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Abstract 

Type 2 Diabetes (T2D) is a chronic disease characterized by abnormally high blood glucose levels due to insulin 
resistance and reduced pancreatic insulin production. The challenge of this work is to identify T2D-associated features 
that can distinguish T2D sub-types for prognosis and treatment purposes. We thus employed machine learning (ML) 
techniques to categorize T2D patients using data from the Pima Indian Diabetes Dataset from the Kaggle ML reposi-
tory. After data preprocessing, several feature selection techniques were used to extract feature subsets, and a range 
of classification techniques were used to analyze these. We then compared the derived classification results to identify 
the best classifiers by considering accuracy, kappa statistics, area under the receiver operating characteristic (AUROC), 
sensitivity, specificity, and logarithmic loss (logloss). To evaluate the performance of different classifiers, we investi-
gated their outcomes using the summary statistics with a resampling distribution. Therefore, Generalized Boosted 
Regression modeling showed the highest accuracy (90.91%), followed by kappa statistics (78.77%) and specificity 
(85.19%). In addition, Sparse Distance Weighted Discrimination, Generalized Additive Model using LOESS and Boosted 
Generalized Additive Models also gave the maximum sensitivity (100%), highest AUROC (95.26%) and lowest logarith-
mic loss (30.98%) respectively. Notably, the Generalized Additive Model using LOESS was the top-ranked algorithm 
according to non-parametric Friedman testing. Of the features identified by these machine learning models, glu-
cose levels, body mass index, diabetes pedigree function, and age were consistently identified as the best and most 
frequently accurate outcome predictors. These results indicate the utility of ML methods in constructing improved 
prediction models for T2D and successfully identified outcome predictors for this Pima Indian population.
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Introduction
Type 2 Diabetes (T2D) is one of the most common 
severe chronic diseases characterized by progressive 
complications that include cardiovascular disease, 
hypertension, retinopathy, kidney disease, and strokes 
[61, 63]. Pancreas produced insulin controls blood glu-
cose uptake by cells thereby reducing circulating levels; 

without such glycaemic control circulating sugar lev-
els can remain high for extended periods, resulting in 
glycation products that have myriad deleterious effects 
on the body, but notably the vascular system [21]. Type 
2 diabetes results from poorly understood processes 
that cause resistance to insulin stimulation and grad-
ual loss of glycaemic control, which can be accompa-
nied by reduced insulin production. A survey found 
that 451 million people were globally affected by T2D 
which will likely increase to 693 million by 2045 [17]. 
In addition, 85% of T2D patients by 2030 will live in 
developing countries [40, 63]. However, this disease 
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can generally be prevented or reduced in severity by 
following healthy lifestyle including a well-balanced 
diet, exercise and low level psychological stress, how-
ever, genetics and environmental factors play a signif-
icant role in T2D development [9, 23, 32, 33, 38, 46]. 
The signs of T2D development and progression include 
excessive thirst, weight loss, hunger, fatigue, skin prob-
lems and slow healing wounds, progressively advancing 
to life-threatening health issues, as well as significant 
associations with many other serious comorbidities 
such as rheumatoid arthritis and Alzheimer’s disease 
[10, 31, 41, 42, 45]. Given the wide variety of presenta-
tion and development of comorbidities in T2D, treat-
ment and care of patients can be greatly improved if the 
prognostic signs are used to better sub-categorize T2D 
patients. Machine learning methods are well suited to 
such categorization tasks and potentially provide use-
ful information to clarify the key symptoms of interest 
of this disease. The motivation of this work is therefore 
to develop intelligent T2D detection and categorization 
models which identifies types of T2D patients and dis-
tinguishes them from non-diabetic controls earlier and 
with greater precision.

However, there are many challenges in designing such 
kinds of models. T2D is a complex metabolic disorder 
that contains various types of signs and related comorbid 
diseases [65]. Identification of major significant features 
is important for controlling this disease and to utilise 
effective treatment regimens for affected people. The 
development and medical costs resulting from T2D are 
enormous, but there are many poorly defined risk factors. 
Nevertheless, there has been a great deal of development 
work in categorizing T2D using various different types 
of computational methods. In those studies, researchers 
analyzed T2D patient records to identify more accurate 
prognostic indicators [25, 54]. However, most of these 
studies were not able to explore and identify improved 
working models that have high enough performing fea-
tures to be usefully employed in the clinic. In this work, 
we propose an intelligent T2D detection model where 
different feature selection and classification models have 
been applied to analyze the T2D dataset to determine 
out the best classifier. These classification outcomes were 
then used to explore significant attributes from different 
perspectives. The contributions of this work are given as 
follows:

–	 Newly extended versions of feature selection and clas-
sification methods were employed for the analyses of 
T2D datasets. The proposed model showed greatly 
improved performance with extended classification 
models able to recognise T2D better than other exist-
ing approaches.

