Q1 Binary 1—(1,589)
0—(459)

4 Q2 Binary 1—(938)
0—(1,110)

5 Q3 Binary 1—(826)
0—(1,222)

6 Q4 Binary 1—(780)
0—(1,268)

7 Q5 Binary 1—(983)
0—(1,065)

8 Q6 Binary 1—(869)
0—(1,179)

9 Q7 Binary 1—(1,097)
0—(951)

10 Q8 Binary 1 – (1,342)
0—(706)

11 Q9 Binary 1—(891)
0—(1,157)

12 Q10 Binary 1—(1,409)
0—(639)

13 Age Integer Range: 0—80
Mean: 20.3

14 Sex String Male—(1,270)
Female—(778)

15 Ethnicity String White European—(1,092)
Asian—(266)
Mixed—(108)
Middle Eastern—(88)
Black—(81)
Latino—(70)
South Asian—(63)
Hispanic—(39)
Native Indian—(24)
Pacifica—(19)
Aboriginal—(8)
Others—(190)

16 Jaundice Boolean Yes—(373)
No—(1,675)

17 Family ASD History Boolean Yes—(506)
No—(1,542)

18 User String Self—(1,231)
Parent—(475)
Family Member—(149)
HealthCare Professional—

(42)
Others—(151)

19 Autism Age Category String Chat—(401)
Child—(278)
Adolescent—(196)
Adult—(1,173)

20 Score Integer Range: 0—10
Mean: 6

21 Class Boolean Yes—(1,136)
No—(912)

Table 6 (continued)

No Attribute Data type Possible values (count)

22 DNN Prediction Binary 1—(1,138)
0—(910)

23 Is ASD Diagnosed Binary 1—(715)
0—(1,333)

Fig. 2 ASD screening result by age
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4. Dataset = PPDS; Class label = The SMO algorithm 
cluster class.

Classification and evaluation of the models derived 
using the ML algorithm were completed within WEKA’s 
Experiment Environment [23] on a device with a 
2.81  GHz processor and 16  GB of RAM. Additionally, 
tenfold cross validation was used to evaluate each mod-
el’s performance over 10 repetitions. For each dataset 

and algorithm combination, mean and standard devia-
tion of accuracy, precision, and recall were recorded. A 
corrected Paired t-test was used to determine if the dif-
ference in performance on the matching class subset was 
statistically significant (with P ≤ 0.05).

Table 8 shows the mean accuracy, precision, and recall 
of classification models built from the PPDS and MCDS 
dataset under previously mentioned scenarios. Under all 
metrics, the Random Forest algorithm performed better 
than the Naïve Bayes algorithm when applied to the same 
dataset. More importantly for this paper’s research ques-
tion, algorithms applied to the MCDS data subset pro-
duced significantly better models (with P ≤ 0.05) under 
all considered metrics, compared to models built on the 
original PPDS data subset. This indicates that instances 
with matching screening, DNN, and cluster-based classes 
are easier to classify than instances that do not match. 
Removing the bias from the original dataset by using the 
SOM algorithm indeed improved the ASD predictive 
performance for the ML algorithms considered.

The second trial of ML experiments focuses on predict-
ing the ‘Is Diagnosed’ feature as a class label (A question 
in the screening systems/apps) which is reported by the 
subject undergoing the screening test. In this experiment, 
we used the same data features in two scenarios.

1. Dataset = MCDS; Class label = The Formal Diagnosis 
if any reported by the respondent during the screen-
ing assessment

2. Dataset = PPDS dataset when the Class label = The 
screening diagnosis assigned by the medical ques-
tionnaires is similar to ‘is Diagnosed’ feature values

Fig. 3 SOM map

Table 7 PPDS and MCDS datasets description

Dataset Description # of Data 
examples

A pre-processed dataset (PPDS) The original autism dataset (Table 2) but after pre-processing 1955

Matching class dataset (MCDS) Subset of PPDS data where the medical screening class, the DNN algorithm class, and 
the clustering of SOM class values did match

1681

Table 8 First trial results

Algorithm Metric MCDS data with screening 
class (%)

MCDS data with screening 
class (%)

PPDS data with DNN 
class (%)

PPDS data 
cluster class 
(%)

Naïve Bayes Accuracy 92.77 86.56 86.31 88.41

Precision 92.56 86.40 86.19 88.32

Recall 94.39 89.85 89.56 90.09

Random Forrest Accuracy 96.15 91.90 91.61 92.79

Precision 95.65 91.49 91.35 92.06

Recall 97.39 94.09 93.70 94.60
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We want to assess whether the formal diagnosis class 
has any bias despite being not validated in the original 
dataset as reported by the subject undergoing the ASD 
screening process. Table  9 presents the mean accuracy, 
precision, and recall of classification models built from 
the two datasets chosen in the second trial.

The Random Forest algorithm achieved higher accu-
racy and recall than Naïve Bayes, but a reduced preci-
sion rate. Both algorithms when applied to the MCDS 
data subset produced models with slightly higher accu-
racy precision and recall than models built using the 
original PPDS data subset. However, the corrected paired 
t-test did not consider this difference statistically signifi-
cant. It shows that the proposed approach also achieved 
a better performance in the second trial. Nevertheless, 
the performance rate as expected for the ‘Is Diagnosed 
with ASD’ class is below those of the medical screening 
method class due to several reasons discussed in the limi-
tation section.

