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Abstract 

Background: White blood cells (WBCs) play a crucial role in the diagnosis of many diseases according to their num-
bers or morphology. The recent digital pathology equipments investigate and analyze the blood smear images auto-
matically. The previous automated segmentation algorithms worked on healthy and non-healthy WBCs separately. 
Also, such algorithms had employed certain color components which leak adaptively with different datasets.

Methods: In this paper, a novel segmentation algorithm for WBCs in the blood smear images is proposed using 
multi-scale similarity measure based on the neutrosophic domain. We employ neutrosophic similarity score to 
measure the similarity between different color components of the blood smear image. Since we utilize different color 
components from different color spaces, we modify the neutrosphic score algorithm to be adaptive. Two different 
segmentation frameworks are proposed: one for the segmentation of nucleus, and the other for the cytoplasm of 
WBCs. Moreover, our proposed algorithm is applied to both healthy and non-healthy WBCs. in some cases, the single 
blood smear image gather between healthy and non-healthy WBCs which is considered in our proposed algorithm. 
Also, our segmentation algorithm is performed without any external morphological binary enhancement methods 
which may effect on the original shape of the WBC.

Results: Different public datasets with different resolutions were used in our experiments. We evaluate the system 
performance based on both qualitative and quantitative measurements. The quantitative results indicates high preci-
sion rates of the segmentation performance measurement A1 = 96.5% and A2 = 97.2% of the proposed method. The 
average segmentation performance results for different WBCs types reach to 97.6%.

Conclusion: In this paper, a method based on adaptive neutrosphic sets similarity score is proposed in order to 
detect WBCs from a blood smear microscopic image and segment its components (nucleus and the cytoplasm). The 
proposed segmentation algorithm can be utilized for fully-automated classification systems, such systems can be 
either for the healthy WBCs or even for non-healthy WBCs specially the leukemia cells.
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Background
The blood smear under microscope contains useful 
information for diagnosis of many diseases. The blood 
components are divided into three categories: red blood 
cells (RBCs), white blood cells (WBCs) and platelets [1]. 
WBCs are divided into 5 types by percentage: basophil 

(0–1%), eosinophil (1–5%), lymphocyte (20–45%), mono-
cyte (2–10%) and neutrophil (50–70%) [1]. RBCs have no 
nuclei and each WBC type has its own shape of nucleus 
and cytoplasm [1]. The color appearance of each blood 
component is very essential in diagnosing and analysis of 
the blood smear microscopic image.

Each WBC consists from a nuclei and cytoplasm. Each 
of these WBCs have its own morphology and sometimes 
its own color as (shown in Fig. 1). Neutrophil as (shown 
in Fig.  1a) has a multi-lobed nuclei, and Eosinophil as 
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(shown in Fig. 1b) has a bi-lobed nuclei where the cyto-
plasm appears in red color. On the other hand, the nuclei 
and cytoplasm of Basophil are very difficult to be sepa-
rated as the nature of the nuclei as (shown in Fig.  1c). 
Monocytes has a single nuclei with a weak cytoplasm 
color intensities as (shown in Fig.  1d). Lymphocyte as 
(shown in Fig. 1e) has the main focus of WBCs segmen-
tation algorithms as it is responsible for the immune 
system in the body, and it has also two sizes which var-
ies from 7 to 8 µm for small lymphocytes and 12–15 µm 
for large lymphocytes [2]. Each disease effect on each cell 
morphology and its characteristics. The leukemia dis-
ease affects mainly on lymphocyte cells which sometimes 
appear as single blast cell as (shown in Fig.  1f ) or con-
nected blast cells (shown in Fig. 1g) [3]. Each of previous 
cells characteristics should be taken into consideration to 
make an efficient automated segmentation algorithm.

In recent years, the digital pathology automated sys-
tems is exponentially growing, such systems help the 
pathologist to save effort and time. The blood smear 
images analysis has the main scope of the pathologist and 
a lot of researches in this field for microscopic images 
analysis have been proposed [4–17]. Since many benefi-
cial explorations have been carried out for WBC segmen-
tations, but majority of these methods have some defects 
to different extent, such as complexity of arithmetic, dif-
ficulty to ensure parameters, and so on.

