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Abstract
This study presents a probabilistic seismic risk model for the Beijing–Tianjin–Hebei region in China. The model comprises 
a township-level residential building exposure model, a vulnerability model derived from the Chinese building taxonomy, 
and a regional probabilistic seismic hazard model. The three components are integrated by a stochastic event-based method 
of the OpenQuake engine to assess the regional seismic risk in terms of average annual loss and exceedance probability 
curve at the city, province, and regional levels. The novelty and uniqueness of this study are that a probabilistic seismic risk 
model for the Beijing–Tianjin–Hebei region in China is developed by considering the impact of site conditions and epistemic 
uncertainty from the seismic hazard model.

Keywords Beijing–Tianjin–Hebei region · Epistemic uncertainty · Seismic risk assessment · Seismic risk model

1 Introduction

A quantitative seismic risk assessment is a prerequisite 
and foundation for constructing and implementing disas-
ter reduction measures. It is an essential tool for risk man-
agement and plays a critical role in designing catastrophe 
insurance schemes (Friedman 1972; Bommer et al. 2002; 
Dong 2002; Silva et al. 2020) and has gained widespread 
attention in recent years (Amendola and Pitilakis 2023). A 
probabilistic seismic risk model consists of three key com-
ponents—seismic hazard model, exposure model, and vul-
nerability model (Friedman 1984; Grossi et al. 2005). The 

seismic hazard model employs probabilistic seismic hazard 
analysis (PSHA) (Cornell 1968; Mcguire 1995; Musson 
1999) to calculate the exceedance probabilities for a speci-
fied ground motion intensity measure within a given period. 
The exposure model represents the population and build-
ing stock, incorporating the physical attributes of buildings 
and infrastructure (Wieland et al. 2012; Yepes-Estrada et al. 
2017; Crowley et al. 2020). In contrast, the vulnerability 
model addresses the response of buildings under earthquake 
loading and quantifies the fragility of buildings and infra-
structure (D’Ayala and Speranza 2003; Calvi et al. 2006; 
Rossetto et al. 2015). Unlike scenario-based seismic risk 
analyses, which focus on potential seismic loss caused by 
the specific scenario (Strasser et al. 2008), probabilistic seis-
mic risk analysis integrates the uncertainty from each step 
and produces a comprehensive view of the risk distribution 
expressed by exceedance probability curves and risk metrics 
(for example, average annual loss) in the region of interest.

The Beijing–Tianjin–Hebei region, one of the largest 
urban agglomerations in China, consists of Beijing Munici-
pality, Tianjin Municipality, and Hebei Province, which 
are the most active and strongly seismic regions in China’s 
mainland (Fig. 1). As the political and economic center of 
China, it boasts high population density and urbanization. 
However, the significant seismic risk poses a serious threat 
to the economic and social development of the region (He 
et al. 2017; Wu et al. 2017). The region is located in the 
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northern part of the North China seismic region and has 
experienced 223 destructive earthquakes since 231 B.C., 
including one Ms (Surface wave magnitude) 8.0 earthquake, 
four Ms 7.0–7.9 earthquakes, and 26 Ms 6.0–6.9 earthquakes 
(Xie et al. 2017). Notably, the Sanhe-Pinggu Ms 8.0 earth-
quake in 1679 resulted in over 100,000 casualties, while 
the Tangshan 7.8 magnitude earthquake in 1976 caused 
approximately USD 10 billion (in 1976 dollars) and over 
242,000 casualties (Grossi et al. 2006). Given this significant 
seismic risk, it is imperative to develop a probabilistic seis-
mic risk model applicable to the region. This would inform 
regional economic development planning more rationally 
and enhance seismic risk awareness and disaster prevention 
and control capabilities. Such risk assessments will facilitate 
the deeper understanding of seismic risk spatial distribution 
and its consequent impact.

In China, significant progress has been made in the field 
of seismic risk assessment over the last three decades. Yin 
(1994) proposed a seismic loss assessment framework that 
integrated the damage matrix, exposure model, and the 
ground-motion spatial distribution. Chen et al. (2013) devel-
oped an earthquake damage assessment system for China 
(HAZ-China) based on a Web-GIS platform that included 
building damage assessment, building damage field survey, 
and emergency command model. Zhang et al. (2021) pro-
posed a seismic loss assessment framework at the urban 
scale that notably incorporated a multi-age building seis-
mic vulnerability model and socioeconomic loss assessment 
model. Xiong et al. (2019) and Chen et al. (2022) proposed 
urban seismic response prediction and disaster simulation 
methods based on a mechanical approach. These methods 
can be used to simulate the dynamic response of urban struc-
tures by a building-by-building elastoplastic model, ground 
motion records, and high-performance computing platform. 
As mentioned above, most of the current studies focus on 

deterministic scenarios and do not comprehensively consider 
probabilistic seismic hazard scenarios. Incorporating such 
consideration could significantly influence the earthquake 
risk management and disaster risk financing (Mitchell-Wal-
lace et al. 2017).