We further investigated the area under the receiver 
operating characteristic (ROC) of the ML algorithms. 
Figure  4 shows the ROC curve for each model when 
applying the selected ML algorithms to each data set. The 

ROC curve is a commonly used graph representing the 
trade off between a models true positive rate and false 
positive rate as its threshold of discrimination changes. 
Here we are using the area under the ROC curve as a 
measure of model performance. As with other met-
rics, classifiers built using the Random Forest algorithm 
achieved higher area under ROC curve across all data-
sets. The model built when applying Random Forest to 
the MCDS data set achieved the highest area under ROC 
curve with 99.60%.

Figure 4 shows the F-Measure achieved when applying 
the selected ML algorithms to each data set. The F-Meas-
ure is defined as the harmonic mean of a model’s preci-
sion and recall. The ML algorithms achieved significantly 
higher F-Measure rates on the MCDS dataset than those 
derived from the other datasets when the same algo-
rithms were applied. Across each dataset, models built 
using Random Forest achieved a higher F-measure than 
models built using Naive Bayes.

Figure  5 shows the area under the receiver operating 
characteristic (ROC) curve for each model when apply-
ing the selected ML algorithms to each data set. The 
ROC curve is a commonly used graph representing the 

Table 9 Second trial results against the MCDS dataset

Algorithm Evaluation metric MCDS dataset—Class label considered in the experiment

Class label = The screening 
method Diagnosis (Yes/No) (%)

Class label = ‘Is Diagnosed’ feature (Reported by the 
Respondents during the screening process) (Yes/No) 
(%)

Naïve Bayes Accuracy 66.44 65.64

Precision 74.06 73.51

Recall 75.98 73.88

Random Forrest Accuracy 68.28 67.93

Precision 72.78 72.06

Recall 83.30 82.89

Fig. 4 F-Measure for the classification algorithms against the data-
sets considered

Fig. 5 Area Under ROC for the classification algorithms against the 
datasets considered
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trade-off between a models true positive rate and false 
positive rate as its threshold of discrimination changes. 
Here we are using the area under the ROC curve as a 
measure of model performance. As with other met-
rics, classifiers built using the Random Forest algorithm 
achieved higher area under ROC curve across all data 
sets. The model built when applying Random Forest to 
the MCDS data set achieved the highest area under ROC 
curve.

Conclusions and limitations
This research aims to build an ASD classification model 
that minimizes the classification biases in autism diag-
nosis systems using a real-life dataset of over 2000 cases 
and controls. The proposed approach uses a combination 
of SOM and classification algorithms and involves two 
phases. First, the SOM algorithm is utilized to create a 
new cluster class before comparing it with existing class 
labels to create a new refined data subset which we call 
MCDS. Second, classification models were built using 
ML algorithms on the original data subset (PPDS) and 
MCDS. The method’s ability to reduce bias was evaluated 
by measuring the performance of the automated classifi-
cation models derived by the ML algorithms from both 
the MCDS and the PPDS and using different class labels.

The proposed ML approach was successful in increas-
ing the classifier’s accuracy, precision, and recall for the 
models built on the MCDS. This indicates a reduction in 
bias in data instances with matching class label values. 
Models built using Random Forest showed higher per-
formance than models built with Naïve Bayes on both 
subsets of data (MCDS, PPDS). The model produced by 
Random Forest based on the MCDS dataset, derived with 
the proposed approach, achieved accuracy of 96%, preci-
sion of 96%, and recall of 97%.

Furthermore, the use of the proposed approach 
improved the accuracy, precision, and recall of the 
models trained to predict the ‘Is Diagnosed’ class in 
the MCDS data subset; however, this was not found to 
be a statistically significant difference. Random Forest 
achieved accuracy of 68%, precision of 73%, and recall of 
83% when applied to the MCDS data subset. While this 
class is interesting for comparing the screening result 
with a clinician’s diagnosis, there are some underlying 
challenges that cause bias in this class which this paper 
cannot address. Adding an additional question to the 
‘ASD Tests’ & ‘Autism AI’ screening systems to ask the 
user if they have received an ASD diagnosis either posi-
tive or negative from a clinician could help to remove 
some of this bias.

The proposed ML approach can derive classifica-
tion models using Naïve Bayes and Random Forest that 
are useful for researchers and healthcare professionals 

interested in the screening of ASD. However, this paper 
is limited to the two classification techniques and the 
instances in the dataset used. Exploring rule-based clas-
sification can be seen as a way forward since not only can 
the model with reduced bias be offered to diagnosticians, 
but also models contain an easily interpretable chunk 
of knowledge. In future work, it would be interesting to 
apply this rule-based classification methodology to ASD 
screening and diagnosis by expanding the current meth-
odology to work with other classification and clustering 
algorithms.

It should be noted that the three classes in the origi-
nal dataset (PPDS)—screening method class, DNN class, 
and SOM Cluster class—have all been generated by mod-
elling the original dataset using behavioural screening 
methods, the ANN classification algorithm, and unsuper-
vised clustering SOM, respectively. Therefore, building 
classification models to predict these class values, even 
when achieving high levels of predictive performance, is 
limited to their prospective values. Because of this, the 
study intends to validate whether the proposed approach 
can improve the classification model’s ability to predict 
the “Is Diagnosed” class which asks the subject if they 
have been formally diagnosed with ASD by a diagnosti-
cian. When building classification models to predict the 
“Is Diagnosed” class there are some challenges. Firstly, 
the value of this class is reported by the subject taking the 
test—this is not a reliable validation method. Secondly, 
since the mobile application systems are designed to be 
a screening test for ASD, there may be some subjects that 
use the app prior to obtaining any clinical diagnosis.
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