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Abstract 

Epilepsy is a serious neurological condition which contemplates as top 5 reasons for avoidable mortality from ages 
5–29 in the worldwide. The avoidable deaths due to epilepsy can be reduced by developing efficient automated 
epilepsy detection or prediction machines or software. To develop an automated epilepsy detection framework, it is 
essential to properly understand the existing techniques and their benefit as well as detriment also. This paper aims 
to provide insight on the information about the existing epilepsy detection and classification techniques as they 
are crucial for supporting clinical-decision in the course of epilepsy treatment. This review study accentuate on the 
existing epilepsy detection approaches and their drawbacks. This information presented in this article will be helpful 
to the neuroscientist, researchers as well as to technicians for assisting them in selecting the reliable and appropriate 
techniques for analyzing epilepsy and developing an automated software system of epilepsy identification.
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Introduction
According to Epilepsy Action Australia, circa 65 mil-
lion people at the world level has epilepsy, and 80% are 
living in developing countries [1]. “Seizure” is defined 
as a paroxysmal malfunction of the neurological activ-
ity precipitate due to the immoderate hypersynchro-
nous of the neurons present in the brain [2]. “Epilepsy” 
is the state of perennial unprovoked seizure attacks [3]. 
Epilepsy is menacing brain dysfunction, which increases 
the occurrence risk of other maladies like Dementia, 
Cardiovascular Disorders, Depression, Sleep Disorder, 
Migraine, Cognitive Impairment, Mental De-cline (in the 
chronic condition), Brain tumors, etc. and affect other 
body parts and Pregnancy as well [4]. Epilepsy can affect 
anybody irrespective of person’s age, intellect, gender, 
cultural or social differences whereas it is scrutinized 
that the prevalence of epilepsy is on the peak during the 
early stage of childhood and also high in the late stage of 
life [5]. Sudden Unexpected Death in Epilepsy (SUDEP) 

is approximately 24 fold more in an epileptic patient as 
compared to the general [6]. Epilepsy is diagnosed with 
the help of an Electroencephalogram (EEG), which tracks 
the electrical activity in the brain and records the brain 
wave pattern [7–9]. In the cases of having un-certainty 
in the diagnosis of epilepsy or the reason behind parox-
ysmal spells is un-clear, then EEG recording is contem-
plated as the most accurate and promising diagnosis test. 
Finding traces of epilepsy through the visual marking of 
long EEG recordings by human experts is a very tedious, 
time-consuming, and high-cost task [10–12]. It is always 
a challenging issue for the researcher and neurologist to 
detect epilepsy disorder from EEG signals, which con-
tains huge fluctuating information about the functional 
behavior of the brain [13]. For all of the above-mentioned 
rea-sons, it is always an imploration for the automated 
epilepsy seizure activity detection techniques that can 
save and improve the life of epileptic patients.

Despite the fact that numerous anti-epileptic drugs 
have been developed from the last decade still, one-
third of epileptic patients continue to have a seizure 
attack in spite of treatment. One of the main important 
difficulties in the treatment of epilepsy syndrome is the 
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ability to detect clinical seizures rapidly (time of greater 
seizure susceptibility) and accurately. The record about 
epilepsy is present from since 2000 years B.C., whereas, 
the automatic epilepsy detection or prediction came to 
start from the 1970s [14, 15]. Over the last few decades, 
there is remarkable advancement has been perceived in 
the field of automated epilepsy detection.

This paper carried out a reviewed study about differ-
ent machine learning epilepsy detection techniques. 
This research will contribute as a “roadmap” for the 
researchers and developing technicians that assist 
epileptic seizure detection. Because in this paper, we 
have covered mostly the significant techniques for sei-
zure detection as well as highlighted the drawbacks of 
the existing techniques as a gap which is very crucial 
for guiding the researchers, clinicians, and technolo-
gists during the advance development effort of epilepsy 
detection. This research study is unique as we critically 
analyze the extant epilepsy detection and classification 
techniques in order to determine the certain opportu-
nities for the research and technology that aid in clini-
cal decision-making and benefit to the mainstream 
seizure diagnosis. The rest of the paper is systematized 
as: section  2, provide present techniques for epilepsy 
detection from EEG signals. Section  3 includes litera-
ture summary in the field of epilepsy detection from 
EEG Signals. Drawbacks of the existing techniques are 
discussed in section 4. Section 5 comprises discussion 

and future direction. Section 6 draws the conclusion of 
this paper.