In this study, we developed a probabilistic seismic risk 
model for the Beijing–Tianjin–Hebei region of China. This 
model comprises a township-level residential building expo-
sure model, a vulnerability model, and two seismic hazard 
models. One of these seismic hazard models is the 5th 
national seismic ground motion parameter zone map model 
(NSGM, GB 18306–2015) based on area sources. The other 
is a hybrid model developed by Ma (2022), composed of 
both area sources and point sources. We conducted a proba-
bilistic seismic risk analysis for this region based on a sto-
chastic event-based method, which includes the influence of 
site condition and uncertainties associated with the hazard 
model. The analysis process is illustrated in Fig. 2. To con-
sider the uncertainty related to the seismic source models 
and ground motion prediction equations (GMPEs), their 
effects on the assessment results are quantified through a 
logic tree. For this purpose, a combination of seismic source 
models and GMPEs are generated for seismic hazard calcu-
lation by Monte Carlo sampling. For each simulated event, 
the ground motion field is generated by GMPEs, combin-
ing the effects of local site conditions. Finally, the seismic 
loss of buildings is calculated by the vulnerability model 
assigned to the exposed assets within the affected area. The 
significance of this study is that the probabilistic seismic risk 
model is developed for the Beijing–Tianjin–Hebei region 
and the epistemic uncertainties from the seismic source 

Fig. 1  Active faults and earthquake events of Ms 5.0 and above in the 
Beijing–Tianjin–Hebei region. Data source National Earthquake Data 
Center (http:// data. earth quake. cn)

Fig. 2  Flowchart of stochastic event-based seismic risk analysis. 
GMPE ground motion prediction equation

http://data.earthquake.cn
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models and GMPEs are considered. The risk metric out-
puts from the model will inform the regional seismic risk 
management.

2  Probabilistic Seismic Hazard Model 
and Assessment

Probabilistic seismic hazard analysis (PSHA) (Cornell 1968) 
is the most commonly used method to assess the seismic 
hazard (Pagani et al. 2014; Baker et al. 2021) and offers a 
computational framework to calculate the exceedance prob-
abilities for a specified ground motion intensity measure in 
a given period considering the uncertainty from seismicity 
source models and GMPEs (Woessner et al. 2015). Seis-
mic hazard assessment in China has seen steady progress. 
In 2015, the 5th generation NSGM was published, adopting 
the horizontal peak ground acceleration (PGA) as a primary 
ground motion intensity measure, which now serves as the 
national standard for the building seismic code (Gao et al. 
2015). In this model, available data (for example, seismicity, 
geology, and geophysics) and experts’ opinions were utilized 
to define the fault information (for example, nodal plain dis-
tribution and maximum magnitude), delineate seismic belts, 
seismotectonic zones, and potential seismic sources (PSSs). 
However, due to its assumptions, the NSGM model tends 
to overestimate the hazard value in locations where major 
events have not occurred and tends to underestimate the haz-
ard value in locations where major events have occurred.

To address the limitations of the current NSGM, Ma 
(2022) proposed a multi-source data fusion method, which 
utilizes the public data of the 5th NSGM and historical 
seismic catalogues to construct a hybrid model. This model 
incorporates the characteristics of area and point sources to 
simulate the seismicity in the region, complementing the 
limitations of the NSGM model.

The comparison of the seismic hazard distribution 
between the NSGM model and the hybrid model (Ma 2022) 
is depicted in Fig. 3. Form these maps, similar hazard val-
ues and spatial distributions can be observed for both the 
NSGM model and the hybrid model. The hybrid model pre-
sents higher hazard values than the NSGM model within 
the Tangshan fault zone, where the 1976 event occurred. 
The discrepancy is attributed to the frequency of recent seis-
mic events in this region. In some regions without notable 
recent seismicity, the hybrid model underestimates the haz-
ard value.

Ground motion prediction equations are mathematical 
models that are used to estimate the ground motion intensi-
ties based on factors such as magnitude, distance from the 
epicenter, source mechanism, earthquake propagation path, 
and local site conditions (Atkinson and Adams 2013; Dan-
ciu et al. 2018). Ground motion prediction equations are 

essential components of PSHA and earthquake risk assess-
ment (Bommer et al. 2010; Atkinson and Adams 2013). The 
model is usually represented by the following functional 
form:

where Y is the ground motion parameter; M is the earthquake 
magnitude; R is the site-to-source distance; fSite is the local 
site term and is usually specified in terms of site class or 
average shear wave velocity (Vs) near ground surface; fFM 
is the focal mechanism term; � is the logarithmic standard 
deviation or sigma, and captures the degree of uncertainty of 
the prediction model; � is the error term for the random com-
ponents that are not modeled by any of the above explana-
tory variables.

As GMPEs are developed using varied data and methods, 
they can introduce significant uncertainty into earthquake 
loss assessment (Crowley et al. 2005). To account for this 
uncertainty, multiple GMPEs are often utilized to reflect the 
limitations of our current knowledge (Bommer et al. 2010; 
Atkinson and Adams 2013). In this study, five GMPEs with 
different data, model parameters, and function forms were 
employed to analyze and quantify their impact on the risk 
assessment results. Table 1 provides descriptions of these 
GMPEs.

HF19 is a GMPE for PGA, Peak ground motion veloc-
ity (PGV), and spectral acceleration (Sa) for China’s main-
land, developed by Hong and Feng (2019). The projection 
method used is based on the regional attenuation relation-
ship employed in the fifth-generation NSGM and the NGA-
West2 GMPE developed by Boore et al. (2014). The model 
regards California as the reference region and identifies a 
subregion (Eastern seismic region, Stable seismic region, 
Xinjiang seismic region, and Tibet seismic region) in China 
as the target region. It assumes that source-to-site distance in 
the target region can be estimated by equating the predicted 
macro intensity from a given scenario, defined by the magni-
tude and source-to-site distance of the reference region. Due 
to the lack of strong ground motion records in China’s main-
land, this method has often been used to develop GMPEs for 
national seismic hazard maps. (Hong and Feng 2019). It is 
worth noting that since this equation uses Ms, the present 
study converted it into moment magnitude (Mw) using the 
relationship between Ms and Mw established by Cheng et al. 
(2017) based on Chinese earthquake records.

