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Abstract 

Introduction:  Cardiotocography (CTG) consists of two biophysical signals that are fetal heart rate (FHR) and uterine 
contraction (UC). In this research area, the computerized systems are usually utilized to provide more objective and 
repeatable results.

Materials and Methods:  Feature selection algorithms are of great importance regarding the computerized sys-
tems to not only reduce the dimension of feature set but also to reveal the most relevant features without losing 
too much information. In this paper, three filters and two wrappers feature selection methods and machine learning 
models, which are artificial neural network (ANN), k-nearest neighbor (kNN), decision tree (DT), and support vector 
machine (SVM), are evaluated on a high dimensional feature set obtained from an open-access CTU-UHB intrapar-
tum CTG database. The signals are divided into two classes as normal and hypoxic considering umbilical artery pH 
value (pH < 7.20) measured after delivery. A comprehensive diagnostic feature set forming the features obtained from 
morphological, linear, nonlinear, time–frequency and image-based time–frequency domains is generated first. Then, 
combinations of the feature selection algorithms and machine learning models are evaluated to achieve the most 
effective features as well as high classification performance.

Results:  The experimental results show that it is possible to achieve better classification performance using lower 
dimensional feature set that comprises of more related features, instead of the high-dimensional feature set. The most 
informative feature subset was generated by considering the frequency of selection of the features by feature selec-
tion algorithms. As a result, the most efficient results were produced by selected only 12 relevant features instead of a 
full feature set consisting of 30 diagnostic indices and SVM model. Sensitivity and specificity were achieved as 77.40% 
and 93.86%, respectively.

Conclusion:  Consequently, the evaluation of multiple feature selection algorithms resulted in achieving the best 
results.
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Introduction
Delivery is a critical event having various risky conditions 
for the fetus and takes a short time when compared to 
pregnancy period [1]. The undesired and stressful events 
for the fetus such as hypoxia and asphyxia frequently 
occur during the labor due to generally the lack of oxygen 
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[2]. Fetus equipped with defense mechanisms struggles 
against these developments throughout the pregnancy 
and more importantly throughout labor [3]. At this point, 
cardiotocography (CTG) consisting of fetal heart rate 
(FHR) and uterine contraction (UC) signals recorded 
as simultaneously is the most prevalent used diagnostic 
technique to enable both determining distress level and 
continuous monitoring of the fetus [4]. This surveillance 
technique has been commonly adopted because of the 
sense of security it provides to observers [5]. Although 
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the usage of CTG is great common, a gold standard has 
not been still accepted to evaluate the CTG traces. CTG 
has led to several debates about the increased rate of 
cesarean sections as well as high inter- and even intra-
observer variability [6, 7].

Several parameters of FHR known as morphological 
features are the reliable and prominent indices to ascer-
tain whether the fetal condition is well-being. More spe-
cifically, the baseline level of FHR, its variability both in 
short and long terms and its temporal transients consid-
ering as accelerations and decelerations are the primary 
indicators regarding the clinical assessment [8]. The vari-
ous guidelines, such as the International Federation of 
Gynecology and Obstetrics (FIGO) [6] have been pub-
lished by different health organizations to provide iden-
tifying the morphological features and a consistent CTG 
interpretation. In fact, the main aim of the guidelines is to 
decrease the variability among observers while prevent-
ing unnecessary interventions as possible. Despite the 
existing guidelines, unfortunately, the disagreement level 
among clinicians has remained stable [10]. The possible 
approaches to tackle these drawbacks were discussed in 
[11]. As a result, the usage of computerized CTG systems 
by supporting the decision process of observers has been 
pointed the most promising solution.