Present techniques for epilepsy detection 
from EEG signals
EEG analysis and classification is an essential part of the 
diagnosis of epilepsy disorders as EEG patterns are the 
real replication of the electrophysiological state of the 
brain at a particular time frame. This section provides 
brief information about the various existing epilepsy 
detection techniques based on the different approaches 
of EEG signals analysis and classification. Figure  1 rep-
resents the overview diagram of epilepsy detection 
from EEG signals system followed by all the techniques 
described in the paper. The first step is data acquisition. 
Most of the researchers has used the online available 
EEG data. Next step is the feature extraction. Extracting 
the relevant statistical feature of the network plays a cru-
cial function during the classification of distinct EEG sig-
nals [16–19]. In technical term, a feature embodies as a 
discern-able dimension that can characterize the unique 
or distinguishable properties of a pattern or configura-
tion [20, 21]. In the process of feature extraction, the vast 
EEG data is simplified into a feature vector on the prin-
ciple of least possible loss of information. The third step 
is the classification. In classification, the set of unidenti-
fied observation (testing group) is predicted or classified 
into the appropriate class by considering some criteria 

Fig. 1 The overview diagram of epilepsy detection from EEG signals system followed by all the techniques described in the paper
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on the set of identified observation (training group) [22–
26]. The last step is the performance evaluation which is 
assessed by employing some defined standard measuring 
parameters such as accuracy, sensitivity, specificity and 
area under the roc curve etc.

EEG analysis can be categorized into four domains: 
time based analysis; frequency based analysis; time–fre-
quency based analysis, and analysis by non-linear meth-
ods. Below is the brief introduction about the above four 
EEG analysis domains.

EEG analysis based upon time domain
A time-domain approach based upon the analysis of EEG 
signals on particular time window by considering time 
as the variable of EEG signal. The time domain analysis 
comprises two main technique named linear prediction 
(LP) and component analysis (CA).

Linear prediction
The linear prediction is a technique is used to compute 
the set of coefficients that will define the behavior of EEG 
signal by linear time-invariant [27]. The linear predic-
tion is a technique where the imminent outputs ŷ(i) is 
the linear combination of input x(i) and previous outputs 
y(i − 1), y(i − 2), . . . .., y(i − p)

In the Eq.  (1), n and k symbolizes the predictor coef-
ficients. In EEG signal processing, the n predictor coef-
ficients are generally considered zero and the imminent 
outputs ŷ(i) is completely depend upon previous output 
i.e.:
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Component analysis
Component analysis technique (CA) is an unsupervised 
method that reduces the high dimensional data into fea-
ture sets. Principal component analysis (PCA), independ-
ent component analysis (ICA) and linear discriminant 
analysis (LDA) are the approaches based upon CA.

Principal component analysis Karl Pearson developed 
PCA in 1901. Principal component analysis is a dimen-
sion–reduction technique which is based upon orthogo-
nal transformation and reduces the high dimensional data 
into Eigenvector and also very successful in the EEG sig-
nal analysis [28, 29]. The principal components decompo-
sition of Y can be defined as:

In the Eq.  (3), Y denotes the data matrix with zero 
empirical mean and W is the matrix of the principal com-
ponent of Y and the columns of W are the eigenvectors 
of YTY  . Figure 2 illustrates how three-dimensional gene 
expression data are reduced to two-dimensional subspace 
with the help of Principal Component Analysis [30].

Independent component analysis In ICA, the multivari-
ate signal is disintegrated into sub-constituent whereas 
these sub-constituent are non-Gaussian signals and not 
dependent on each other. ICA is used to find the hidden 
features presents in the EEG signals. The ICA transform 
is defined as:

(2)ŷ(i) =

N∑

j=0

j
(
j
)
x
(
i − j

)

(3)T = YW

(4)h = Wx

Fig. 2 Illustrates principal component analysis [30]
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In the Eq. (4), h denotes the sets of hidden components, 
or independent constituent and x signify the set of the 
observed data or original signal. W is missing matrix [31].

Figure 3 illustrates the ICA has been implemented on 
data set X for the identification of original factors s and 
the dependencies specified by the matrix A [30].

Linear discriminant analysis Similar to PCA, LDA is 
also used for dimensional reduction. LDA method is 
supervised in nature. It is based upon the linear combi-
nation of parameters that describe the data adequately. 
LDA is used in the case when the dimensions are based 
on independent variables for each and every observation.

EEG analysis based upon frequency‑domain
In the frequency domain, the hidden information of the 
EEG signals can be elaborated by decomposing the sig-
nals into pure sinusoidal waves with different frequency 
ranges. A frequency-domain approach based upon the 
analysis of EEG signals on frequency spectral estima-
tion of statistical and Fourier Transform (FT) methods. 
The Spectral analysis is further classified into two parts 
named: Non-Parametric approach and the parametric 
approach.