–	 The classification results of this work are represented 
with the resampling distribution of summary statistics 
more accurately. This combination can identify the top 
performing machine learning model from a range of 
different viewpoints.

–	 Finally, non-parametric statistical methods were used 
to identify the best machine learning model. Then, 
wireframe contour plots were used to identify the most 
useful feature subsets with high efficiency.

Related work
Numerous studies have attempted to predict T2D out-
comes using a variety of machine learning techniques 
[19, 21, 29, 29, 40, 51, 57]. Proposed methods were 
employed various data preprocessing and machine learn-
ing techniques to isolate T2D patients from controls. 
In data retrieval steps, various techniques such as data 
cleaning, clustering, sampling, missing value imputa-
tion, and outlier detection was used to prepare data for 
further evaluation. Feature selection methods are also 
useful to explore the most significant features and reduce 
computational complexity, including stable outcomes. To 
analyze T2D detection performance, various widely used 
classifiers such as K-Nearest Neighbor (KNN), support 
vector machine (SVM), Naïve Bayes (NB), Artificial Neu-
ral Network (ANN), Logistic Regression (LR), Decision 
Trees (DT), and Random Forest (RF) were implemented. 
Recently, many ensemble and voting based classification 
methods have been proposed for such work. [26, 53]. 
For instance, Kahramani et al. [24] used a hybrid method 
that mingled ANN and fuzzy neural network (FNN) to 
predict T2D cases more efficiently. Vaishali et  al. [59] 
used genetic algorithm as feature selection method and 
applied various classifiers such as multi-objective evo-
lutionary (MOE) Fuzzy, NB, J48 Graft, and Multi Layer 
Perceptron (MLP) to investigate diabetes dataset. Dagliati 
et al. [11] considered a data mining pipeline where miss-
ing data by means of RF and data balancing strategies 
were employed, therefore LR with stepwise feature selec-
tion and different classifiers were used in that analysis. In 
addition, Maniruzzaman et  al. [30] used a range of fea-
ture selection methods, including principal component 
analysis (PCA), Analysis of Variance (ANOVA), mutual 
information (MI), LR, and RF) in the PIDD analysis to 
explore various subsets and then classify them with vari-
ous classifiers. Also, Wei et al. [64] used deep neural net-
work (DNN) in preprocessed PIDD (i.e., applying scaling, 
normalization, imputation and dimensionality reduction 
method) and showed highest 77.86% accuracy. Thus, Bat-
tineni et al. [6] employed KNN to impute missing records 
as well as NB, J48, LR, and RF were implemented for 
investigating T2D datasets. Wang et  al. [63] proposed a 
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method named Prediction algorithm for the classification 
of T2D on imbalanced data with Missing values (DMP_
MI) where NB compensated this missing records. The 
adaptive synthetic sampling method (ADASYN) was then 
used to balance this dataset and applied RF to achieve a 
classification result. Hasan et al. [17] proposed a machine 
learning methodology where they implemented PCA, 
Independent Component Analysis (ICA) and Correla-
tion-based Feature Selection (CFS) for feature selection 
and employed KNN, DT, RF, AdaBoost, NB, XGBoost, 
and MLP as classification techniques. Tripathi and 
Kumar [55] used random oversampling (ROS), normali-
zation, and several classifiers like Linear Discriminant 
Analysis (LDA), KNN, SVM, and RF were used to investi-
gate their primary diabetes dataset for machine learning 
purposes. Ismail et al. [22] provided a taxonomy of signif-
icant factors where different machine learning algorithms 
were used with or without feature selection processing. 
In addition, Ramesh et  al. [44] implemented multivari-
ate imputation by chained equations (MICE) method 
for handling missing values of primary diabetes dataset. 
Subsequently three feature selections (chi-squared test, 
extremely randomized trees, and least absolute shrink-
age and selection operator (LASSO)) and some classifi-
ers such as KNN, LR, Gaussian NB, and SVM were used 
to investigate this dataset. Meanwhile, Banerjee and 

Satyanarayana [4] created an ensemble learning method 
called SDS where DT, stochastic gradient boosting 
(SGD), and gradient boosting classifier (GBC) are incor-
porated to find its highest results. Some deep learning 
approach had been applied into diabetes dataset to get 
more suitable results for detecting diabetes [27, 34]. For 
example, Gupta et  al. [16] used deep learning (DL) and 
quantum machine learning (QML) to detect diabetes 
where DL outperformed related QML algorithms.

Materials and methods
Several steps were considered to analyze T2D dataset 
and its feature subsets by implementing a number of high 
performing classifiers which are given as follows (see 
Fig. 1).