ASK14 (Abrahamson et  al. 2014), BSSA14 (Boore 
et al. 2014), CB14 (Campbell and Bozorgnia 2014), and 
CY14 (Chiou and Youngs 2014) were developed using 
the latest PEER NGA-West2 database. These models 
have been adjusted for the Chinese region. Dangkua et al. 
(2018) evaluated the residuals between the predicted and 
the instrument-recorded ground motions using 1,500 

(1)lnY = a + bM + clnR + fSite + fFM + ��
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strong ground motion records. The results indicate that the 
performances of these GMPEs are better than the GMPE 
used in the NSGM (Yu et al. 2013).

To capture the impact of uncertainty on the analysis 
results as well as to reflect the knowledge limitations 
that we recognize in the risk analysis process, this study 
assigned the same weights to the above seismicity source 

models and GMPEs, and the logic tree is illustrated in 
Fig. 4.

As is well known, site conditions have strong impacts on 
the characteristics of ground motion (Joyner and Boore 1988; 
Borcherdt 1994; Bradley 2012; Massa et al. 2014). The time-
averaged shear-wave velocity for the upper 30-m depth (Vs30) 
is an important parameter for estimating site conditions (Boore 
2004), and many GMPEs use the Vs30 as an indicator to 

(a) Spatial distribution of PGA and SA(1.0) in the hybrid model

(b) Spatial distribution of PGA and SA(1.0) in the NSGM model

Fig. 3  Comparison of the seismic hazard distribution between the NSGM model and the hybrid model (Ma 2022) (return period of 475 years). 
Data source Fifth seismic ground motion parameter zone map (GB18306–2015)
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describe site conditions (Wald and Allen 2007). For example, 
the BSSA14 gives the local site effects as follows:

where M is the earthquake magnitude,  Rjb is the closest 
distance between the site and the surface projection of the 
rupture, Flin represents the linear component of site ampli-
fication, and Fnl represents the nonlinear component of site 
amplification. The linear component of the site amplification 
model ( Flin ) is given by:

in which c describes the Vs30-scaling, Vc is the limiting veloc-
ity beyond which ground motions no longer scale with Vs30 , 
and Vref  is the specified reference velocity corresponding to 
the National Earthquake Hazards Reduction Program B/C 
(BSSC 2004), Vref = 760m∕s . The function for the Fnl term 
is as follows:

(2)Fs

(
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)
= ln

(
Flin

)
+ ln

(
Fnl

)

(3)ln
�
Flin

�
=

⎧
⎪⎨⎪⎩

cln
�

Vs30

Vref

�
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where f1 , f2 , and f3 are model coefficients and PGAr is the 
median peak horizonal acceleration evaluated based on 
given M and Rjb with Vs30 = 760m∕s. The parameter f2 rep-
resents the degree of nonlinearity as a function of Vs30 and 
is given by:

where f4 and f5 are model coefficients.
Recognizing the importance of Vs30s, the United States 

Geological Survey (USGS) established a global Vs30 data-
base based on the correlation between Vs30 and topographic 
slope (Wald and Allen 2007; Allen and Wald 2009). Given 
the limitations of the topographic slope-based method, 
which struggles to accurately recognize special areas, such 
as volcanic plateaus, carbonate rocks, and glaciated conti-
nents, Iwahashi and Pike (2007) proposed a terrain-based 
unsupervised classification method. Zhang et al. (2023) 
developed Vs30 prediction models for the Beijing–Tian-
jin–Hebei region using terrain categories derived from 
local 30-arc-second digital elevation model (DEM) and 
corroborated with local borehole data. The study involved 
calculating threshold values for morphometric parameters 
specifically, topographic slope, surface texture, and local 
convexity based on local DEM data. Following this, terrain 
classification maps were utilized to establish Vs30 predic-
tion models. These models were then validated against data 
from 1,948 boreholes, with the spatial locations illustrated in 
Fig. 5a. Validation was conducted through the mean absolute 
percentage error (MAPE) between the measured and pre-
dicted Vs30 values at these borehole sites, which is 17.2% 
in the region. A further spatial validation involved analyzing 
the residuals between measured and predicted Vs30 values 
at the borehole locations, and assessing the spatial trend in 
these residuals, as shown in Fig. 5b. Last, Zhang et al. (2023) 

(4)ln
(
Fnl

)
= f1 + f2ln

(
PGAr+f3

f3

)

(5)
f2 = f4

[
exp

{
f5
(
min

(
Vs30, 760

)
− 360

)}
− exp

{
f5(760 − 360)

}]

Table 1  Summary of ground motion prediction equations (GMPEs) 
and relative information used in probabilistic seismic hazard analysis 
(PSHA)

Repi is the distance between the epicenter and the site; Rjb is the clos-
est distance between the site and the surface projection of the rupture; 
Rrup is the closest distance between the site and the rupture surface

Name Distance metric Magnitude range Regional 
adjust-
ment

HF19 Repi 4.5 ≤ Ms ≤ 8.0 Yes
BSSA14 Rjb 3.0 ≤ Mw ≤ 8.5 Yes
ASK14 Rrup 3.0 ≤ Mw ≤ 8.5 Yes
CB14 Rrup 3.0 ≤ Mw ≤ 8.5 Yes
CY14 Rrup 3.5 ≤ Mw ≤ 8.5 Yes

Fig. 4  Logic tree of seismic 
hazard model. NSGM National 
seismic ground motion param-
eter zone map model
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employed an inverse distance weighting method for residual 
analysis to refine the prediction model. The final Vs30 pre-
diction map for the Beijing–Tianjin–Hebei region is pre-
sented in Fig. 6. Although the terrain-based Vs30 database is 
a simplified approach to characterize the impact of local site 
conditions, for large-scale risk assessment, it is arguably the 
only methodology capable of providing, on average, reason-
able results (Lemoine et al. 2012). In this study, the terrain-
based Vs30 database developed by Zhang et al. (2023) was 
applied to characterize the impact of local site conditions on 
probabilistic seismic risk assessment results.