Non‑parametric approach
In this approach, firstly the auto-correlation from the 
EEG signals are computed. Afterward, the Fourier 
Transform is applied to the extracted auto-correlated 
data in order to extract the power spectrum density. 
The Welch method [32] is considered as one of the 
best methods for extraction the power spectrum den-
sity. Welch method include the decomposition of EEG 

signals into overlapping epoch sections. Afterward, 
the data window is applied to each section for calcula-
tion periodogram, and then the averaged of the perio-
dogram is used to evaluate the Power Spectral Density. 
Figure 4 illustrates the Power Spectral Density estimate 
of one epoch EEG signal [33].

Parametric approach
The parametric approach provides improved fre-
quency resolution in comparison to the non-parametric 
approach. The parametric approach assumes apriori 
information about some parameters can help to charac-
terize the EEG signals properly. The prior information 
can be useful to calculate the desired Power Spectral 
Density. During the parametric approach, it is supposed 
that the EEG signals are a stationary and random process. 
These stationary signal are considered as the output of a 
filter with white noise as input. After that, the parameters 
correspond to that filter are evaluated. There are various 
techniques to compute the filter parameters on the basis 
of the model used as a filter. The three best model are the 
Moving Average model, the Auto-Regressive model, and 
the Auto-Regressive Moving Average model [34]. Fig-
ure 5 represents the Auto-Regressive model estimation of 
EEG signals [35].

EEG analysis based upon time–frequency domain
The time–frequency domain provides information about 
both the time and frequency mechanisms of the sig-
nal concurrently [16]. This technique is based upon the 
stationary principle and as a result window process is 
essential in the pre-processing stage. The time–frequency 
domain can be categorized as (1) Wavelet transform and 
(2) Hilbert–Huang Transform (HHT).

Wavelet transform
Wavelet transform (WT) is a spectral estimation method 
in which a function is represented as an infinite sequence 
of wavelets. A wavelet is defined as a small waveform with 
determinate energy and duration. In Wavelet transform, 
the primary function named mother wavelet is evaluated 
continuously along the time scale to achieve the wavelet 
coefficients. The wavelet coefficients provide information 
about the signal in both the time and frequency frame. 
In the Wavelet transform, the signal is decomposed into 
sub-bands, and relevant features are extracted from that 
sub bands [36]. The procedure is continued for the num-
ber of levels until the required results not achieved. The 
wavelet transform is of three kinds: Discrete Wavelet 
Transform, Continuous Wavelet Transform and Wavelet 
Packet Decomposition (WPD). Figure  6 illustrates the 
wavelet packet decomposition up to level 2. In the Fig. 1, 

Fig. 3 Illustrates the ICA
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 a1 denotes the approximation coefficients, and  d1 sym-
bolizes the detail coefficients at level 1 of WPD. Similarly, 

 aa2,  da2,  ad2, and  dd2 signifies level 2 WPD. Figure 7 illus-
trates the Lifting Wavelet Transform (LWT) [37].

Fig. 4 Illustrates the power spectral density of one epoch EEG signal [33]

Fig. 5 Represents the Auto-Regressive model estimation of EEG signals [35]
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EEG Signal

d1a1

da2aa2 ad2 dd2

Fig. 6 Wavelet packet decomposition upto level 2

Fig. 7 Illustrates the Lifting Wavelet Transform [37]
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Hilbert–Huang transform (HHT)
In Hilbert–Huang Transformation, there is decompo-
sition of EEG signals into Intrinsic Mode Functions 
(IMFs) so that instantaneous frequency of the data can be 
achieved. In EEG signal analysis, IMFs is firstly extracted 
with the help of Empirical Mode Decomposition (EMD) 
afterward, Hilbert Transform is executed to every IMFs 
in order to achieve the instantaneous frequencies and 
amplitudes. Then, with the help of Hilbert-weighted fre-
quency, the EEG signals are classified. EMD is the vital 
part of HHT as EMD can decompose the complex EEG 
signals into a fixed and small number of sub-parts [38]. 
Figure  8 represents the Hilbert–Huang Transform of a 
signal [39].

Non‑linear methods of EEG analysis
Non-linear approaches are used in the analysis of EEG in 
order to characterize the complexity and fractal nature 
of EEG signals which cannot be described by the linear 
analysis [40]. Nonlinear methods are the more promising 
approach for describing the EEG signals as it can iden-
tify the non-linear coupling and phase locking within the 
harmonic of the same scale of frequencies. Below is the 
brief information about various non-linear parameters 
that are used in the analysis of EEG signals.