Machine learning based diabetes detection model

–	 Data Description and Preprocessing In this work, we 
employed a widely used dataset, PIDD obtained from 
the publicly available Kaggle ML Repository, provided 
by the National Institutes of Diabetes, Digestive and 
Kidney Diseases [37]. All of the subjects were females 
over 21 years old of Pima Indian indigenous herit-
age from a population near Phoenix, Arizona, USA. 
It provides 768 patient records with 9 features where 

Table 1  The demographic details of pima Indian diabetes dataset

S/N Pregnancies Glucose BloodPressure Thickness Insulin BMI DPF Age

Feature type Integer Real Real Real Real Real Real Integer

Unit Number of times mg/dL mm Hg mm mu U/ml kg/m2 years

Distinct count 17 136 47 51 186 248 517 52

Unique (%) 2.20% 17.70% 6.10% 6.60% 24.20% 32.30% 67.30% 6.80%

Mean 3.8451 120.89 69.105 20.536 79.799 31.993 0.47188 33.241

Range 0–17 0–199 0–122 0–99 0–846 0–67.1 0.078–2.42 21–81

Zeros (%) 14.50% 0.70% 4.60% 29.60% 48.70% 1.40% 0.00% 0.00%

5-th percentile 0 79 38.7 0 0 21.8 0.14035 21

Q1 1 99 62 0 0 27.3 0.24375 24

Median 3 117 72 23 30.5 32 0.3725 29

Q3 6 140.25 80 32 127.25 36.6 0.62625 41

95-th percentile 10 181 90 44 293 44.395 1.1328 58

Range 17 199 122 99 846 67.1 2.342 60

IQR 5 41.25 18 32 127.25 9.3 0.3825 17

Standard deviation 3.370 31.973 19.356 15.952 115.240 7.884 0.331 11.760

Coef of variation 0.876 0.264 0.280 0.777 1.444 0.246 0.702 0.354

Kurtosis 0.159 0.641 5.180 -0.520 7.214 3.290 5.595 0.643

MAD 2.772 25.182 12.639 13.660 84.505 5.842 0.247 9.586

Skewness 0.902 0.174 -1.844 0.109 2.272 -0.429 1.920 1.130

Sum 2953 92847 53073 15772 61286 24570 362.4 25529

Variance 11.354 1022.2 374.65 254.47 13281 62.16 0.10978 138.3

Memory size 6.1 KB 6.1 KB 6.1 KB 6.1 KB 6.1 KB 6.1 KB 6.1 KB 6.1 KB
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268 patients (34.9%) had T2D and 500 patients (65.1%) 
were non-diabetic (see details in Table 1). PIDD con-
tains personal health data from medical examination 
and does not have missing values, but required some 
cleaning and removal of unwanted instances from the 
dataset.

–	 Feature Selection Approach Feature selection meth-
ods are used to interpret and reduce variation and 
computational cost of processing training datasets. 
After performing preprocessing steps, different fea-
ture subsets were identified from PIDD using a num-
ber of feature selection methods such as information 
gain attribute evaluation (IGAE), gain ratio attribute 
evaluation (GRAE), gini indexing attribute evaluation 
(GIAE), analysis of variance (ANOVA), chi-square ( χ̃2 ) 
test, extension of relief (reliefF) attribute evaluation 
(RFAE), correlation based feature selection subset eval-

uation (CFSSE). fast correlation based feature selection 
(FCFS), and filter subset evaluator (FSE). These meth-
ods have been widely used in many previous machine 
learning studies [20, 30]. After these steps, these fea-
ture subsets were used to generate sub datasets from 
PIDD.

–	 Classification Numerous classification models (i.e., 
almost 184 classifiers) were implemented to scrutinize 
primary and its sub datasets. However, some of these 
required long computation times and were not sup-
ported on these datasets, therefore, we discarded them. 
Finally, ten classifiers like boosted generalized additive 
model (GAMBoost), regularized LR (RLR), penalized 
multinomial regression (PMR), Bayesian generalized 
linear model (BGLM), penalized LR (PLR), general-
ized linear model (GLM), sparse distance weighted dis-
crimination (SDWD), generalized boosted regression 

Fig. 1  Proposed methodology
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modeling (GBM), generalized additive model using 
LOESS (GAMLOESS) and NB were employed in the 
PIDD data along with its sub-datasets. In this work, 
we considered cross validation (CV) protocol for each 
classifier to analyze T2D data. In this case, the re-sam-
pling technique were used for the machine learning 
models by dividing instances into k groups (randomly 
constructed of approximately equal size) where the 
specific (k) fold was treated as a validation set, along 
with remaining k-1 folds. Different evaluation metrics 
such as accuracy, kappa-statistics, AUROC, sensitivity, 
specificity, and logloss were used to investigate the per-
formance of different classifiers.

–	 Investigating Derived Results The classification out-
comes were analyzed to identify the best models (see 
details in “Experimental results” section). Furthermore, 
non-parametric Friedman Tests [51], along with Iman-
Davenports ( FID ) adjustment was implemented into 
the generated results to verify the predictive perfor-
mance of individual classifiers as well as identify the 
best performing classifier. To explore the best feature 
subsets, we investigated the optimum combination of 
datasets and classification results to identify the sig-
nificant feature subsets where different classifiers had 
shown good performance.