We divided the region into grids at a resolution of 30 arc-
seconds. The OpenQuake engine was employed in this study 
to conduct PSHA in the region. Figure 7 illustrates the spa-
tial distribution of PGA and SA(1.0) with 10% (return period 
= 475 years) and 2% (return period = 2,475 years) prob-
ability of exceedance in 50 years. As seen in Fig. 6, different 
intensity measures display a varying spatial distributions of 
seismic hazard. This is due to the fact that PGA is mainly 
influenced by close events, whereas SA(1.0) is mainly con-
trolled by large and distant events (Avital et al. 2018). In 
terms of PGA, the maximum value of 0.42 g occurs near 
the Tangshan Fault, the seismogenic rupture of the 1976 
Tangshan earthquake. Meanwhile, larger PGA values occur 
near the Xiadian Fault, the Xinhe Fault, and the Liuleng 
Mountain North Fault. These observations suggest that the 
model effectively reflects the hazard of the major ruptures 
in the region.

3  Exposure Model

An exposure model is a critical component of probabilistic 
seismic risk model. It represents the spatial distribution of 
population, building stock, and necessary structural attrib-
utes (Yepes-Estrada et al. 2017). Ma et al. (2021) devel-
oped a township-level residential building exposure model 
for China, using data from the 6th Census of the People’s 
Republic of China and World Housing Encyclopedia 

Fig. 5  Borehole data and residual trend spatial distribution of the Beijing–Tianjin–Hebei region. Data source Zhang et al. (2023)

Fig. 6  Terrain-based Vs30 map of the Beijing–Tianjin–Hebei region.  
Source Adapted from Zhang et al. (2023)
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(WHE).1 This model includes information related to popu-
lation number, building location, structure type, construction 
year, seismic capacity, number of stories, residential popula-
tion, number of dwellings, average floor area, and replace-
ment cost (excluding nonstructural components). That study 
followed the seven-step approach described below and the 
development process are illustrated in Fig. 8:

(1) Define the building taxonomy according to expert opin-
ion and public literature, such as WHE, Global Expo-
sure Database (GED), and Global Earthquake Model 
Foundation (GEM) taxonomy, which involve the mate-
rial and type of load-resisting system.

(2) Provide criteria/assumptions to estimate the number of 
dwellings with joint characteristics, height class, con-
struction material, and construction date.

(3) Provide a mapping scheme, building a relationship 
between the building attribute information from the 

(a) Return period (RP) = 475 years

(b) Return period (RP) = 2,475 years

Fig. 7  Seismic hazard spatial distribution in peak ground acceleration (PGA) and SA(1.0) of the Beijing–Tianjin–Hebei region

1 https:// db. world- housi ng. net, accessed in November 2022.

https://db.world-housing.net
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national census data and a set of possible typologies, 
to convert the construction material variable from the 
census to building typologies.

(4) Estimate the number of buildings after assuming the 
number of households per floor and the number of resi-
dents per floor.

(5) Assign ductility levels to building typologies according 
to the specific building typologies, year of construction, 
seismic zonation, and urban-rural characteristics.

(6) Estimate the floor area and replacement cost based on 
the average population of each household with the per 
capita housing area.

(7) Downscale the building inventory from the county or 
prefecture level to the township level based on popula-
tion distribution.

For more detail, please reference Ma et al. (2021).
Based on the township-level exposure model of residen-

tial buildings for China’s mainland, we conducted a statis-
tical analysis of the Beijing–Tianjin–Hebei region. It was 
estimated from the exposure model that the number of resi-
dential buildings is 8.9 million, with a built-up area of 1.68 
billion  m2 and 54.4 million inhabitants. Table 2 and Fig. 9 
present a summary of the residential building inventory for 

the region, distinguishing different types of areas. The data 
indicate that the replacement cost is mostly concentrated 
in urban and town areas (92%), which can be confirmed by 
the relatively high urbanization of the region. The distribu-
tion of population in urban and rural areas is 91% and 9%, 
respectively, which is similar to the distribution of replace-
ment cost.

Figure 10 presents the proportions of building inven-
tory of urban-town and rural areas of the Beijing–Tian-
jin–Hebei region. In Figs. 10a and b, the building tax-
onomy distribution is depicted, which includes SIM (wood 
frame, rammed earth, adobe wall and stone wall), rein-
forced concrete moment resisting frame with infill walls 
(CR/LFINF), reinforced concrete shear wall (CR/LWAL), 

Fig. 8  Flowchart of the exposure model developing method.  Source Adapted from Ma et al. (2021)

Table 2  Summary of residential building inventory for the Beijing–
Tianjin–Hebei region and population data from census

Area type Number of 
Buildings 
(Million)

Built-up 
Area (Billion 
 m2)

Replacement 
Cost (RMB 
Trillion 
yuan)

Popula-
tion 
(Mil-
lion)

Urban-town 7.27 1.53 5.38 49.46
Rural 1.60 0.15 0.44 4.93
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reinforced concrete moment resisting frame with concrete 
shear walls (CR/LDUAL), load-bearing timber frame with 
masonry infill (MUR), confined masonry (MCF), and steel 
structures (STEEL). Regarding the building taxonomy of 
urban-town areas, MCF represent 45.18% of the entire 
portfolio, while the second and third most common typolo-
gies are CR/LFINF and MUR, representing 24.12% and 
25.17%, respectively (Fig. 10a). In the rural areas, the pre-
dominant building taxonomy is MUR, comprising a high 
proportion of 77.72%. The proportions of other SIM struc-
tures, such as adobe, earthen and stone structures, are also 
larger in the rural areas than in the urban areas (Fig. 10b).