Automated CTG analysis requires several basic steps 
which are achieving the database, preprocessing, feature 
extraction, feature selection, and classification [12]. The 
morphological features mentioned above are extended 
with diagnostic features that are obtained from lin-
ear and nonlinear [13], time–frequency [14–16], and 
recently image-based time–frequency (IBTF) [12, 17–19] 
domains in computerized CTG analysis [20, 21]. Further-
more, FHR signals are classified using numerous machine 
learning techniques such as artificial neural networks 
(ANNs) [22, 23], extreme learning machine (ELM) [17, 
24], and support vector machine (SVM) [25–27]. Feature 
extraction algorithms are utilized to improve the perfor-
mance of classifiers and to propose clinically applicable 
models. For these particular purposes, genetic algorithms 
(GAs) [28], principal component analysis (PCA) [29], 
information gain (InfoGain), group of adaptive mod-
els evolution (GAME) neural network [30], correlation-
based (CFS), Relief, Mutual Information (MI) [31] feature 
selection methods have been employed.

In this study, the combinations of five feature selec-
tion algorithms and machine learning algorithms, which 
are artificial neural network (ANN), k-nearest neighbor 
(kNN), decision tree (DT), and support vector machine 
(SVM), are evaluated on CTG data. To this end, weighted 
by support vector machine (WSVM), information gain 
ratio (IGR), relief, backward elimination (BE), and recur-
sive feature elimination (RFE) algorithms are examined. 

Lastly, the commonly selected features by the related 
algorithms are used to generate the most relevant feature 
subset.

Materials and methods
Data description
An open-access intrapartum CTG database was intro-
duced in 2012 [32] and it can be downloaded from Phys-
ionet. The database consists of 552 recordings, and these 
recordings are a subset of 9164 intrapartum CTG record-
ings that were acquired by the means of STAN S21/S31 
and Avalon FM40/FM50 electronic fetal monitoring 
(EFM) devices. All signals were selected carefully consid-
ering the several technical and clinical criteria. Further-
more, the signals were stored in electronic form using 
OBTraceVue® system.

We use umbilical artery pH value obtained after deliv-
ery to separate the signals as normal and hypoxic. It is 
observed that different values of pH have been used as a 
borderline for separating FHR signals [30]. 177 recording 
with umbilical artery pH < 7.20 were considered hypoxic. 
The rest of the signals have umbilical artery pH ≥ 7.20 
and thus were considered as normal.

Signal preprocessing
FHR signals can be acquired using either Doppler ultra-
sound or scalp electrode. In both cases, the signals are 
contaminated by several factors such as mother and fetal 
movements, displacement of the transducer and network 
interference as well. Segment selection, outlier detec-
tion, and interpolation are the basic procedures in pre-
processing. The experimental study is performed on the 
signals which last 15 min (3600 sample points due to the 
4  Hz sampling frequency). Extreme values (≥ 200  bpm 
and ≤ 50 bpm) are interpolated, and the long gaps (> 15 s) 
are not included in the subsequent feature extraction 
process. FHR signals are detrended using second-order 
polynomial in the last step of preprocessing since non-
linear signal processing techniques are utilized. After the 
preprocessing, we achieve 15  min duration segments of 
the signals that are as close as possible to the labor. Fig-
ure 1 demonstrates the state of sample recording before 
and after the preprocessing. Figure 1 comprises of small 
squares and large rectangles. Each small square corre-
sponds to 30 s on the horizontal axis and 10 bpm on the 
vertical axis whereas each large rectangle takes up 3 min 
on the horizontal axis and 30 bpm on the vertical axis.

Feature transform (feature extraction and selection)
The features used in this study to identify FHR recordings 
are obtained from an open-access software that is used to 
analyze CTG recordings called CTG-OAS [29].
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The morphological features describing the shape and 
changes of FHR signals are extracted firstly in accordance 
with FIGO guidelines. The baseline and the numbers of 
transient changes called accelerations (ACC) and decel-
erations (DCC) are taken into consideration [9].

Then, the morphological features are supported using 
several linear features such as mean (µ), standard devia-
tion (σ), long-term irregularity (LTI), delta, short-term 
variability (STV), and interval index (II) [22, 33].

The third category of the features is the nonlin-
ear domain. Approximation Entropy (ApEn), Sample 
Entropy (SampEn) and Lempel–Ziv Complexity (LZC) 
are the most commonly used features from this domain 
[34]. Two parameters pairs (embedding dimension, m = 2 
with tolerance r = {0.15; 0.20}) are utilized individually in 
the experiment for ApEn and SampEn.