However, a brief description of the various feature 
selection and classification methods are provided as 
follows:

Feature selection approach
The general description of individual feature selection 
methods is given as follows.

–	 Information Gain Attribute Evaluation (IGAE) com-
pares the entropy of the dataset before and after trans-
formation [50]. It is preferable to identify significant 
attributes from a large number of features. Suppose Sx 
is the set of training samples where information gain 
(IG) is determined for a random variable xi using fol-
lowing equation: 

–	 Gain Ratio Attribute Evaluation (GRAE) is the exten-
sion of IG that lessens its biasness using intrinsic infor-
mation (i.e., entropy of data distribution in branches) 
[39]. Therefore, the gain ratio of attribute A is shown as 
follow: 

(1)IG(Sx, xi) = H(Sx)−
∑

v

|Sx=v|

|Sx|
H(Sxi)

(2)GR(A) =
IG(A)

Intrinfo(A)

 where Intrinfo is denoted as Intrinsic Information.
–	 Gini Indexing Attribute Evaluation (GIAE) was used 

to select most splitting features from nodes [35]. 
However, bias remains in the unbalanced datasets 
that contain a large numbert of attributes. Besides 
this, Gini indexes provide low values for stubby fre-
quent attributes and high values for top frequent 
attributes. However, these values are relatively lower 
for specific attributes of larger classes.

–	 Analysis of Variance (ANOVA) is a parametric statis-
tical hypothesis test where the means of two or more 
samples are checked and ensured their same distri-
bution or not [30]. It uses an F-test to determine the 
significant difference between samples. Therefore, it 
contrasts between-groups variability to within the 
group variability using F-distribution.

–	 Chi-Square ( χ̃2 ) Test compares the independence 
of different variables. It uses χ2 statistics to measure 
the strength of the relationship between independ-
ent features [60]. In this method, higher χ2 values of 
features are more dependent on the response [28]. 
Hence, this method is calculated using following 
equations: 

–	 Extension of Relief Attribute Evaluation (RF-AE) is a 
filter based method that is notably sensitive regard-
ing feature interaction. Relief score ( Rx ) determines 
the value of each attribute and ranks them for feature 
selection. This score is calculated based on the selec-
tion of attribute value differences between nearest 
neighbor instance pair of different and same classes 
[58]. It defines as follows: 

 In this case, if a attribute value difference is found for 
the same classes, then the relief score is decreased. 
Otherwise, this score is increased.

–	 Correlation based Feature Selection (CFS) measures 
the importance of individual features by computing 
inter-correlation values among them. In this method, 
highly correlated and irrelevant features are avoided [7] 
to identify the most significant features from the data-
set. Also, different methods like best first search (BFS), 
evolutionary search (ES), reranking search (RS), scatter 
search (SS) and other related methods are employed 
with CFS to explore significant features.

–	 Fast Correlation based Feature Selection (FC-FS) [3] 
is a multivariate method that has symmetrical uncer-
tainty to determine feature dependencies and find the 

(3)χ̃2 =

r
∑

i=1

c
∑

j=1

(Oi,j − Ei,j)
2

Ei,j

(4)Rx = P(diffX |diffclass)− P(diffX |sameclass)
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corresponding subset using backward selection proce-
dure.

–	 Filter Subset Evaluation (FSE) is employed with an 
arbitrary filter (SpreadSubsampler) when different 
instances are passed through this filter and identified 
significant features.

Classification approaches

	 1.	 Boosted Generalized Additive Model (GAMBoost) 
is transformed each predictor variables and gen-
erated a weighted sum of them in a nonlinear way 
[56]. Each predicting component is fitted with the 
residuals to minimize prediction cost of this model.

	 2.	 Regularized Logistic Regression (RLR) contains one 
or more independent variables [18, 66] that repre-
sents hypothetical outcomes considering logistic 
or sigmoid function using regularization term. It is 
also prone over fitting if there are a large number 
of features. Let, x = x1, x2, . . . . . . , xn independent 
variables and θ = θ1, θ2, . . . . . . , θn parameters are 
considered where the expected result hθ (x) is: 

 where 1 ≤ hθ (x) ≤ 1 . So, the cost function MSE(θ) 
of LR can be expressed as: 

 The cost function is updated by the penalized high 
values of a parameter called regularization term 
�

2m

∑n
j=1 θ

2 (i.e., � is the regularization factor) that 
is also expressed as: 

 Regularization in LR is useful to generalize better 
on unseen data and prevent overfitting of training 
data.