The main contributions of our work in this paper are 
as follows; providing a fully-automated segmentation 
system which is able to count WBCs and measure each 
WBC structure that is an important step to classify the 
WBCs disorders later, detection and cropping the WBCs 
ROI in pathology images automatically, accurately seg-
mentation of each WBC to a nuclei and a cytoplasm, 
segmentation of both the healthy WBCs (Neutrophil, 
Eosinophil, Basophil, Monocyte, small-large lympho-
cyte) and non-healthy cells (connected blast cells, sin-
gle blast cell), applying the neutrosophic sets to a new 
domain of images, modifying the neutrosophic sets 
similarity score measure to be adaptive with multi-scale 
and multi-criteria environment. Moreover, our pro-
posed method is not based on morphological enhance-
ment operations which keeps the original structure of 
the WBCs. Finally, the performance of the segmentation 
algorithm is very promising to work on fully-automated 
classification system.

The rest of the paper is organized as follows: in the next 
sections, we present the related work on neutrosophic 
sets and the previous methods that have been proposed 
for WBCs segmentation, then the proposed method 
based on adaptive neutrosophic sets similarity score. 
Finally, the experimental results and discussion followed 
by the conclusion sections are presented.

a b c d

e f g

Fig. 1 a Neutrophil cell, b eosinophil cell, c basophil cell, d monocyte cell, e lymphocyte cell, f single blast cell, g connected blast cells
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Related work
According to the color nature of microscopic blood 
smear images, the segmentation on color channels is 
the most efficient technique to separate the components 
inside pathological microscopic images. On the other 
hand, all utilized color models cannot be used alone for 
segmentation and a complementary algorithm must be 
provided with them like thresholding, clustering, super-
vised learning, region growing or active contour model. 
In this section, we discuss both the previous utilized 
color spaces with their complementary algorithms in the 
literature. Then, we will discuss the neutrosphic sets sim-
ilarity score algorithm since we will employ it as a com-
plementary algorithm with threshloding.

For the previous utilized color spaces in the literature, 
the green channel in Red–Green–Blue (RGB) color space 
has been used for WBCs segmentation as it contains 
the contrast information between the leukocyte nucleus 
and other regions [9]. However, the RGB color space is 
not efficient on images with different illumination condi-
tions, since, color transfer is an important procedure to 
overcome such conditions. CMYk color space has been 
employed in segmentation procedure [12, 14]. However, 
it also suffers from the same problems of RGB color space 
as it does not separate the luminance from the color 
information. In [10, 16–18], the HSV color space has 
been used as the advantage of separating the hue and sat-
uration values. In [13], the CIE-Lab color space has been 
used as it is the most color model simulating the human 
visual system. In [12], three color spaces (RGB, HSI and 
CMYk) were employed to increase the performance of 
the segmentation algorithm.

We summarize the previous proposed WBCs segmen-
tation systems in (Table 1). In [8], the authors combined 
the RGB with HSV color spaces to extract the nucleus, 
then, the gradient vector flow algorithm was applied to 

extract the WBC boundary. The system was very com-
plex and works only with healthy WBCs. In [9], the 
author used the Gram–Schmidt Thresholding for RGB 
color space. However, the used dataset was very limited 
which cannot prove the concept.). In [10], the authors 
used the HSV with RGB color spaces to obtain the 
nuclei using thresholding, then to obtain the whole cell 
boundary using gradient vector flow (GVF). However, 
the thresholding values applied to red and blue channels 
are empirically defined. In [11], the authors presented a 
segmentation model consists from two classifiers (sup-
port vector machine and artificial neural network) and 
the watershed algorithm. However, it depends on RGB 
color space and does not work well under different light 
conditions, and the system has a very high processing 
time and needs a training procedure. In [12], the authors 
utilized the k-means clustering algorithm where three 
color spaces (RGB, HSI and CMYk. In [13], the authors 
employed the CIE-LAB color space with fuzzy- Means 
clustering algorithm, however the performance of the 
system was evaluated through only qualitative measure-
ment. In [14], the author used the mean-shift algorithm 
which requires high processing time. In [15], the authors 
used yellow and black color components extracted from 
CMYk color model and the spatial kernel fuzzy c-means 
(SKFCM) was employed to segment WBCs in the image. 
In [16], the author used the fuzzy decision tree with 
HSV color model to segment WBCs. In [17], the author 
worked on the 5-WBCs in HSV domain. The threshold-
ing was applied firstly to obtain the nuclei, then the active 
contour was applied to get the cell boundary. However, 
the Active contour method does not work if there is con-
nected RBCs on the cell boundary.