In the last category of the features is IBTF features 
involving contrast, correlation, energy, and homogeneity. 
IBTF features are obtained using a combination of Short-
Time Fourier Transform (STFT) and Gray Level Co-
occurrence Matrix (GLCM) [19]. GLCM is a directional 
pattern counter, and IBTF features are extracted accord-
ing to angle and distance parameters. Distance (δ) and 
angle (θ) parameters are set to 1 and 90°, respectively. The 
spectrograms of very low frequency (VLF, 0–0.03  Hz), 
low frequency (LF, 0.03–0.15 Hz), middle frequency (MF, 
0.15–0.50  Hz) and high frequency (HF, 0.50–1  Hz) are 
used to achieve IBTF features.

At the end of feature extraction stage, a total of 30 fea-
tures coming from 3 morphological, 6 linear, 5 nonlinear 

and 16 IBTF (4 features for each specified frequency 
bandwidths) domains are extracted considering their 
origins.

In order to determine the most relevant features and to 
generate an effective subset, we utilize three filters and 
two wrappers methods. The commonly selected features 
by the algorithms are added to the final most relevant 
feature subset, and thus the effective subset is generated.

Artificial neural network (ANN)
ANN is a computational model inspired by the human 
brain and nervous system [35]. In the ANN architecture, 
an input layer, one more hidden layer(s) and an output 
layer are used [25]. Each node in the layers has a connec-
tion with the nodes in the subsequent layer, and this con-
nection is represented with the weights [36]. An output 
of a layer for ANN is represented as follows:

where σ is the activation function, N is the number of 
input neurons. ωij and b represent the weights and bias 
value. Levenberg–Marquardt backpropagation algorithm 
and only one hidden layer with 30 nodes were used in the 
configuration of ANN. The other parameters were used 
with their default values.

k‑Nearest neighbor (kNN)
kNN is a non-parametric classification method [37]. It is 
carried out a classification task using a distance metric 
such as Euclidean as described in Eq. (2). It needs a train-
ing set to determine the distribution of the samples. Then 
the test data is classified using a majority vote of k-near-
est neighbors in the training set [38].

We preferred the Euclidean distance metric for kNN 
and k was searched in the range of 1 and 10. The most 
efficient results were obtained when k was set to 3.

Decision tree (DT)
DT is a useful machine learning method to generate 
regression or classification models based on the tree 
structure. A DT consists of a root node, branch nodes, 
and leaf nodes [39]. These nodes correspond to an algo-
rithm that is used to control conditional statements. It 
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Fig. 1  The signal state before and after the preprocessing stage (Rec. 
Id:1061, the internal number of CTU-UHB database)
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means that the way from root to a leaf corresponds to a 
set of classification rules. The root is determined using 
information gain theory, and growing a DT continues 
until the leaf nodes are obtained [40]. To achieve an 
efficient DT model, some hyperparameters such as the 
depth of the tree, merging criteria of the leaf, the size of 
parents, and splitting predictor should be chosen prop-
erly. In the experiment, we employed hyperparameter 
optimization based on the Bayesian optimization to opti-
mize all eligible parameters. Gini’s diversity index (GDI) 
was used as a split criterion.

Support vector machine (SVM)
SVM is an important machine learning concept which 
can be used for either supervised classification and 
regression applications or for unsupervised data cluster-
ing [30]. SVM aims to find an optimal separating hyper-
plane between positive and negative samples, where 
the margin around the hyperplane is maximized. Let’s 
assume a set of training samples 

(

x1, y1
)

, . . . ,
(

xN , yN
)

 are 
given, where xi shows sample feature vector and yi is the 
class label. Class labels are either positive or negative. As 
it was mentioned earlier, the SVM approach runs an opti-
mization algorithm to find an optimum class separation 
hyperplane, which has the maximal margin. To do so; the 
following equations are considered;

where αi is the weight vector that is accompanied with 
xi and C is called as the regulation parameter. K shows 
the kernel function that is used to calculate the similar-
ity between xi and xj. Gaussian radial function, linear 
function, and polynomial function can be used for kernel 
function.