Higher order spectra
Higher Order Spectra (HOS) is one of the promising 
non-linear technique for EEG signals analysis. HOS is 
basically a higher orders measures of the EEG signals. 
HOS can detect anomalies form EEG signals by identify-
ing the non-linearity, nonstationary, non-Gaussian nature 
and phase locking among the harmonic constituents of 

the EEG signal. HOS is also termed as polyspectra. It can 
provide the spectral information about the higher order 
statistics. The Higher Order Spectra of Gaussian signals 
has zero statistical value [41]. Therefore, HOS is a pow-
erful noise immunity tool in the case of Gaussian noise. 
In addition to this, HOS is also preserving the phase 
characteristics of the EEG signals. Normalized bispectral 
entropy, normalized bispectral squared entropy, Mean 
bispectrum magnitude, and bispectrum phase entropy 
are the name of some HOS based parameters which can 
be extracted from bispectral for EEG signal analysis.

Higher‑order cumulants
The cumulants are a set of measures that are the alterna-
tive to the moment’s distribution. The third order cumu-
lant (third central moment) and higher order cumulants 
play a vital role in the analysis of the EEG signal [42].

Recurrence plot
Recurrence plot (RP) is a graphical representation of the 
recurrences of the phase states in two-dimensional space. 
RP is useful in the analysis of EEG signals by identifying 
the hidden periodicities which are difficult to recognize 
in the different domains of EEG signals. It also helps to 
depict the non-stationary and non-linear character of 
EEG signals by visualizing the periodic behavior of EEG 
signals in the phase space trajectory. The RP illustrates 
the sets of pairs of times at which the EEG signal trajec-
tory is at a similar place [43]. Figure 9 represents RP pro-
duced from 2 s of EEG data [44].

Recurrence period density entropy
In order to determine the periodicity of the EEG signal, 
the recurrence period density entropy (RPDE) technique 
is advantageous. It is used to measure the periodicity of 
the EEG signal in the phase space without requiring any 
prior information about linear, Gaussian and dynamical 
aspects of EEG signals. RPDE is the illustration of non-
linearity, non-Gaussianity and non-deterministic nature 
of the EEG signal [45].

Recurrence Quantification Analysis
This technique is used to evaluate that how many times 
and how long the recurrences of EEG signals takes place 
in its phase-space. It is used to measure the complexity 
of the system. The Recurrence Quantification Analy-
sis (RQA) is basically used to illustrate and measure the 
small-scale structural presentation of recurrence plots of 
EEG signals [46]. Mean diagonal line length, recurrence 
rate, longest diagonal line, determinism, longest vertical 
line, entropy, recurrence time, laminarity, and trapping 
time are the names of few parameters which are used to 

Fig. 8 Represents the Hilbert spectrum [39]
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evaluates the Recurrence Quantification Analysis of EEG 
signals. Figure 10 represents RQA of 2 s EEG epoch [47].

Approximate entropy
Steven Pincus developed the idea of Approximate 
Entropy (ApEn) [48]. It is a measure which is used to 
determine how regular and complex is the EEG signal 
are. For irregular and complex EEG signals, the ApEn 
measure high value. ApEn is an efficient tool for noisy 
and short data sample length with low computational 
cost. If XN is a sequence consisting of N dimensions and 
Cl (r) represents the occurrence of repetitive patterns 
with length l. Then approximate entropy of XN, for a pat-
tern of length l and similarity measure r is defined as:

Sample entropy
Sample entropy is the extension and modified version of 
ApEn. It is a regularity or complexity measurement. It 
is used to measure the complexity of EEG signals [49]. 
Sample Entropy includes the observation of patterns in 
EEG signals to check the degree of complexity in that. It 
does not count the measurement of the self-similar pat-
tern. It has the main advantage over ApEn is that it is not 
restricted to sample length. During seizure activity, the 
sample entropy of EEG signals starts decreases.

(5)ApEn(XN , l, r) = ln

⌊
Cl(r)

Cl+1(r)

⌋

Multiscale entropy
Multiscale entropy method is used to measure the com-
plexity of EEG signals of finite length [50]. Multiscale 
entropy proved that the original data is more complicated 
than surrogate data. It is used to determine the complex-
ity dynamics of EEG signals at multiple time scales.

Fractal dimension
Fractal dimension (FD) is used as a parameter to detect 
and differentiate certain states of the physiological func-
tion of EEG signals. Fractal dimension is one of the 
promising means for modeling the EEG signals which is 
highly complex and irregular in nature [51]. It is used to 
analyze the non-linearity as well as the chaotic aspects 
and behavior of the EEG signals. In the case of the infor-
mation dimension, the fractal dimension is described as:

In the above equation, p signifies the probability and 
ǫ denotes the scaling factor. Figure  11 illustrates Fractal 
Dimension [52].