From the literature, it is clearly defined that we cannot 
depend on a single color space or even certain color com-
ponents. Also, in the literature, a lot of researches like 

Table 1 Survey of recent WBCs segmentation systems

WBCs white blood cells, NL neoplastic lymphoid, CLL chronic lymphoid leukemia, ALL acute lymphoid leukemia, RGB red–green–blue, HSI hue-saturation-intensity, HSV 
hue-saturation-value, CMYk cyan-magneta–yellow–black, GVF gradient vector flow, Q qualitative

Reference Cell type Color space Segmentation technique Segmentation accuracy

[8] 5 WBCs RGB, HSV Thresholding, GVF 93%

[9] 5 WBCs RGB Gram–schmidt thresholding 93%

[10] 5 WBCs HSV + RGB Otsu’s thresholding 96.5%

[11] CLL Cell RGB Watershed + supervised training 90%

[12] 5 WBCs RGB, HSI and CMYk K-means-clustering 94.6%

[13] 5 WBCs CIE-LAB Fuzzy-K-means-clustering Q

[14] ALL Cell + 5 WBCs RGB Mean-shift +watershed 95%

[15] NLCell CMYk Spatial-kernel
fuzzy-K-means-clustering

98%

[16] 5 WBCs HSV Thresholding 85%

[17] 5 WBCs HSV Thresholding + active contour 92%
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[5, 18, 19] in WBCs segmentation utilized the morpho-
logical operations as a main step of WBCs segmentation 
to refine the segmentation result. However, such opera-
tions affect the shape of WBCs and morphological struc-
ture [20]. All these previous reasons create the real need 
to build a robust WBCs segmentation algorithm and 
be adaptive. In this paper, the proposed segmentation 
algorithm is adaptive with different datasets, applied to 
healthy and non-healthy cells, and the proposed system 
performance are evaluated using qualitative and quanti-
tative measurements.

Neutrosophy [21] is one of the most interesting phi-
losophy theory that was introduced by Florentin  Sma-
randache in 1980. This theory studies the origin, nature, 
and  scope  of  neutralities. Neutrosophic sets have been 
used in many applications such as image enhancement 
[22], image edge detection [23], image segmentation 
[24] and handwritten recognition [25]. Neutrosophic set 
similarity measure (NSSM) gives rich information about 
the neutrosophic sets interval (NSI) and the degree of 
similarity between each of them [26, 27]. Neutrosophic 
similarity score (NSS) is a novel measurement defined in 
[28] which has been used specifically in many computer 
vision applications like image thresholding [28], image 
segmentation [29] and image classification [30].

To define the NSS, the first step is to represent the 
gray-scale intensity image in the neutrosophic set 
domain where the neutrosophic pixel intensity  PNS (T,I,F) 
is described using three membership values: True (T), 
Indeterminacy (I) and False (F) memberships. For each 
neutrosophic set, there are a set of alternatives A = {A1, 
 A2 …  Am} at a specific criteria C = {C1,  C2 …  Cg}. Then, 
the three membership values can be defined as [28]:

where g(x,y) and Gd(x,y) are the intensity value and gra-
dient value at the position of (x,y) on the image.

Then, the similarity score is derived to extract the 
degree of similarity according to the ideal object as the 
following equation [28]:
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 represent each pixel value 
in the neutrosophic domain for each criteria.

Methods
There are two common methods in WBCs segmenta-
tion. The first method is based on one step segmentation 
as in [12, 14] where the entire image is processed to seg-
ment the WBCs directly. The second method is based on 
two-step segmentation as in [8] where the WBCs region 
of interest (ROI) is firstly detected, then each WBC is 
cropped, and the segmentation procedure is finally per-
formed for each WBC structure. Our proposed system 
(shown in Fig. 2) is based on a two-step WBCs segmen-
tation algorithm. This technique reduces the error rate 
and the processing time [31]. The segmentation is also 
performed well whether the cell is single blast cell or con-
nected blast cell. The proposed method considers the 
color information of WBCs, the similarity between dif-
ferent color components is measured based on modified 
neutrosophic set similarity score.