In the experiment, RBF kernel was used and sigma was 
assessed in the range of 1 and 10. As a result, the most 
efficient results were yielded when sigma was set to 2. 
Also, the regulation parameter was evaluated in the range 
of 1 and 100. It was adjusted to 10.

Results
A total of 30 features were obtained by means of CTG-
OAS. The features and marginal histograms are illus-
trated using the first two principal components in Fig.  2. 
As shown in Fig.  2, separating the recordings as normal 
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and hypoxic and finding a borderline for this purpose is a 
quite challenging task. For this reason, we utilized several 
machine learning models such as ANN, kNN, DT and 
SVM.

In order to measure the performance of the feature selec-
tion algorithms, 10-fold cross-validation (CV) method was 
used. The several performance metrics, which are accuracy 
(Acc), sensitivity (Se), Specificity (Sp), quality index (QI) 
and F-measure, derived from confusion matrix were also 
considered. Confusion matrix consists of four prognostic 
indices which are True Positive (TP), True Negative (TN), 
False Positive (FP) and False Negative (FN). TP and TN 
represent the number of hypoxic and normal fetuses iden-
tified correctly whereas FP and FN represent the number of 
hypoxic and normal fetuses identified incorrectly, respec-
tively. The aforementioned performances metrics are cal-
culated as follow:

Acc gives the overall efficiency of the model. Se and 
Sp explain the efficiency of the model on positively and 
negatively labeled data, respectively. QI is the geometric 

(5)Acc =
TP + TN

TP + FN + TN + FP

(6)Se =
TP

TP + FN

(7)Sp =
TN

TN + FP

(8)QI =
√

Se ∗ Sp

(9)F−measure =
2TP

2TP + FP + FN

 
Fig. 2  The distribution of the recordings on the first two principal 
components
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mean of Se and Sp and it is a very useful metric when 
the distribution of data is imbalanced among the classes. 
F-measure expresses the harmonic mean between preci-
sion and recall. Furthermore, we used receiver operator 
(ROC) curve which defines the relationship between Se 
and Sp. Also, the area under this curve (AUC) was calcu-
lated to determine the performance of the classifier.

In the experimental study, feature ranking techniques 
were examined first. Weighted by SVM, IGR and Relief 
methods were employed individually with 10-fold cross-
validation procedure and machine learning models for 
this particular purpose. The selected features and clas-
sification performances were reported in Tables  1 and 
2, respectively. As shown in Table  2, the most efficient 
results were obtained using a combination of Weighted 
by SVM and SVM classifier. Then, two wrappers 

methods, BE and RFE were utilized. Sp values were supe-
rior to Se values because of imbalanced data distribution. 
The features selected by at least 3 of 5 feature selection 
algorithms were used to generate the most relevant final 
feature subset. A total of 12 features was determined as 
the most relevant, and these features and their relation-
ship with each other are illustrated in Fig. 3.

It is observed that there is a high correlation among 
IBTF features, especially in the features belonging to the 
VLF band. Figure  3 is examined, a similar relationship 
can also be seen between Baseline, Mean, and LTI fea-
tures. It should be noted that the values of IBTF features 
are normalized in the range of 0 and 1.

In the last step of the experiment, the most relevant fea-
tures were applied as an input to machine learning mod-
els. The aggregate confusion matrices and performance 

Table 1  Selected features by the feature selection algorithms

Ranking by Features

Weighted by SVM Baseline, ACC, DCC, Mean, STD, LTI, Delta, II, SampEn (2,0.15), LZC, Contrast (VLF, HF), Correlation (LF), Energy (VLF), Homoge-
neity (VLF).

Information Gain Ratio Baseline, Mean, LTI, STV, Contrast (VLF, HF), Correlation (VLF, MF, HF), Energy (VLF, MF, HF), Homogeneity (VLF, MF).