	 3.	 Penalized Multinominal Regression (PMR) is a 
mixture logit model that initiates with a penalty 
to eliminate the infinite number of components 
from the maximum likelihood estimators [5]. Ridge 

(5)hθ (x) =
1

1+ eθ
T x

(6)Eθ (i) = y(i)log(hθ (x(i))

(7)Fθ (i) = (1− y(i))log(1− hθ (x(i)))

(8)MSE(θ) = −
1

m

m
∑

i=1

Eθ (i)+ Fθ (i)

(9)J (θ) = MSE(θ)+
�

2m

n
∑

j=1

θ2

regression is a simple form of penalized regres-
sion which handles multicollinearity of regressors 
(i.e., following linear regression). This penalization 
approach helped to avoid an overfitting problem.

	 4.	 Bayesian Generalized Linear Model (BGLM) is a 
generalization of linear regression model where 
statistical analysis is happened in the context of 
Bayesian inference. In this case, Bayes estimation 
remains consistent with true value by its prior sup-
port. This approach is used to estimate linear model 
coefficients with external information. Moreover, 
the complexity of BGLM gives uncertainty which 
leads to the natural regularization. Hence, LASSO 
and other regularized estimators are represented as 
Bayesian estimators for a particular prior [14].

	 5.	 Penalized Logistic Regression (PLR) creates a 
regression model with a large number of vari-
ables using the logistic or sigmoid function. Three 
regression models, such as ridge, LASSO and elas-
tic regression are mingled which shrinks low-con-
tributing factors towards zero [8]. Ridge regression 
follows L2 regularization where the penalty term 
�

2m

∑n
j=1 θ

2 is used to the cost function. 

 Besides, L1 regularization is considered by 
LASSO regression where following penalty term 
�

2m

∑n
j=1

|θ | is used. 

 Elastic net is a combination of L2 and L1 regulari-
zation penalties to define cost function. 

 Like the other regression models, it minimizes cost 
function J (θ) and maximize its outcomes.

	 6.	 Generalized Linear Model (GLM) is a induction of 
linear regression which gathers systematic and ran-
dom components in a statistical models. Suppose, 
a set of independent variables x0, x1, . . . .., xn with 
some coefficients θ = θ0, θ1 . . . . . . .., θn is used to 
build following hypothesis [18]: 

 Besides, the cost function of GLM is represented 
as: 

(10)J (θ) = MSE(θ)+
�

2m

n
∑

j=1

θ2

(11)J (θ) = MSE(θ)+
�

2m

n
∑

j=1

|θ |

(12)

J (θ) = MSE(θ)+
�

2m

(1− α

2

n
∑

j=1

|θ | + α

n
∑

j=1

θ2
)

(13)
hθ (x) = θTx = θ0 + θ1x1 + θ2x2 + . . . . . . ..+ θnxn
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 After generating the cost function J (θ) , minimiz-
ing is needed to get more accurate results in data 
analysis.

	 7.	 Sparse Distance Weighted Discrimination (SD-
WD) represents l1 Distance Weighted Discrimina-
tion (DWD) (i.e., by following l1 SVM) by replac-
ing l2 DWD in order to achieve sparsity and show 
its lost and penalty. If l2 norm penalty is used, the 
performance of all high dimensional variables is 
very poor [62]. Therefore, Zhu et al. [67] proposed 
the l1-norm SVM to fix this problem. It provides 
efficient computational performance for extensive 
numerical experiment.

	 8.	 Generalized Boosted Regression Model (GBM) is 
the combination of various decision trees and 
boosting methods where these decision trees are 
fitted repeatedly to improve the performance 
of the model. In this case, a random data subset 
is selected from each new tree using a boosting 
method whereby the first tree is fitted and next tree 
is taken based on the residuals. Thus, this model 
tries to improve accuracy at every step. It explores 
the combination of related parameters which 
determines minimum error for predictions with at 
least 1000 trees (i.e. following sufficient shrinkage 
rates) [12, 13].

	 9.	 Generalized Additive Model using LOESS 
(G-AMLOESS) utilizes linear predictor along 
with locally weighted regression (LOESS) to fit on 
smooth 2D in the 3D surfaces. Let Y be a univariate 
response variable where xi is defined with various 
continuous, ordinal and normal predictors. Fur-
thermore, different distributions such as normal, 
binomial or poisson distributions as well as link 
functions like identity and log functions are used to 
get the expected value of Y. 

	10.	 Naïve Bayes (NB) is a probabilistic classifier which 
is based on Bayes theorem with the strong inde-
pendent assumption between the features. It is par-
ticularly useful for large datasets. In addition, the 
presence of particular features are not related with 
any others which is manipulated by the following 
condition [15]: 

(14)J (θ) = −
1

2m

m
∑

i=1

(hθ (x)− y)2

(15)
g(µ) = β0 + f1(x1)+ f2(x2)+ . . .+ fk(xk)

(16)P(c|X) =
P(X |c)P(c)

P(X)

where P(c|X) is called posterior prob-
ability of class for given predictor. Then, 
P(X |c) = P(x1|c)× P(x2|c)× P(x3|c)× . . . .× P(xn|c)× P(c) , 
P(c|x), P(c), P(x|c) is defined as likelihood. Besides, 
P(c) and P(X) are represented as prior probability 
and marginal respectively.