WBCs localization
The target of this stage is localizing the WBCs in the 
pathological images and obtaining the regions of interest 
(ROIs) that contain WBCs. In our proposed method, the 
connected blasted WBCs are taken into consideration, 
on the other hand, WBCs at corners are neglected. The 
initial detection of the WBCs is processed to eliminate 
the false regions after applying the smoothing procedure. 
We increase the cropping area to have more accurate 
segmentation for the cytoplasm area [31] as the WBC’s 
cytoplasm sometimes have a low color intensities values 
according to staining artifacts.

Preprocessing
Many preprocessing techniques for WBCs segmenta-
tion have been proposed. Some techniques employed 
color correction [12, 14] and others used the traditional 
enhancement techniques [29]. In our proposed method, 
the smoothing procedure is applied to each channel 
of the input image. An averaging filter with a disk ele-
ment whose radius r =  5 pixels and a square averaging 
kernel of size  E = 2*r + 1. The filter size is minimized 
to overcome the interference between cytoplasm and the 
background in the pathological image, and also prevent 
blurring effect. This smoothing stage is important in the 
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NSS calculations according to their sensitivity to noisy 
pixels as reported by [28].

Color space conversions
In (Fig.  3), we present a blood smear image as example 
(shown in Fig.  3a), different color components (shown 
in Fig.  3b–g), and the proposed calculated NSS image 
(shown in Fig.  3i). It is important to realize that the 
WBCs appearance in this example cannot be general-
ized for all blood smear images, however, the calculated 
NSS image can be generalized for all blood smear images. 
This is specifically our main contribution in this paper. 
The successive color components which had been used 
in the literature for WBCs segmentation are evoked in 
our proposed system. In this paper, we firstly extract the 
whole WBC boundary to detect and segment the WBC 
ROI, then the nuclei region is segmented. The color 

components that have been applied in WBCs segmenta-
tion are as follow: the green (G) color component [9, 7], 
the blue (b) component in CIE-LAB color space [13], the 
hue (h) and saturation (s) [31], the Cyan (C) and magenta 
(M) color components [12], the yellow (Y) color com-
ponent [14]. In this paper, we employ G, C, M, H and S 
components for WBC nuclei’s segmentation. This makes 
the system more robust and adaptive since, it does not 
depend on a single color component or a specific color 
space.

NSS calculations
The previous NSS measure [28–30] depended on spe-
cific criteria which are intensity, homogeneity and local 
mean intensity criteria. In order to make the proposed 
method more robust, we propose new criteria using 
intensity values of several color components. The utilized 
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Fig. 2 The proposed framework for WBCs segmentation
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color components have a WBC with more bright pixels 
relative to the other pixels as (shown in Fig. 3). For this 
similarity measure, we use the criteria b color component 
in CIE-LAB color space, H color component in the HSV 
color space and the negative of y color components in the 
CMY color space.

For an ideal alternative A = [0 0 1], the NSS measure 
MSCj under the b, H and negative y criteria is defined 
as:-
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The previous NSS measure [28–30] neglected the 
weights of each criteria during the similarity calcula-
tions. To make the similarity measure adaptive with dif-
ferent criteria, we modify the NSS to be adaptive with the 
variation of intensities with the diversity of blood smear 
images. The weights coefficients  wk1 can be defined as;

a b c

d e f

g h i

Fig. 3 a Original image, b the G color component, c the M color component, d the C color component, e the H color component, f the S color 
component, g the b color component, h Y’ color component and i the NSS between previous color components
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The weights coefficients  wk1 value are derived from the 
mean intensity values of each criterion, t and u represent 
the image height and width respectively, and P (i, j) rep-
resent the pixel intensity value at position (i,j). The simi-
larity result between the proposed criteria is (shown in 
Fig. 3i).

After NSS calculation, a multilevel thresholding using 
Otsu’s method [32] is used to get the binary masks. In 
(Fig. 3i), the pixel intensities can be classified into three 
levels. The first darkest intensities describe the back-
ground, the second describe the RBCs and the third with 
more bright pixels describe the WBCs and platelets. The 
thresholding result is very clear where the binary mask 
contains only the WBCs with platelets. As the platelets 
have a very small area relative to the WBCs, we use a 
binary area filter to remove the platelets.