Relief ACC, Delta, ApEn (2,0.20), ApEn (2,0.15), LZC, SampEn (2,0.15), SampEn (2,0.20), Contrast (LF), Correlation (VLF, LF), Energy (VLF, 
LF), Homogeneity (VLF, LF).

BE Baseline, STD, LTI, SampEn (2,0.15), LZC, Correlation (VLF, HF), Energy (LF), Homogeneity (HF).

RFE Baseline, ACC, Mean, STD, LTI, Delta, SampEn (2,0.15), LZC, Contrast (VLF), Correlation (MF), Energy (VLF), Homogeneity (VLF)

Table 2  The performance results of the feature selection algorithms with machine learning models

Classifiers Feature selection methods Acc (%) Se (%) Sp (%) QI (%) F-mea. (%)

ANN Weighted by SVM 60.33 40.38 69.34 52.38 38.67

IGR 56.70 37.86 65.60 49.42 35.64

Relief 59.44 38.80 68.91 51.33 38.12

BE 60.33 38.49 70.64 51.97 38.07

RFE 62.16 36.26 74.35 51.23 37.65

kNN Weighted by SVM 63.22 38.04 70.28 47.93 30.86

IGR 62.50 38.74 70.25 51.43 31.35

Relief 59.08 34.78 69.15 48.65 33.18

BE 59.40 38.39 70.59 51.80 38.19

RFE 60.32 37.84 70.56 51.11 35.76

DT Weighted by SVM 69.09 50.00 74.41 60.99 41.37

IGR 62.48 33.66 76.85 49.83 35.29

Relief 65.76 35.51 80.38 52.45 39.10

BE 60.51 34.90 73.01 50.01 35.67

RFE 67.56 36.12 82.70 54.38 41.10

SVM Weighted by SVM 77.00 72.03 79.88 75.20 66.28

IGR 67.20 64.27 68.56 65.89 54.93

Relief 73.89 62.75 79.34 70.14 59.87

BE 69.95 67.48 71.70 69.39 58.14

RFE 71.74 62.92 75.95 68.66 58.19
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metrics are given in Tables 3 and 4, respectively. Table 4 
is compared with Table  2, it can be seen clearly that 
the best results were obtained using the most informa-
tive feature subset. As a result, Se of 77.40% and Sp of 
93.86% were achieved. Also, the values of QI (85.23%) 
and F-measure (81.30%) metrics were quite satisfactory. 
As mentioned above, another significant tool regarding 
the model evaluation with two classes is the ROC curve 
and AUC. The highest AUC (close to 1) shows the highest 
certainty of the fetal hypoxia detection according to the 
analyzed feature set. ROC curve of the models with most 
relevant features are illustrated in Fig. 4, and AUCs were 
achieved as 0.7890, 0.6777, 0.8591, and 0.8874 for ANN, 
kNN, DT and SVM, respectively.

Discussion
As underlined in the introduction, CTG has a high 
disagreement level among observers because of visual 
inspection and suffers from lacking practicable standards 
in daily clinical practice [7]. For this reason, automated 
CTG analysis is admitted as the most promising way to 
tackle these disadvantages. Features selection algorithms 
are of great importance in terms of automated CTG 
analysis. In this paper, we evaluate a total of five feature 
selection algorithms consisting of three filters and two 
wrappers methods on CTG data for the fetal hypoxia 
detection task.

Identification of FHR signals by diagnostic indices 
obtained from different fields such as morphological, 
linear, nonlinear, and IBTF enhances the possibility of 
recognizing fetal hypoxia. A crucial factor is connected 
with the selection of the most relevant features which 
are applied as the input to classifiers. The use of multiple 
feature selection algorithms can produce better results 
as in our experiment since the most relevant features 
are determined according to their selection frequency by 
the feature selection algorithms. Consequently, the most 
informative feature set which is a subset of the full fea-
ture set consisting of 30 features has only 12 diagnostics 
indices. Moreover, this subset provided the best results.