Performance measures
A confusion matrix describes the performance of a clas-
sification model using the number of false-positive (FP), 
false negative (FN), true positive (TP) and true negative 
(TN) values. Several evaluation metrics such as accuracy, 
kappa statistics, AUROC, sensitivity, specificity, and log-
arithmic loss are used to justify the outcomes of different 
classifiers [47, 48, 50]. Therefore, a brief description of 
them is given as follows:

Evaluation metrics

–	 Accuracy indicates the ratio between correct and over-
all number of predictions which is provided as follows: 

–	 Kappa Statistics defines the inter rater agreement of 
observed and expected accuracy for qualitative fea-
tures. 

–	 Average area under receiver operating characteristic 
(AUROC) is calculated from true positive rate/sensitiv-
ity and (1-false positive rate)/specificity for all possible 
orderings. Let, tn and tn−1 are considered as the time 
observation of the concentration Cn and Cn−1 respec-
tively. Therefore, AUROC can be defined as: 

–	 Sensitivity represents the proportion of correctly clas-
sified positive and all positive instances. 

–	 Specificity determines from the proportion of correctly 
classified negative and all the negative instances. 

(17)Accuracy =

(

TP + TN

TP + FN + FP + TN

)

(18)Kp = 1−
1− po

1− pe

(19)[AUROC]nn−1 =
Cn−1 + Cn

2
· (tn − tn−1)

(20)Sensitivity =

(

TP

TP + FN

)

(21)Specificity = 1−

(

FP

FP + TN

)
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–	 Logarithmic loss (Logloss) assesses the performance of 
individual classifiers by following equation 

Friedman test
Friedman test is a non-parametric statistical method 
which considers p with k − 1 degrees of freedom under 
the null hypothesis and their outcomes do not rapidly 
change in all machine learning approaches. Pi is indicated 
as the average rank over N training sets of a classifier. If 
the null hypothesis is not accepted, the best classifier is 
assessed pairwise with each standard algorithm using 
several post-hoc tests, including Bonferroni, Holm and 
Holland. Thus, Iman-Davenport and Friedman statistics 
are defined as:

Experimental results
Experimental settings
In this work, we implemented the following feature 
selection methods (FSM) in the PIDD and generated 
various feature subsets (i.e., FS1, FS2, FS3, FS4, FS5, 
and FS6) using Orange v3.29.1 and Waikato Environ-
ment for Knowledge Analysis (WEKA 3.8.5). We con-
jugated various searching methods such as BFS, ES, 
RS, and SS with different attribute selector of WEKA. 
In this case, we selected the top 5 ranked attributes for 
each method using Orange software. Table  2 shows the 
list of feature subsets sequentially. This process resulted 

(22)Lg =
−
∑j

y=1

∑n
x=1 f (x, y) log(p(x, y))

n

(23)FID =
(N − 1)X2

F

N (K − 1)− X2
F

(24)X2
F =

12N

k(k + 1)

k
∑

i=1

(

P2
i −

k(k + 1)

4

)2

in different sub-datasets (DS1, DS2, DS3, DS4, DS5, and 
DS6) of PIDD formulated based on the feature subsets. 
Various classifiers (almost 184) were then employed to 
analyze these datasets using caret package in R (3.5.1). 
However, proposed top ten stable classifiers were iden-
tified to evaluate automatic diabetes detection process 
more accurately. To visualize the resampling distribution 
of summary results (i.e. minimum, mean, median and 
maximum findings), we utilized the matplotlib library 
using python in the Google Colaboratory platform. 
Finally, non-parametric Friedman Test was applied to 
derived classification results to explore significant classi-
fication model by assessing overall results using Knowl-
edge Extraction based on Evolutionary Learning (KEEL 
GPLv3).

Investigating the classification performance of diabetes 
detection
To scrutinize PIDD and its sub-datasets, various classi-
fier models including GAMBoost, RLR, PMR, BGLM, 
PLR, GLM, SDWD, GBM, GAMLOESS and NB were 
considered. In this case, we identified the best classifiers 
to determine the accurate results along with significant 
features for detecting T2D. Then, the experimental out-
comes of them were justified. In this work, the summary 
statistical results are organized by resampling distribu-
tion. The details of these findings are shown in Supple-
mentary Table 1–6, respectively.