WBCs cropping
For each blood smear image contains a certain number 
of WBCs, using the masks resulted from the thresholding 
procedure, we perform a cropping to the original image 
as (shown in Fig. 2). We extend 64 pixels to the original 
boundary of each WBC region to ensure that the exist-
ence of weak cytoplasm in the cropped image as pro-
posed in [8].

WBCs segmentation
The second stage of segmentation is extracting the WBC 
region of interest (ROI). Each ROI contains a WBC will 
be accurately segmented to nuclei and the whole WBC. 
Finally, the nuclei are subtracted from the whole WBC to 
extract the cytoplasm region.
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Nucleus extraction
According to the deviation of color information of each 
WBC type on healthy cells and non-healthy cells, the 
nucleus segmentation should not be depend on only spe-
cific color component. Therefore, we choose G, C, M, H 
and S color components. For each color component, we 
define the neutrosophic sets using Eqs.  (1), (2) and (3). 
For an ideal alternative A =  [0 0 1], the NSS measure 
MSCj under the criteria G, C, M, H and S is defined as:

To make the similarity measure adaptive with differ-
ent criteria, we employ the modified NSS to be adap-
tive with the variation of intensities with the diversity of 
blood smear images. The weights coefficients  wk2 can be 
defined as Eq.  (6). After the NSS calculation, the Otsu’s 
thresholding is applied to the NSS image to extract the 
nuclei mask as (shown in Fig. 2).

WBCs extraction
In this stage, the whole WBC boundary is segmented. The 
accurate segmentation for the WBC boundary is highly 
affected by the segmentation accuracy specifically the cyto-
plasm region. The b, H and negative y criteria are combined 
with the homogeneity criteria of the green channel in the 
similarity measure. For an ideal alternative A = [0 0 1], the 
neutrosophic similarity measure GSCj for the green channel 
under the homogeneity criteria can be defined as:-
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homogeneity criteria.
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To make the similarity measure adaptive with different 
criteria, we employ the adaptive NSS. The weights coef-
ficients  wk4 can be defined as Eq. (6).

After NSS calculation, the Otsu’s thresholding is 
applied which easily determine the WBC area as (shown 
in Fig.  2). Finally, The WBCs’ cytoplasm mask are 
extracted by subtracting the nuclei’s region from the 
whole WBC region as (shown in Fig. 2).

Experimental results
Dataset
The experiments were performed using different public 
pathology image datasets. These images have different 
resolutions, different contrasts, different illuminations, 
and were extracted from different sources. All these data-
sets have been widely used in many researches before.

In BS_DB3, a low cost system is consisting from CCD 
camera is applied to the microscope. The microscope 
magnification is adjusted at 100  ×  objective lens. The 
image’s resolution was 640 × 480 pixels. The dataset has 
been previously used in [9, 19, 33, 34]. The total no. of 
WBCs presented in BS_DB3 dataset as described in [9] 
are 365 WBCs which consist from 271 neutrophil, 40 
eosinophil, 33 lymphocyte, 19 monocyte and 2 basophil.

In ALL_DB1 and ALL_DB2, images in the dataset have 
been captured with an optical laboratory microscope 
coupled with a digital camera. All images are in JPG for-
mat with 24 bits color depth. The images were acquired 
with a resolution of 2592 × 1944 pixels. The microscope 
magnification range is from 300 to 500 x objective lens. 
Despite that the ALL_IDB1 and the ALL_IDB2 datasets 
are specified in Acute-Leukemia disease, these datasets 
contain other healthy WBCs which will be helpful in 
our experiments. The dataset has been widely used in 
[35–38].

The ALL_IDB1 contains 108 images. 59 healthy images 
and 49 non healthy image. Non healthy lymphocyte cell 
presented in ALL_IDB1 are 510 [36]. The other healthy 
WBCs presented in ALL_IDB1 are 48 neutrophil, 6 
eosinophil, 115 lymphocyte, 66 monocyte and 1 basophil.

The ALL_IDB2 contains 260 images (130 healthy 
images and 130 non healthy) with (257 ×  257) resolu-
tion. The total no. of WBCs in ALL_IDB2 are 260 which 
consist from 25 neutrophil, 2 eosinophil, 56 healthy lym-
phocyte, 30 small lymphocyte cell, 130 non healthy lym-
phocyte cell, 16 monocyte and 1 basophil.