According to the results of each method used in the 
experiments, Se values were higher than Sp values due to 
the imbalanced data distribution. Using either oversam-
pling or downsampling technique to balance data distri-
bution could lead to better results [30]. A further step for 
improving the classification performance will be using 
different machine learning techniques. Furthermore, the 

Fig. 3  Pairwise correlation matrix of selected features

Table 3  The aggregate confusion matrices of  machine 
learning models obtained after 10-fold CV procedure

Classifiers #TP #FP #FN #TN

ANN 117 63 60 312

kNN 69 108 55 320

DT 91 26 86 349

SVM 137 23 40 352

Table 4  The performance results of the most relevant fea-
ture set

Classifiers Acc (%) Se (%) Sp (%) QI (%) F-measure (%)

ANN 77.71 66.10 83.20 74.16 65.54

kNN 70.47 55.90 74.77 64.28 45.49

DT 79.34 52.32 92.26 69.23 61.58

SVM 88.58 77.40 93.86 85.23 81.30

Fig. 4  ROC curves of the models with the most relevant features for 
fetal hypoxia detection
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spectrogram images may be an enormous information 
source for detection of fetal hypoxia considering deep 
learning algorithms such as convolution neural network 
[12, 41]. We believe that we can obtain more successful 
results by IBTF analysis projection.

In this section, we also present a comparison of the 
related works considering several parameters such as 
methods, datasets, the number of features for describing 
the CTG signals, and performance metrics. However, it 
is important to be aware that making a one-to-one com-
parison among the related works is not suitable due to 
the different parameters as mentioned above. The com-
parison results are given in Table 5. Subha et al. [42] and 
Velappan et  al. [43] used a public dataset called UCI 
CTG. This dataset generated using SisPorto software [44] 
and come up with 21 diagnostic features extracted auto-
matically by the software. On other words, no need to 
use advanced signal processing techniques on raw CTG 
signals thanks to the SisPorto software for this dataset. 
As a result of this situation, high-performance results 
were achieved. Genetic algorithm, filters, and wrappers 
methods have been examined on CTU-UHB intrapartum 
CTG database to reach more consistent diagnosis mod-
els. However, because of the different division criteria, 
and the complex structure of the intrapartum recordings, 
this area has remained a challenging work. To overcome 
this issue, we generated a more relevant feature set based 
on the five feature selection algorithm covering filters 
and wrappers methods. Each feature in this subset was 
selected by at least three feature selection algorithms. As 
a result, we achieved 88.58% classification accuracy.

Conclusion
CTG is one of the fetal surveillance technique used rou-
tinely in obstetric clinics to monitor fetal well-being. 
Basically, it suffers from visual examination, and for 
this reason, the computerized systems are in demand. 

In this study, we carried out advanced signal processing 
techniques to achieve reliable segments and to extract 
features for describing the signals. Then, the combina-
tions of four machine learning algorithms and five fea-
ture selection algorithms were examined. As a result, 
12 features were determined as the most relevant from 
the full feature set consisting of 30 diagnostic features. 
As a result, we achieved Acc of 88.58%, Se of 77.40% 
and Sp of 93.86%. This work points out that determin-
ing the optimal feature set ensures more consistent and 
effective diagnosis models.
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Table 5  Comparison of the related works

Methods Datasets No. 
of fea‑
tures

Acc (%) Se (%) Sp (%)

A hybrid information gain (IG) and opposition based firefly algorithm (OBFA), SVM [42] UCI CTG dataset 15 96.24 96.26 91.92

Genetic algorithm based feature subset selection, multiclass support vector machine (MSVM) 
[43]

UCI CTG dataset 12 91.35 80.71 92.50

Genetic algorithm, least-square support vector machine (LS-SVM) [18] CTU-UHB 15 65.41 63.45 65.88

Filter selection, SVM [26] CTU-UHB 3 – 68.50 77.70

Relevance in estimating features technique, SMOTE, a hybrid filter-wrapper approach, the near-
est mean classifier with AdaBoost [45]

CTU-UHB 10 65.11 64.09 65.19

This paper, WSVM, IGR, Relief, BE, RFE, SVM CTU-UHB 12 88.58 77.40 93.86
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