The accuracy of these classifiers are given in Supple-
mentary Table  1. In this work, GAMLOESS provided 
minimum highest accuracy (71.05%) for DS4. However, 
many classifiers gave the top median accuracy (77.92%) 
for different datasets. Consequently, RLR, BGLM, PLR, 
and SDWD showed the best median accuracy for PIDD 
and SDWD provided the highest median accuracy for 
DS2. Also, GAMBoost, RLR, PMR, BGLM, PLR, and 
GLM for DS5 and GAMLOESS for DS6 produced simi-
lar results. Thus, GAMBoost presented the best mean 

Table 2  Formulation of Various Feature Subsets

FS FST Tool SM/TS Features

FS1 IGAE Orange Top 5 Glucose, Age, BMI, Insulin, and

GRAE Orange Top 5 Pregnancies

FS2 GIAE Orange Top 5 Glucose, BMI

ANOVA Orange Top 5 Age, DPF, and

X2 test Orange Top 5 Pregnancies

FS3 RFAE Weka Ranker, Top 5 Glucose, Age, Pregnancies, Thickness, and BMI

FS4 FCFS Orange Top 5 Glucose, Age, BMI, DPF, and Insulin

FS5 CFS Weka BFS, ES, RS, SS Glucose, BMI, DPF, and Age

FS6 FSE Weka BFS Glucose, BMI, and Age
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accuracy of 77.73% for DS5. Besides this GBM gave the 
greatest maximum accuracy of 90.91% for DS4.

Kappa statistics for individual classifiers are shown in 
Supplementary Table  2. GAMLOESS determined the 
supreme minimum kappa of 31.42% for DS4. Besides, 
GAMBoost provided the best median kappa (49.87%) for 
DS5. On the other hand, NB showed the top mean kappa 
of 48.97% for DS2. Finally, GBM exhibited the utmost 
maximum kappa of 78.77% for DS4.

The AUROC values of different classifiers are given 
in Supplementary Table  3. GAMLOESS generated the 
highest minimum (76.92%), median (85.36%) AUROC 
for FS5 and FS6 respectively. NB provided the supreme 
mean AUROC of 84.84% for DS5. For DS3, GAMLOESS 
showed the best maximum AUROC, of 95.26%.

The sensitivity of the following classifiers is given in 
Supplementary Table  4. SDWD gave the highest mini-
mum (96%), median (100%), mean (99.2%) and maximum 
(100%) sensitivity for DS6 (see Supplementary Table  4). 
In addition, SDWD and GBM gave the theoretical maxi-
mum sensitivity (100%) for DS5 and DS2 respectively.

In addition, NB showed the highest minimum (44.44%) 
and median (62.96%) specificity for DS2. Again, this clas-
sifier provided the highest minimum (44.44%), median 
(62.96%) and mean (62.23%) specificity for DS3 respec-
tively. Besides this, NB showed the top median specific-
ity (62.96%) for DS6. However, GBM manipulated the 
utmost maximum specificity (85.19%) for DS6.

When the experimental result with logloss was ana-
lyzed (see Supplementary Table  6), NB gave the lowest 
minimum logloss (30.98%) for DS4. GAMLOESS gave 
the lowest median logloss of 45.58% for DS6. In contrast, 
GAMBoost provided the shallow mean (46.43%) for DS5. 
Afterwards, this classifier presented the stubby maxi-
mum logloss of 56.83% for DS4.

The average minimum, median, mean and maximum 
accuracy, kappa statistics, sensitivity, AUROC, specificity 
and logloss are visualized at Fig. 2. The average best clas-
sification results for different datasets are illustrated with 
wireframe contours maps in Fig. 3.

Discussion
Comparing classification performances and identifying 
significant feature subsets
In this study, we analyzed PIDD and its sub-datasets 
using various classifiers to identify the best classifier 
based on experiment results. In all cases giving the best 
results for individual classifiers, GBM gave the high-
est maximum accuracy (90.91%) and maximum kappa 
statistics (78.77%) for DS4 respectively. Also, this classi-
fier provided the best specificity for DS6. Then, SDWD 
showed the top sensitivity (100%) for DS5 and GAM-
LOESS gave the maximum AUROC of 95.26% for DS3. 

However, GAMBoost obtained the lowest logloss for DS4 
respectively. However, the overall best classifier were not 
identified from this analysis. The average outcomes (i.e., 
accuracy, kappa statistics, AUROC, sensitivity, specificity 
and logloss) of individual classifiers were used to explore 
the best classification approach (see Fig.  2). Among all 
classifiers, GAMBoost and GAMLOESS provided the 
best outcomes in this analysis. That is to say that, GAM-
Boost gave a better performance than GAMLOESS for 
accuracy, sensitivity (see Fig.  2a, c) while, GAMLOESS 
showed better results for AUROC and specificity (see 
Fig. 2d, e). GAMBoost and GAMLOESS gave comparable 
results for kappa statistics and logloss. However, the per-
formance of other classifiers was not consistent for dif-
ferent evaluation metrics; these included GAMBoost and 
GAMLOESS. Therefore, we again averaged minimum, 
median, mean and maximum results of different classi-
fiers and used Friedman test to conduct non-parametric 
statistical analysis among them (see Table 3). This showed 
that GAMLOESS as the best ranked classifier (#1) to cor-
rectly classify diabetes outcomes, while GAMBoost was 
the second best (#2) ranked algorithm.