Correlation dimension
Correlation dimension is a measure which quantifies the 
complexity of EEG signals [53]. Correlation dimension is 
one of the categories of the fractal dimension. It is also 

(6)FD = lim
∈→0

−�logpǫ�

log 1
ǫ

Fig. 9 Represents RP produced from 2 s of EEG data [44]
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used to differentiate among the deterministic chaos and 
random noise in order to identify the potential faults [54]. 
Correlation dimension is generally computed by the GP 
algorithm which was developed by the Grassberger and 
Procassia [53]. Correlation dimension is described as:

In the above Eq. (7), K (ǫ) symbolize the total numeral 
of hypercube with side length ǫ and covered the attrac-
tor, pj denotes the probability of identifying a point in the 
hypercube j.

(7)D2 = lim
ǫ→0

ln
∑K(ǫ)

j=1 p2j

lnǫ

Hurst exponent
Hurts describe an empirical descriptor an, the Hurst 
exponent (H) is used to define the natural phenomena 
related to the temporal nature of EEG signals [55]. It is 
also applied for evaluating the randomness of a process. 
In addition to this, the fractal dimension is also corre-
lated with the Hurst exponent. Hurst exponent is used 
to quantifying the self-similar, the amount of long-range 
dependency and also for the prediction of EEG signals. 
Hurst exponent H is described as:

In the Eq.  (8), T signifies the duration of the EEG sig-
nals and (D|S) defines the rescaled range value. D denotes 
the difference among the maximum and minimum devia-
tion from the mean. S symbolizes the standard deviation. 
After plotting the (D|S) ) versus T in the axes of log, the 
slope of the regression line estimates the H [55].

Largest Lyapunov exponent
Largest Lyapunov exponent (LLE) is used as a measuring 
unit to check the dependency of the process on its ini-
tial conditions. It is used in the analysis of EEG signals to 
quantify the chaoticity in that. It defines the rate of devia-
tion of nearby trajectories. A positive value of Largest 
Lyapunov Exponent demonstrates the presence of chaos 
nature. LLE is defined as [56]:

In the above equation, d(t) denotes the average diver-
gence at time t, K symbolize the constant that used for 
the normalization of initial separation and c1 represents 
the exponential divergence of nearest neighbors.

Literature summary in the field of epilepsy 
detection from EEG signals
Automated EEG based seizure detection for assistance in 
epilepsy syndrome was started in the early 1970s. Prior 
et al. [57] introduce a device named as Cerebral Function 
Monitor (CFM) that monitor the long-term EEG without 
any supervisor. The device was able to detect tonic clonic 
seizures on the basis of the high increase in the amplitude 
of the EEG signal. Latter on Babb et al. [58] designed an 
electronic circuit based seizure detection. Gotman et al. 
[14] in 1976 tried to identify and quantify the inter-ictal 
activity during a seizure with the help of the small com-
puterized system.

In 1982, Gotman individually developed a comput-
erized automated epilepsy detection technique [59]. 
Afterward, has been recognized as an avant-gardist who 

(8)H =
log(D|S)

log(T)

(9)d(t) = Kec1tFig. 10 Illustrates RQA of 2 s EEG epoch [47]
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instigate the idea of the automated computerized based 
epilepsy detection system. The proposed technique was 
not patient-specific in nature (i.e., not specific to an indi-
vidual). The method was based upon the discovery of 
sudden fluctuation in the rhythmic bustle of EEG signals 
within the frequency range of 3–20 Hz. For seizure detec-
tion, some experiments had been performed in which the 
amplitude of EEG signals is measured with respect to the 
background, the period of time, and the periodicity of 
EEG signals. But the proposed algorithm was unsuccess-
ful in detecting epileptic seizure from that EEG signals 
in which the frequency bustle is high, and amplitude is 
low. In addition to this, it was not to detect epilepsy from 
that EEG signals in which the various frequency ranges 
exist. It was only able to detect the epileptic seizure with 
a frequency less than 20 Hz. Latterly [60], this technique 
was modified and used on the larger EEG database with 
5303  h recording. The main aim of these new methods 
was to consider the large temporal context of EEG data 
and to increase the specificity of the technique. The tech-
nique suffered from the detection delay drawback and 
therefore was not successful in implementing in a real-
time application.

In 1993, Qu et  al. [61] developed a new technique 
with the help of K Nearest Neighbor classifier for the 

automatic detection of seizure activity. The proposed 
method was patient-specific in nature. It helped to 
enhance the performance of the seizure detection as the 
EEG recording of individual-patient shows less inconsist-
ency for the seizure and non-seizure activity but has the 
limitation on the detection of latency. They modernized 
this technique a number of times [62–64]. The major 
limitation of these above patient-specific methods was 
when it is tested on different types of epileptic patients; 
it did not provide good results. In addition to this, in case 
of multiple seizures present in one person, the favora-
ble results in the sensitivity can be achieved by combin-
ing different classifiers. Later on, different researcher’s 
pro-posed different types of epileptic seizure detection 
techniques. Below is the brief in-formation about various 
epileptic seizure detection methods.