In terms of the distribution of construction year at the 
urban-town and rural levels, this study categorized the urban 
and non-simple structures into four age bands. The resi-
dential buildings in urban-town areas were predominantly 
constructed between 1990 and 2010 (65%) (Fig. 10c). In 
contrast, in rural areas, a significant proportion of dwell-
ings were built between 1980 and 1989 (34%) (Fig. 10d). In 
general, there is no significant difference in the distribution 
of construction years between urban-town and rural areas. 
However, there is a considerable variance in the number of 
stories between urban-town and rural areas (Figs. 10e, f). In 
urban-town areas, the majority of buildings are 4–6 stories 
(HBET:4–6), while in rural areas, most buildings are single 
story (H:1, 93%).

The spatial distribution of residential building replace-
ment costs in the Beijing–Tianjin–Hebei region are depicted 
in Fig. 11. Most of the high replacement cost value counties 
are concentrated in areas surrounding Beijing and Tianjin.

Figure 12 presents the proportion of replacement cost in 
the Beijing–Tianjin–Hebei region exposed to PGA levels 
with the 5th NSGM. In China, seismic regulation generally 
considers 0.2 g as a high intensity zone (He et al. 2017). In 

this region, up to 59% of the replacement costs are distrib-
uted in the high intensity zone and 3% of the replacement 
costs are located in the zone with PGA greater than or equal 
to 0.3 g. Figure 11 further depicts the proportions of replace-
ment costs by province (city) for different PGA zones. The 
entire area of Beijing falls within a zone where PGA exceeds 
0.2 g. Specifically, 97.9% of residential replacement costs 
are located in areas with a PGA of 0.2 g, while 2.1% of resi-
dential replacement costs are in areas with a PGA of 0.3 g. 
In Tianjin, up to 95.1% of the replacement costs are distrib-
uted in the area of 0.2 g, whereas 26.4% of the replacement 
costs in Hebei are distributed in areas with PGA greater 
than 0.2 g.

4  Vulnerability Model

There are many studies on vulnerability models for Chi-
nese buildings. Jiang and Hong (1985) examined a three-
story masonry structure damage probability and discussed 
the influence of the uncertainty from ground motion input, 
ground motion parameters, and model error on the analysis 
results. Zhang et al. (2002) developed numerical models for 
multi-story residential masonry structures designed accord-
ing to old and new codes in China, respectively, establish-
ing the relationship between damage state and ductility 
coefficient through numerical analysis. Consequently, they 
constructed vulnerability models for multi-story masonry 
structures in China. Yu and Lu (2016) proposed a cloud-strip 
method. They designed 23 models of reinforced concrete 
frame structures based on the Chinese seismic codes and 
constructed vulnerability models using the cloud method, 
strip method, and cloud-strip method, respectively. Eventu-
ally, they analyzed the effects of aleatory uncertainty and 
epistemic uncertainty.

Despite the progresses made in the seismic vulnerabil-
ity modeling in China, there are still some limitations in 
applying these proposed vulnerability models directly to 
the regional probabilistic seismic risk assessment. These 
models were derived by different methods, assumptions, 
and damage criteria, making direct comparisons impos-
sible. Some of these models were developed based on 
macro intensities. Although useful for rapid post-earth-
quake assessments, they introduce significant uncertainty 
in the probabilistic seismic risk assessment because the 
seismic hazard model cannot predict the macro intensi-
ties directly. It is worth noting that most of the current 
vulnerability studies in China focus only on the common 
structures, for example, reinforced concrete structures and 
masonry structures, while ignoring rural structures with 
poor seismic performance, such as earthen structures and 
masonry structures.

Fig. 9  Histogram of the residential building inventory (%) in the Bei-
jing–Tianjin–Hebei region. Data source Ma et al. (2021)
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(a) Urban-town building taxonomy 

proportions

(b) Rural building taxonomy proportions

(c) Urban-town construction year proportions (d) Rural construction year proportions

(e) Urban-town number of story proportions (f) Rural number of story proportions

Fig. 10  Distribution of the residential building inventory in urban and 
semi-urban and rural areas in the Beijing–Tianjin–Hebei region (%). 
Note SIM wood frame, rammed earth, adobe wall and stone wall, CR/
LFINF reinforced concrete moment resisting frame with infill walls, 
CR/LWAL reinforced concrete shear wall, CR/LDUAL reinforced con-
crete moment resisting frame with concrete shear walls, MUR load-

bearing timber frame with masonry infill, MCF confined masonry, 
STEEL steel structures, YPRE:1979 pre-1979, YBET:1980–1989 
between 1980 and 1989, YBET:1990–1999 between 1990 and 1999, 
YBET:2000–2010 post-2000; H:1 single story, HBET:4–6 4–6 stories, 
HBET:2–3 2–3 stories, HBET:7–9 7–9 stories, HBET:10 above 10 
stories
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To overcome these limitations, this study derived a vul-
nerability model database for Chinese building taxonomy 
based on the method promoted by Villar-Vega et al. (2017). 
In general, the derivation procedure followed the steps 
described below:

(1) Establish a Chinese database for residential building 
capacity curve parameters (yield and ultimate drifts, 
elastic and yield period of the first mode of vibration, 
participation factor of the first mode of vibration). This 

Chinese residential building taxonomy is based on Ma 
et al. (2021) and the parameters were matched with the 
global building capacity parameter database proposed 
by the Global Earthquake Model (Martins and Silva 
2021) (Table 3).