Our experiments have used totally 1371 WBCs count 
as (shown in Table  2) which include 344 neutrophil, 48 
eosinophil, 138 healthy lymphocyte and 101 monocyte 
cell. There are also total 640 non-healthy lymphocyte 
cells, which are 319 connected blast cell and 321 single 
non-healthy cells. The basophil cells count are 4, this low 
count is according to its low percentage in the blood.

Results
This section presents experimental outcomes of the 
proposed segmentation technique based adaptive NSS 
approach for two datasets: ALL_IDB and BS_DB3 of 
WBCs and also provides a comparison of the present 
method with four recent reported methods for data-
set BS_DB3. One problem we encountered while meas-
ure the performance of our proposed system was that 
many authors tested their system with only a few sample 
images, or with their own datasets which is not publicly 
available. On the other hand, in the literature, few exam-
ples performed a combination of available datasets for 
the proposed system [14]. Thus, we could not directly 
compare our findings for the combined dataset with the 
results obtained by previous systems. We present the 
system performance based on qualitative [4, 6, 37] and 
quantitative [9, 12, 39] segmentation results.

For the qualitative segmentation results visualization, 
in (Fig. 4), eight samples of different WBCs are selected 
to visualize the segmentation result of our proposed algo-
rithm. The first column displays the original image with 
original size, the second displays the segmented WBCs, 
the third displays the segmented WBC’s nuclei, and 
the last one displays the WBC’s cytoplasm region. The 
important note in the (Fig. 4g) is that the basophil has not 
a cytoplasm due to the inherent nature of the basophiles 
and their cytoplasm and nuclei appear together (they are 
not separated) [39]. The segmentation results of either 
nuclei or even the cytoplasm appear to be more robust 
and adaptive with lighting conditions or image resolution 
as (shown in Fig. 4a–c).

In (Fig. 4e), the proposed algorithm is successfully seg-
ment the WBCs which are connected with the RBCs. 
In the previous algorithms, solving that issue require 
boundary tracing. Our proposed method is also adap-
tive with healthy cases as (shown in Fig. 4d), non-healthy 
lymphocyte cells as (shown in Fig. 4f ) and blasted cells as 
(shown in Fig. 4h).

Table 2 WBCs presented in used dataset

WBC Type Neutrophil Eosinophil Healthy lymphocyte Non healthy lymphocyte Monocyte Basophil Total WBCs

Single blast cell Connected blast cells

Count 344 48 234 321 319 101 4 1371
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NO. Original
Image Size

Localized
WBC Image

Cell Nuclei Cytoplasm

a 640×480

b 257×257

c 2592×1944

d 257×257

e 257×257

f 257×257

g 257×257 -------------

h 2592×1944

Fig. 4 Segmentation result of WBCs from different datasets a Neutrophil, b Eosinophil, c Monocyte, d Healthy Lymphocyte, e small lymphocyte, f 
Non Healthy lymphocyte- single cell, g Basophil, h Non Healthy lymphocyte- connected blasted cells



Page 10 of 12Shahin et al. Health Inf Sci Syst  (2018) 6:1 

For the quantitative segmentation results, we use two 
different metrics. The first describes the total WBC seg-
mentation accuracy performance [12] which refers to 
the quantitative counting of WBCs. These metrics are 
defined as:

For both nucleus and the cytoplasm of WBC segmenta-
tion area, we use the segmentation performance metric 
(SPM) [41] which indicates the quality of segmentation 
relative to the expert accuracy (ground truth) which is 
determined by pathologist. SPM is defined as:-

where Aprogram is the segmented area by the proposed 
algorithm and Aexpert is the segmented area by an expert 
(ground truth). If these two areas are the same,SPM is 
100%.

We evaluate the proposed segmentation technique for 
all WBCs presented in ALL_IDB datasets and BS_DB3 
dataset based on A1, A2 and SPM values. The experi-
mental results reflect a high segmentation performance 
accuracy of the proposed method. The basophil’s SPM 

(10)A1 = 100×
The number of correctly detected WBCs

Total number of detected WBCs

(11)A2 = 100×
The number of detected WBCs

Total number of WBCs that existed in all dataset images

(12)SPM = 100×
Aprogram ∩ Aexpert

max
(

Aprogram,Aexpert

)

value of cytoplasm is not defined as the cause that have 
been mentioned before. The A1 and A2 of the proposed 
method are highest with 96.5 and 97.2% for all WBCs.