Jahankhani et  al. [65] applied a wavelet transform 
method to extract the parameters and neural network-
based classifier for classifying the EEG signals. Subasi 
et  al. [36] detected epilepsy from EEG signals with 
the help of wavelet transform based feature extrac-
tion method in the combination of expert model and 
observed that combination of expert’s model attained 
higher accuracy as compared to the individual neural 
network-based model. Ocak et al. [66] applied a discrete 

Fig. 11 Illustrates fractal dimension [52]
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wavelet trans-form for the epilepsy detection from EEG 
by computing approximation and detail coefficients as 
the features. The proposed method was able to differen-
tiate the seizure activity with 96% classification results. 
The study results also demonstrated that EEG signals 
with ictal activity exhibit non-linear behavior while nor-
mal EEG behaved like Gaussian linear stochastic system 
and also the approximate entropy decreases during an 
epileptic seizure. Kannathal et al. [67] implemented spec-
tral entropy, renyi entropy, kolmogorovsinai entropy, and 
ApEn in order to detect epilepsy and observed that in the 
period of epileptic discharge, the four entropy measures 
decreases.

Polat et  al. [68] used Fast Fourier Transformation 
based Welch technique with decision tree as a classifier 
to detect epileptic EEG signals and attained the classifi-
cation performance results with 98.72% accuracy, 99.4% 
sensitivity, and 99.31% specificity. Later on, Polat et  al. 
[69] proposed a novel hybrid system for classifying the 
epileptic EEG signals by using Welch FFT technique for 
parameter extraction and Principal Component Analy-
sis for dimension reduction. The proposed method was 
built upon an artificial immune recognition system and 
reported 100% classification accuracy. Kabir et  al. [70] 
developed a seizure detection system with the help of 
logistic model trees. Siuly et  al. [71] reported optimum 
allocation scheme based upon principal component 
analysis to distinguish epileptic EEG signals from normal. 
The motive of using PCA in the proposed study was to 
develop independent components and to diminish the 
dimensionality of the data set Ö. F. Alcin et al. [72] intro-
duced a time–frequency (T–F) image-based algorithm to 
identify epilepsy from EEG signals by using Grey Level 
Co-occurrence Matrix as a descriptor with Fisher Vector 
as an encoder and reported high-quality results.

Siuly et al. [73] proposed an optimum allocation based 
technique for the multi-category EEG signals for epilep-
tic seizure detection. High classification results had been 
achieved using multiclass least square support vector 
machine. Afterward, Siuly et al. [74] proposed clustering 
based innovative technique for epilepsy detection which 
achieved 94.18% classification accuracy. Later on Siuly 
et al. [75] proposed a novel framework for epilepsy detec-
tion based upon random sampling and optimal allocation 
sampling. The framework achieved 100% classification 
accuracy and also proved that random sampling is more 
efficient for seizure detection as compared to the optimal 
allocation sampling.

Chua et al. [76] proposed higher order spectra (HOS) 
based framework for seizure detection and reported 
93.11% accuracy for distinguishing different categories of 
EEG signals. Pravin et al. [77] presented the significance 
of entropy parameter for distinguishing the normal and 

epileptic as well as inter-ictal activity EEG signals. The 
parameters named wavelet entropy, sample entropy, and 
spectral entropy were extracted in the feature extraction 
phase. The two neural network-based models (named 
recurrent Elman network and radial basis) were used for 
classifying the Epileptic EEG signals. Non-linear features 
named correlation dimension, Largest Lyapunov Expo-
nent, Hurst Exponent, and entropy were applied to char-
acterize the epileptic EEG signal as well as to differentiate 
epileptic signals from normal. The more than 90% classi-
fication accuracy depicts the significance of the algorithm 
[78]. Srinivasan et al. [79] applied approximate entropy as 
a parameter in Elman neural networks and probabilistic 
neural networks for classifying the epileptic EEG data-
base. The 100% classification accuracy with Elman neural 
network revealed its importance in the seizure detection 
field.

Belhadj et  al. [80] introduced the clustering method, 
which was unsupervised in nature for epilepsy detec-
tion. Potential-based hierarchical agglomerative clus-
tering method was implemented in combination with 
empirical mode decomposition. Euclidian distance as 
well as kolmogorov distance with Bhattacharya distance 
were calculated among the IMFs and used as input to 
the Potential-based hierarchical agglomerative cluster-
ing system. After applying the proposed methodology to 
the CHB-MIT epileptic database, they reported 98.84% 
classification performance results. Shoaib et al. [81] used 
wavelet energy as a parameter for the development of sei-
zure detection processor with the help of SVM classifier. 
Aslan et al. [82] considered two different types of epilep-
tic seizure named partial epilepsy and primary general 
epileptic disorder for analysis under the supervision of 
two expert neurologists. The radial basis function neural 
network classifier attained 95.2% accuracy, and a multi-
layer perceptron neural network classifier perform with 
89.2% classification. Guler et al. [83] applied Largest Lya-
punov Exponent parameter for the feed-forward neural 
network as well as for the recurrent neural network for 
classifying three kinds of EEG signals with normal, inter-
ictal and ictal conditions of epilepsy. The recurrent neu-
ral network provided more promising results with 96%, 
classification sensitivity, 97.38% for specificity, and accu-
racy result was 96%.