(2) Develop a representative equivalent single-degree-
of-freedom (SDOF) oscillator for each building class 
(with the parameters identified in Step 1), using the 
pinching4 model from the open-source package for 
structural analysis in OpenSees (McKenna 2011).

(3) Select ground motion records based on regional seis-
mic hazard disaggregation results (Fig. 13). As shown 
in Fig. 13, the earthquake magnitudes primarily range 
from Mw 5.0 to Mw 8.0, and the main epicentral dis-
tances range from 0 to 100 km. Accordingly, this study 
focuses on earthquake records within the Mw 5.0 to 
Mw 8.0 magnitude range. To mitigate the influence 
of near-field effects, earthquake records with epicen-
tral distances within 10 km are excluded. In order 
to account for the influence of uncertainty among 
ground motion records, 300 ground motion records 
were selected from a total of 3,500 ground motion 
records archived in the Pacific Earthquake Engineer-
ing Research (PEER) NGA-West, Chilean Geological 
Institute, Colombian Geological Service, Universidad 
Nacional Autónoma de México—Engineering Institute, 
and European Strong Motion Database.

(4) Utilize the cloud analysis method (Jalayer et al. 2015) 
and damage criteria (Martins and Silva 2021) based 
on the yielding and ultimate displacement to estimate 
the exceedance probability of each damage state. The 
fragility functions of typical buildings are illustrated in 
Fig. 14.

(5)  The vulnerability models (probability of loss ratio 
conditional on ground shaking) are built based on the 
damage-to-loss model and proposed fragility models 
(Martins and Silva 2021), according to Eq. 6. The vul-
nerability models of typical buildings are illustrated in 
Fig. 15.

P
[
DS = dsi|IM

]
 is the probability of occurrence of 

damage state dsi under IM conditions (calculated from 
the fragility function), and LRi,j and P

[
LRi,j

]
 represent the 

possible loss ratio for damage state dsi and its occurrence 
probability, which can be obtained from the damage-loss 
model.

(6)E[ LR|IM] =
∑nDS

i=1
∑m

j=1
(

P
[

DS = dsi|IM
]

× LRi,j × P
[

LRi,j
])

Fig. 11  Distribution of the residential building inventory replacement 
cost per county in the Beijing–Tianjin–Hebei region

Fig. 12  Proportions of replacement costs exposed to different peak 
ground acceleration (PGA) levels in the Beijing–Tianjin–Hebei 
region
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5  Probabilistic Seismic Risk Results

The probabilistic seismic risk analysis was conducted for the 
Beijing–Tianjin–Hebei region using a stochastic event-based 
method. We combined the seismic hazard model, exposure 
model, and vulnerability model, and simulated a 100,000-
year set of stochastic event based on the OpenQuake engine 
(Silva et al. 2014).

We combined the information from each stochastic rup-
ture scenario with the GMPE of the corresponding seismo-
tectonic zone. This approach allowed us to calculate the 
spatial distribution of the seismic hazard, thereby forming 
the corresponding ground motion field. Furthermore, in this 
study, we used Vs30 to account for the influence of site con-
ditions on the ground motions. Finally, we calculated the 
corresponding losses by evaluating the vulnerability model 
curves of the exposed asserts in the affected area, which 
helped us form the spatial loss distribution.

The spatial loss distribution was used to calculate the risk 
metrics, for example, average annual loss (AAL) and exceed-
ance probability curve (EP). The AAL was calculated by 
total losses in each subdistrict and dividing by the specific 
time period:

where T  is the simulation time period, k is the number of 
events, and Li is the portfolio loss of each event i.

(7)AAL =
1

T

k∑
i=1

L
i

The EP curve was used to illustrate the probability of 
exceeding a certain loss level in a given period:

where λ(L > l) stands for the rate of exceedance of the 
respective loss l , n(L > l) stands for the number of exceed-
ances of the given loss l , N is the number of events in time 
span. By assuming that the model conforms to the Poisson 
distribution, the exceedance probability that the loss exceeds 
l in period T can be calculated by Eq. 9.

Table 4 presents the residential replacement cost (con-
struction cost), GDP, AAL, and average annual loss ratio 
(AALR, defined as average annual loss/replacement cost) for 
major cities in the Beijing–Tianjin–Hebei region.

In terms of AAL, the highest losses are in Beijing, Tian-
jin, and Tangshan, respectively. These cities are also the 
most developed in the region, as measured by their GDP. 
However, when we used AALR for ranking, the cities with 
the highest AALR are Tangshan (1.2‰), Beijing (0.9‰), 
Tianjin (0.8‰), and Langfang (0.8‰), respectively. This 
demonstrates that these four cities are at the highest risk 
within the region in terms of residential exposure. From a 
regional perspective, the AAL for the Beijing–Tianjin–Hebei 
region is RMB 3.715 billion yuan, with an AALR up to 
6.3‰. This indicates a high seismic risk in the region.