In the 2D wireframe contour graph noted above, the 
average highest classification outcomes are illustrated 
only for those datasets where classifiers provide the best 
average outcomes. This surface chart is helpful to extract 
the optimum combination of datasets for minimum, 
median, mean and maximum outcomes. Shown in Fig. 3 
is the optimum combination of average highest perfor-
mance found for DS5. The other amalgamation of sur-
faces are visualized for DS6, DS4 and DS2, respectively. 
As a result, Glucose levels, FS5 is found to be the most 
consistent feature subset which produces frequent out-
comes. In addition, FS6, FS4 and FS2 can be also consid-
ered as the significant feature subsets where numerous 
classifiers can generate good and consistent results. Fur-
thermore, we have provided the average highest classifi-
cation outcomes for different datasets in Supplementary 
Table 7.

Comparing results with previous studies
A number of studies have previously been performed 
on this PIDD data but their outcomes were not useful 
in some respects. Therefore, we proposed an intelligent 
computing diabetes detection model which fixes some 
of these issues to provide more suitable outcomes. Most 
of the machine learning related PIDD studies were used 
different kinds of general data processing approaches 
(i.e.,identifying/removing/replacing missing words and 
deleting wrong values) and advanced approaches such 
as data transformation [1, 2, 27], outlier detection [43], 
removal or replacement with mean or median values. [30, 
49]. In real-time data analysis, most of a dataset contains 
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Fig. 2  Average (Minimum, Median, Mean, and Maximum) Results of Different Classifiers
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significant numbers of outliers and extreme values. In 
this study, the general procedures of data cleaning are fol-
lowed to pre-process and generate better results. In pre-
vious studies, many researchers had used unsupervised 
clustering methods to gather more similar instances into 
homogeneous group [51, 55]. Nevertheless, numerous 
similar instances of clusters were not matched with regu-
lar classes, so need to remove them from analysis [35, 65]. 
In our proposed model, we avoided more pre-processing 
approaches to keep practical characteristics of PIDD.

In the current study, we applied different types of 
standard classifiers and extended these to use on the 
PIDD and its feature subsets, which did not use many 
state-of-art techniques [1, 30, 35, 51]. Many previous 
studies researchers had not employed about feature sub-
sets evaluation [36, 52, 65]. However, in this work, dif-
ferent standard and augmented classifiers were used to 
investigate their performance based on resampling dis-
tribution (i.e., minimum, median, mean, and maximum) 
of summary statistics. Therefore, the performance of 

individual classifiers was scrutinized more carefully. Also, 
we used non parametric Friedman testing to make a pri-
ority list of individual classifier. It should also be noted 
that the wireframe contour plot efficiently depicted the 
most significant feature subsets which were not identified 
in previous studies.

In this work, the performance of individual classifiers 
were not assessed with more T2D datasets. We did not 
fully compare the performance of the existing model with 
extended classifiers because the evaluation metrics of 
them are not same.

Conclusion and future work
In this work, we investigated the PIDD T2D dataset using 
various statistical, machine learning and visualization 
techniques to determine the ranking of classifiers and 
feature subsets. We found that GAMLOESS was the top 
ranked classifier and FS5 was the most significant feature 
subset for achieving the best classifications and analyzing 
this disease. Note that this T2D dataset which we used, is 

Fig. 3  Wireframe Contour of Average Best Classification Results for Individual Datasets

Table 3  Classifiers Ranking & Adjusted P-values using Post Hoc Methods (Friedman) based on Average Findings

i Classifier Ranking z =
R0−Ri

E
Unadjusted p pBonf pHolm pHochberg

1 GAMLOESS 3.00

2 GAMBoost 3.17 0.10 0.9240 8.3164 0.9240 0.9240

3 GBM 5.00 1.14 0.2526 2.2730 0.5458 0.5051

4 SDWD 5.33 1.33 0.1819 1.6373 0.5458 0.5051

5 BGLM 5.67 1.53 0.1271 1.1441 0.5167 0.5051

6 GLM 5.92 1.67 0.0952 0.8568 0.5167 0.4760

7 NB 6.00 1.72 0.0861 0.7751 0.5167 0.4760

8 PLR 6.67 2.10 0.0359 0.3235 0.2516 0.2516

9 PMR 6.92 2.24 0.0251 0.2254 0.2004 0.2004

10 RLR 7.33 2.48 0.0132 0.1186 0.1186 0.1186
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not very large. In future, the performance of this model 
will be inspected using multiple diabetes datasets and 
explored with high performing machine learning mod-
els for various crucial features which will enable us better 
classify this disorder. This work, therefore, has potentially 
significant clinical importance and the study outcomes 
method developed will help physicians and researchers 
to predict T2D more reliably.
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