Sheykhivand et  al. [84] proposed novel framework 
based on sparse representation-based classification (SRC) 
theory and proposed dictionary learning. The frame-
work achieved 100% classification accuracy for eight dif-
ferent scenarios of seizure and non-seizure activity. Fasil 
et  al. [85] introduce a method based upon exponential 
energy feature in order to detect the abnormalities in the 
amplitude epileptic EEG signals. Lahmiri et al. [86] used 
generalized Hurst exponent (GHE) for epilepsy detection. 
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The KNN classifier provides 100% detection rate. Hassan 
et al. [87] proposed ensemble empirical mode decompo-
sition technique with adaptive noise along with normal 
inverse Gaussian has been implemented for epileptic sei-
zure detection. This technique achieved higher classifica-
tion performance with adaptive boosting classifier.

Zarei et  al. [88] proposed a framework for epilepsy 
detection from EEG signals based upon Douglas–
Peucker algorithm (DP). In order to find the uncorrelated 
variables and for reducing the dimensionality, principal 
component analysis (PCA) has been used. The whole 
experiments were implemented on Bonn University epi-
leptic EEG data base and four machine learning classifi-
ers has been used to evaluate the performance: random 
forest classifier (RF), k-NN, SVM and decision tree classi-
fier. The framework provides 99.85% overall classification 
accuracy with random forest classifier. The drawback of 
the proposed framework is that computational complex-
ity increases with the increase in data size of EEG signals.

Al Ghayab et al. [89] developed an innovative epilepsy 
detection technique with the help of tunable Q-factor 
wavelet transform (TQWT) by decomposing the Epilep-
tic EEG signals into five sub bands as well as Q, R and 
J levels. Ten statistical signals were extracted from each 
epoch and evaluated with the help of bagging tree (BT), 
k-NN), and SVM classifiers. The developed technique 
archived 100% accuracy with Bonn University Epileptic 
EEG data and also 100% accuracy with 3750 data size 
of Born University focal and non-focal Epileptic data 
set. The main advantage of this technique is its ability 
of data reduction as well as less computational cost. The 
draw-back is that it is hard to implement it on real time 
applications. Al Ghayab et  al. [90] presented a method 
to detect epilepsy seizure using Information Gain (Info-
Gain) algorithm on fast Fourier transform (FFT) and dis-
crete wavelet transform (DWT) separately. The presented 
method outperformed with 100% classification accuracy 
results for different pais of epileptic Bonn data set with 
(LS-SVM) classifier. The high performance accuracy con-
firm that FFT when combined with InfoGain can effec-
tively detect seizure activity.

Mahjoub et  al. [91] used mixed approach: tunable-Q 
wavelet transform (TQWT), intrinsic mode functions 
(IMFs) from multivariate empirical mode decomposi-
tion for epilepsy detection. Six binary classification cases 
are evaluated with SVM classifier and achieved higher 
classification performance. Wang et  al. [92] introduce a 
multiple time–frequency analysis model in which a novel 
random forest model is trained and combined with grid 
search optimization. In order to reduce the dimension-
ality of features, principal component analysis has been 
used. The proposed model has been tested on three-class 
differentiating as healthy subjects, seizure-free intervals, 

and seizure activity for one time with 96.7% accuracy. 
The limitation of this model is that it is affected by the 
presence of noise.

Garcés et al. [93] introduce an adaptive filters and sig-
nal averaging based method for epileptic seizure detec-
tion. The method has been evaluating on 425 h recording 
of epileptic CHB-MIT EEG database and achieved sen-
sitivity of 90.3% and specificity of 73.7%. Aung et al. [94] 
proposed a modified-Distribution entropy (mDistEn) 
technique for epileptic seizure detection. The modified 
distribution entropy is evaluated and compared with 
fuzzy entropy and distribution entropy. The mDistEn 
based technique achieved 92.5% sensitivity, 85% specific-
ity and 91% accuracy which is quiet low as compared to 
fuzzy entropy with 90% specificity and 92% accuracy.