(8)𝜆(L > l) =
n(L > l)

N

(9)P(L > l) = 1 − e
−𝜆(L>l)×T

Table 3  Structural parameters 
used to define the capacity 
curves

Building class Yield drift (%) Ultimate 
drift (%)

First mode par-
ticipation factor 
(Γ)

Story 
height 
(m)

Ty (s)

CR_LFINF-DUH 0.25 1.50 1.33 3 Ty = 0.042H
CR_LFINF-DUM 0.20 1.35 1.33 3 Ty = 0.044H
CR_LFINF-DUL 0.15 1.20 1.33 3 Ty = 0.046H
CR_LDUAL-DUH 0.26 1.40 1.4 3 Ty = 0.098N
CR_LDUAL-DUM 0.21 1.28 1.4 3 Ty = 0.102N
CR_LDUAL-DUL 0.17 1.16 1.4 3 Ty = 0.108N
CR_LWAL-DUH 0.28 1.30 1.4 3 Ty = 0.078N
CR_LWAL-DUM 0.22 1.20 1.4 3 Ty = 0.083N
CR_LWAL-DUL 0.17 1.10 1.4 3 Ty = 0.088N
EU-ETR_LWAL-DNO 0.19 0.81 1.4 3 Ty = 0.062 H0.9

MCF-CLBRH_LWAL-DUH 0.28 1.10 1.5 3 Ty = 0.08 H3∕4

MCF-CLBRH_LWAL-DUM 0.24 1.00 1.5 3 Ty = 0.084 H3∕4

MCF-CLBRH_LWAL-DUL 0.19 0.90 1.5 3 Ty = 0.088 H3∕4

MUR-ADO_LWAL-DNO 0.15 0.66 1.4 3 Ty = 0.066 H0.95

MUR-CLBRS_LWAL-DNO 0.17 0.60 1.4 3 Ty = 0.065 H0.9

MUR-ST_LWAL-DNO 0.15 0.65 1.4 3 Ty = 0.062 H0.9

W_LFM-DUL 0.43 1.19 1.33 3 Ty = 0.123 H0.54
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(a) PGA and SA(2.0); Return period (RP) = 475 years

(b) PGA and SA(2.0); Return period (RP) = 2,475 years

Fig. 13  Seismic hazard disaggregation for peak ground acceleration (PGA) and SA(2.0)
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Figure 16 illustrates the spatial distribution of the AALR 
in the Beijing–Tianjin–Hebei region to indicate the relative 
seismic risk level of residential replacement costs in each 
subdistrict. The overall distribution pattern reveals a clear 
spatial trend associated with the region’s major active faults, 
including the Tangshan Fault, the Xiadian Fault, and the 
Xinhe Fault. This pattern suggests that Tangshan, Beijing, 
Tianjin, Langfang, and Xingtai are area of relatively high 
seismic risk.

Figure 17 presents the loss exceedance probability curve 
for the Beijing–Tianjin–Hebei region. The expected loss for 
return periods of 50, 100, and 1,000 years is RMB 36.6 bil-
lion yuan (6.3% replacement cost), RMB 62.7 billion yuan 

(10.79% replacement cost), and RMB 204.8 billion yuan 
(35.25% replacement cost), respectively. This is only the 
reconstruction cost of residential buildings, excluding con-
tents costs. This illustrates the potentially serious impact of a 
rare earthquake on the regional economic system. The figure 
also depicts the EP curves for 15% and 85% quantiles. A 
notable finding is the growing difference between these two 
curves with the increasing return period, with a maximum 
difference of RMB 130 billion yuan, accounting for 37.3% 
of the mean loss value. This finding suggests that relying 
solely on the mean value as a metric for risk decision mak-
ing and insurance scheme design could lead to significant 
repercussions.

(a) CR-LDUAL-HBET-7-9 (b) CR-LINF-HBET-4-6

(c) CR-LWAL-HBET-7-9 (d) MCF-CLBRS-LWAL-HBET-4-6

Fig. 14  Fragility curve of typical building classes. a Reinforced con-
crete moment resisting frame with concrete shear walls structure 7 
and 9 stories; b reinforced concrete moment resisting frame with infill 

walls structure 4 and 6 stories; c reinforced concrete shear wall struc-
ture 4 and 6 stories; d confined masonry structure 4 and 6 stories
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6  Discussion

It is crucial to acknowledge the limitations of our model. 
While our study accounted for the diversity of building 
structure characteristics and construction practices, certain 
assumptions were inevitably made due to data scarcity at 
a regional level. Although Vs30 serves as a primary proxy 
for site response in seismic design code and GMPEs, it 
offers a simplified representation of the site condition. 
Because the site condition can be much more complex, 
this simplification may lead to inaccuracies. In  situa-
tions where the subsurface conditions contain layers of 
markedly different stiffness, or where the soil structure 

demonstrates a complex stratigraphy, there can be substan-
tial variability in predicted values by GMPEs.

To capture and handle epistemic uncertainty, we applied 
the logic tree method in this study, incorporating HF19 
and four models—ASK14, BSSA14, CB14, and CY14—
from the NGA-West2 project. While these models were 
developed independently by different teams and utilized 
distinct modeling techniques, they exhibit variability in 
their functional form, parameterization, and assumptions. 
However, these GMPEs, which were developed based on 
the same datasets, can exhibit shared biases and limita-
tions. These shared factors can potentially lead to corre-
lated uncertainties among the GMPEs, which may, in turn, 
reduce the overall diversity and robustness of the logic tree 

(a) CR-LDUAL-HBET-7-9 (b) CR-LINF-HBET-4-6

(c) CR-LWAL-HBET-7-9 (d) MCF-CLBRS-LWAL-HBET-4-6

Fig. 15  Vulnerability model of typical building classes. a Reinforced 
concrete moment resisting frame with concrete shear walls structure 
7 and 9 stories; b Reinforced concrete moment resisting frame with 

infill walls structure 4 and 6 stories; c Reinforced concrete shear wall 
structure 4 and 6 stories; d Confined masonry structure 4 and 6 sto-
ries
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approach. We acknowledge this limitation and our hazard 
estimates will not capture the whole uncertainty.