The performances of the proposed method were evalu-
ated on each type of WBCs. The qualitative segmentation 
results of the proposed method were more robust and 
adaptive with different lighting conditions in the blood 
smear image as (shown in Table 3).

In (Table 3), the SPM values of non-healthy lymphocyte 
are not defined as the previous techniques did not took in 
consideration the presence of non-healthy lymphocyte or 
the connected blasted cells in the blood smear image. The 
average SPM values of the nucleus with different WBCs 
were 98.3%. The nucleus SPM values were better than the 
SPM values of the cytoplasm with 97.3%. The SPM values 
of non-healthy lymphocyte are very promising with accu-
racy 99.1% to use it in the classification process.

As mentioned before, we cannot present the compari-
son results for the combined dataset, as there were no 
reported research results available in the literature. To 
compare our results with the previous techniques in the 
literature as in [40, 41], we compare our results with each 
dataset results in the literature separately.

For ALL_IDB dataset, the authors evaluated their seg-
mentation technique based on A1 and A2 values [12]. 
Our proposed system reflects higher A1 (95.4%) and A2 

Table 3 SPM Results for different WBCs using our proposed method

Basophil Eosinophil Healthy lymphocyte Non- healthy lymphocyte Monocyte Neutrophil Overall

Single cells Connected blast cells

Nucleus (%) 97.1 98.2 99.3 98.7 97.2 97.8 98.4 98.1

Cytoplasm – 98.6% 99.1% 99.4% 95.3% 95.2% 94.3% 97%

Average (%) 97.1 98.4 99.2 99.1 96.3 96.5 96.4 97.6

Table 4 SPM results comparison

Basophil (%) Eosinophil (%) Healthy lymphocyte (%) Monocyte (%) Neutrophil (%) Overall (%)

Mad. et al. [42]. 64.3 44.8 58.9 57.4 57.0 55.9

Moh. et al. [33] 80.4 69.3 83.8 86.3 80.3 79.7

Rez. et al. [43] 75.7 88.9 79.6 89.6 82.3 83.2

Moh. et al. [9] 78.6 90.1 78.3 83.0 85.8 85.4

Proposed method 96.2 98.6 98.8 97.2 94.2 97
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(96.2%) values than the previous system with A1 (94.6%) 
and A2 (95.1%) values [12].

For BS_DB3 dataset, the previous results in the litera-
ture were evaluated through SPM values [9, 33, 42, 43] as 
(shown in Table  4). Our proposed method achieves the 
highest SPM values through different WBCs. The overall 
accuracy value of our proposed method achieves higher 
accuracy than Mohamed et al. [33], Madhloom.et al. [42], 
Rezatofighi et  al. [43], and Mohamed et  al. [9]. The low 
performance of the previous methods may be occurred 
according to employing a single color component and the 
heavy usage of morphological binary operations.

Conclusion
Here, we propose an innovative WBC segmentation 
technique. The proposed technique is based on adaptive 
neutrosophic set similarity measure between different 
color components. The utilizing of multi-color compo-
nents makes the proposed system more robust and adap-
tive. We also propose two novel frameworks for WBCs 
segmentation with its both structure; the nuclei or even 
the cytoplasm. The results for all presented datasets indi-
cates a high precision rates of the quantitative segmen-
tation performance A1 =  96.5% and A2 =  97.2% of the 
proposed method. The average SPM results for differ-
ent WBCs types reach to 97.6%. The proposed method 
achieves high overall accuracy in nucleus segmentation 
specifically in non-healthy lymphocyte cells. The pro-
posed method overcomes the problem on WBCs con-
nected to the RBCs. Moreover, the proposed method is 
adaptive with different resolution or light conditions. All 
of the above mentioned results recommended that the 
proposed method is accurate and effective for WBC seg-
mentation, and its performance is very promising.

In the future, we suggest to make a complete CAD 
system for WBCs identification based on the proposed 
segmentation system and we also suggest to separate 
the connected blast cells, identify the staining artifacts, 
accelerate and optimize the proposed algorithm as it 
work under multi-criteria which consume more time.
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