Chen et  al. [95] introduced entropy-based method 
for nonlinear dynamics features detection from epi-
leptic EEG seizure. The method used DWT approach 
and extracting eight different entropies: Approximate 
Entropy, Spectral Entropy, Fuzzy Entropy, Sample 
Entropy, Permutation Entropy, Shannon Entropy, Con-
ditional Entropy, and Corrected Conditional Entropy. 
Six different classifiers has been applied to evaluate the 
performance of feature sets. LS-SVM classifier provides 
100% sensitivity, 99.40% specificity and 99.5% accuracy as 
compared to other classifiers.

Selvakumari et al. [96] proposed a Patient-Specific epi-
lepsy detection framework with High dimensional Phase 
Space by using Principal Component Analysis. The clas-
sification is executed in two layer such as the first layer 
encompasses the SVM classifier and the second layer 
includes the Naive classifier. The framework provides 
high classification performance with 95.63% accuracy. 
The framework can recognize the seizure region but can-
not recognize the percentage of seizure location in the 
brain.

Wu et al. [97] introduced an innovative epilepsy detec-
tion technique based upon Complementary Ensemble 
Empirical Mode Decomposition using Extreme Gradi-
ent Boosting. Different features were extracted from four 
distinct domain: time domain; frequency domain; time‐
frequency domain and entropy‐based. The techniques 
achieved around 100% classification accuracy for the 12 
different category of cases based upon seizure and non-
seizure activity on Bonn Epileptic data and around 95% 
accuracy for CHB‐MIT database.

Jang et  al. [98] developed Euclidean distances based 
methodology for epilepsy detection in which wavelet 
transform, peak extraction and phase–space reconstruc-
tion has been applied. Sixteen features were extracted 
and used as input to Neural Networks with Weighted 
Fuzzy Membership (NEWFM). The method achieved 
97.5% classification accuracy.
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Drawbacks of the existing techniques
From the above state of the art in the field of automated 
detection of the epileptic syndrome, it is clear that there 
are several techniques are available for the analysis and 
classification of EEG signals in order to detect epilepsy 
from EEG. But the above-described literature has some 
restriction and limitations. This section discusses the 
general drawbacks of the existing methods based on dif-
ferent approaches.

The time-domain based techniques do not provide any 
information regarding the frequency-based component. 
It only provides information about the time and magni-
tude components of the signal of the EEG signals. The 
non-parametric approach based techniques provided 
low-frequency resolution and suffered from great noise 
sensitivity. The parametric approach based techniques 
have the drawback of the absence of time mechanism 
of EEG signals. The Fourier transformation based tech-
niques have not enough information about what fre-
quency occur at which time-interval. Time–frequency 
distribution based methods have the limitations of slow 
in speed as the time for computing the gradient ascent is 
high, and extracted measures are inter-dependent. Wave-
let Transform based techniques have the drawback of the 
selection of an appropriate mother wavelet, the number 
of decomposition levels and the selection of appropriate 
features from specific sub-bands. Approximate Entropy 
based methods suffer from the limitations of lacking in 
relative consistency for the choice of parameters and 
dependability on the EEG signal length. In the case of 
Lyapunov Exponent based techniques, the major prob-
lem is the remodeled phase spaces which have additional 
dimensions in comparison to the actual phase space.

Discussion and future direction
The above-mentioned drawbacks of the existing methods 
clearly demonstrate that there is an obligatory of reliable 
automated seizure detection techniques that assist the 
clinicians for the diagnosis of epilepsy and also reduce 
cost and time. Nowadays, the graph-theory mecha-
nism has provided innovative sights in epilepsy detec-
tion from EEG signals with the help of specific graph 
parameters [99–105]. The graph-theory based techniques 
characterize a hidden sight of brain activity and brain-
behavior mapping. The graph theory not even helps to 
understand the underlying dynamics of EEG signals at 
the microscopic, mesoscopic, and macroscopic level but 
also provides the correlation among them. The graph 
theory assists in determining the gap present in the EEG 
patterns. Graph theory harvests important information 
about the underlying brain connectome with the help 
of certain topological properties of the EEG signals net-
work. The statistical features of the network build from 

EEG signals provide critical knowledge about dysfunc-
tion related to the structure and function of the brain 
with epilepsy.

Conclusion
The main motive of this research paper is to provide 
knowledge to the researchers about the existing meth-
ods for epilepsy detection from EEG. This paper pre-
sents a brief review about the existing techniques in the 
field of automated epilepsy detection based on different 
domains of EEG signals analysis named time domain, 
frequency domain, time–frequency domain, and analy-
sis on the basis of a non-linear approach. In addition to 
that, the limitations of the existing methods are also dis-
cussed. The limitations of the present methods clearly 
demonstrate that there are necessities of automated sei-
zure detection techniques that assist the clinicians for 
the diagnosis of epilepsy by computer-based analysis of 
EEG and also reduce high cost, fallacy and long haul of 
examination.
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