Seismic risk assessments are the results of a complex 
system with input from various sources. Inevitably, they 
involve certain assumptions, particularly in areas where 
data are limited. The accuracy of such models can be 
greatly improved with the availability of field surveys, 
empirical damage data, and experimental data. Therefore, 
the assessment results of our study should be regarded as 
rough indications and used with caution until more com-
prehensive data can be incorporated.

7  Conclusion

This study aimed to develop a probabilistic seismic risk 
model for the Beijing–Tianjin–Hebei region of China, 
which includes the exposure model, the vulnerability 
model, and the hazard model. The impact of site condi-
tions and epistemic uncertainty from the seismic hazard 
model are taken into account. We used the stochastic event 
set method to assess this region’s seismic risk, deriving 
the AAL, AALR, loss exceedance probability curve, and 
seismic risk map. These can inform improvements to the 
national seismic design map, the formulation of seis-
mic risk reduction objectives, evaluations of mitigation 

Table 4  Summary of the average annual loss (AAL) of major cities in the Beijing–Tianjin–Hebei region

AALR average annual loss ratio, AALP the percent of average annual loss to GDP

City name Administrative Divi-
sion Code

Replacement Cost (CNY 
Billion Yuan)

GDP (CNY Bil-
lion Yuan)

AAL (CNY Bil-
lion Yuan)

AALR (‰) AALP (‰)

Beijing 1101 1920 1411 1.63 0.9 1.2
Tianjin 1201 950 1131 0.77 0.8 0.7
Shijiazhuang 1301 450 340 0.14 0.3 0.4
Tangshan 1302 310 447 0.37 1.2 0.8
Qinhuangdao 1303 100 93 0.07 0.6 0.7
Handan 1304 350 236 0.12 0.3 0.5
Xingtai 1305 230 121 0.07 0.3 0.6
Baoding 1306 380 205 0.11 0.3 0.5
Zhangjiakou 1307 190 97 0.08 0.4 0.8
Chengde 1308 120 89 0.01 0.1 0.1
Cangzhou 1309 270 220 0.11 0.4 0.5
Langfang 1310 270 135 0.21 0.8 1.5
Hengshui 1311 130 78 0.04 0.3 0.5

Fig. 16  Map of average annual loss ratio (AALR) for the Beijing–
Tianjin–Hebei region

Fig. 17  The loss exceedance probability curve of the Beijing–Tian-
jin–Hebei region with mean and 15% and 85% quantiles



450 Ma et al. Seismic Risk Model for the Beijing–Tianjin–Hebei Region, China

measures’ effectiveness, and the creation of public-private 
financial mechanisms for risk sharing and risk transfer.

Our analysis suggests that the replacement cost in the 
Beijing–Tianjin–Hebei region is RMB 5.81 trillion yuan 
(residential buildings). Of the values, 59% are located in 
the high intensity zone and 3% located in the zone with 
PGA greater than or equal to 0.3 g. The calculated aver-
age annual loss (AAL) in the region is RMB 3.715 billion 
yuan, representing 0.63% of the total replacement cost. 
Furthermore, the estimated probable maximum losses for 
return periods of 50, 100, and 1,000 years are RMB 36.6 
billion yuan (6.3% replacement cost), RMB 62.7 billion 
yuan (10.79% replacement cost), and RMB 204.8 bil-
lion yuan (35.25% replacement cost), respectively. These 
figures suggest that the seismic risk in the Beijing–Tian-
jin–Hebei region should be given high importance. Impor-
tantly, a seismic hazard analysis alone cannot fully capture 
the seismic risk distribution in the region and is not suf-
ficient as a basis for earthquake risk management and plan-
ning. The rare seismic events could significantly impact 
the regional economy, underscoring the importance of 
robust disaster preparedness and response mechanisms. 
Intriguingly, the loss ratio distribution in the region mir-
rors the geometry of major active seismic ruptures.

From a city-specific perspective, Tangshan, Beijing, 
Tianjin, and Langfang emerged as the highest-risk areas 
in the Beijing–Tianjin–Hebei region. The AALR for these 
cities are 1.2‰, 0.9‰, 0.8‰, and 0.8‰, respectively. 
Among these cities, Langfang exhibits the lowest level 
of economic development, as measured by GDP, and 
its AALP exceeds 1.5‰. This indicates that Langfang 
could face significant challenges in mobilizing adequate 
resources to respond to and recover from seismic events. 
To address such disparities, we recommend the establish-
ment of an inter-regional disaster coordination mechanism. 
This would facilitate resource sharing, joint planning, 
and coordinated response efforts, thereby enhancing the 
region’s resilience to disasters.

Our findings indicate that the uncertainty of the loss 
exceedance probability curve increases with the return 
period. This is evidenced by a maximum difference of up 
to RMB 130 billion yuan (at the return period of 10,000 
years) between the 15% and 85% quantiles, amounting 
to 37.3% of the mean loss. Seismic events are typically 
dominated by major earthquakes at high return periods. 
However, it often lacks sufficient data within this period 
range to constrain the model accurately. This deficiency 
contributes to escalating uncertainty within the models. 
This suggests that relying solely on the mean value for risk 
decision making and catastrophe insurance scheme designs 
could result in substantial biases. Thus, it is critical to 
account for the effects of uncertainty in seismic risk analy-
sis. There is a profound need for future, in-depth research 

aimed at devising methodologies to quantify and limit the 
inherent uncertainty associated with tail risk.
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