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Abstract
Fast and accurate prediction of urban flood is of considerable practical importance to mitigate the effects of frequent flood 
disasters in advance. To improve urban flood prediction efficiency and accuracy, we proposed a framework for fast map-
ping of urban flood: a coupled model based on physical mechanisms was first constructed, a rainfall-inundation database 
was generated, and a hybrid flood mapping model was finally proposed using the multi-objective random forest (MORF) 
method. The results show that the coupled model had good reliability in modelling urban flood, and 48 rainfall-inundation 
scenarios were then specified. The proposed hybrid MORF model in the framework also demonstrated good performance 
in predicting inundated depth under the observed and scenario rainfall events. The spatial inundated depths predicted by the 
MORF model were close to those of the coupled model, with differences typically less than 0.1 m and an average correlation 
coefficient reaching 0.951. The MORF model, however, achieved a computational speed of 200 times faster than the coupled 
model. The overall prediction performance of the MORF model was also better than that of the k-nearest neighbor model. 
Our research provides a novel approach to rapid urban flood mapping and flood early warning.

Keywords  Coupled model · Designed rainfall events · Multi-objective random forest (MORF) method · Rainfall-inundation 
database · Urban flood prediction

1  Introduction

Urban flood disasters are becoming increasingly more fre-
quent against the background of climate change and growing 
urbanization (Wu et al. 2017; IPCC 2021; Jian et al. 2021; 
Tellman et al. 2021). As population size and property value 
continue to expand in cities, damage and loss caused by 
floods, even if the floods as hazard remain on the same scale 
as previously encountered, will become more severe than 
ever before (Lai et al. 2020; Deng et al. 2022). Prediction of 
the flooding situation is an extremely effective measure for 
disaster prevention and mitigation in urban areas (Lin et al. 
2020). People can take preventive measures after receiving 

the information from early-warning and prediction systems, 
and then the exposure and vulnerability of elements at risk 
may be greatly reduced.

However, there are two major challenges for urban flood 
prediction (Teng et al. 2019; Bentivoglio et al. 2022). The 
first is the timeliness of prediction. Because an urban flood 
can develop within a few minutes, the time spent on pre-
diction should be as short as possible, and must guarantee 
enough reaction time for people and relevant government 
departments to respond. The second challenge is the accu-
racy of prediction. Accurate prediction results are vital for 
disaster prevention. Targeted measures that reduce losses 
can be adopted if the inundated area and depth, occurrence 
time, and persistent period of a flood are accurately pre-
dicted. Therefore, how to improve the timeliness and accu-
racy of urban flood prediction has become a focus in current 
studies and urgently needs to be addressed for the real-time 
or quasi real-time prediction of urban flood.

Hydrological and hydrodynamic models are often applied 
to simulate and predict the physical processes of urban flood 
(Chen et al. 2017; Wu et al. 2017; Zeng et al. 2022). Com-
monly used models include one-dimensional (1D) models 
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that are usually solved using the Saint-Venant equations 
of mass and momentum conservation (Rossman 2015), 
two-dimensional (2D) models that use the shallow water 
equations or cellular automata (Guidolin et al. 2016; Zhang 
et al. 2021), and coupled models that combine 1D and 2D 
models (Wu et al. 2017; Chen et al. 2018; Wu et al. 2018). 
These models provide a sufficient representation of flow 
movement, achieving accurate simulation of urban flood. 
Yet existing models suffer from problems, such as complex 
iterative solutions of hydrodynamic equations and excessive 
simulation time, especially when running on high-resolution 
grids, even though computing power has greatly improved in 
recent years (Bhola et al. 2018; Kim and Cho 2019). Under 
these circumstances, the conventionally physics-based mod-
els are difficult to meet the requirements of timeliness at 
present when they are directly applied to the real-time rapid 
prediction of urban flood or used in a context that requires 
a large number of operating results (Teng et al. 2019; Chu 
et al. 2020; Kabir et al. 2020).

There have been many exploratory developments of novel 
methods of rapid prediction and simulation of urban floods. 
Some studies have used digital elevation model (DEM)-
based, simplified hydrodynamic models, which are orders 
of magnitude faster than traditional hydrodynamic mod-
els (McGrath et al. 2018; Teng et al. 2019). These models 
have deficiencies, however, because they cannot simulate 
dynamic changes of water depth and flow velocity. Others 
use rainfall-inundation databases generated by hydrody-
namic models to extract or call up the flood inundation map 
in advance (Schulz et al. 2015; Bhola et al. 2018). The speed 
of this approach is highly advantageous, but direct extraction 
of an inundation map may lead to unacceptable errors (Bhola 
et al. 2018; Kim and Cho 2019).

Many studies have verified that machine learning (ML) 
can provide an alternative and effective solution for urban 
flood mapping and prediction without directly considering 
the physical processes involved (Lin et al. 2021; Zoune-
mat–Kermani et al. 2021). Relative to traditional hydro-
dynamic models, a ML-based approach has some distinct 
advantages. First, benefitting from its data-driven charac-
teristics, a ML-based approach can quickly learn the rela-
tionship between hydrological elements in historical flood-
ing data generated by traditional physical models (Xu and 
Liang 2021). Furthermore, it can combine common feature 
data to form more abstract attributes, or higher-level fea-
ture representations, giving a more detailed description of 
hydrological and hydrodynamic phenomena (Lai et al. 2016; 
Brunton et al. 2019). Given these advantages, many ML-
based methods have been widely applied to flood hazard, 
susceptibility, and risk analysis (Wang et al. 2015; Lai et al. 
2016; Li et al. 2020; Lin et al. 2021). Most of these studies 
used ML methods to predict the occurrence probability of 
flooding, or to perform 1D runoff prediction, but few studies 

have used such methods to conduct 2D flood inundation pre-
diction (Kabir et al. 2020).

Some studies have explored combinations of ML with 
hydrological and hydrodynamic models to realize 2D flood 
prediction, including support vector machine (SVM) (Ber-
múdez et al. 2019) and artificial neural network (ANN) 
(Kabir et al. 2020). Machine learning-based 2D flood inun-
dation prediction can generally be carried out using two 
kinds of approaches. One is the two-stage method, which 
first predicts some water depth points and then expands 
these to the 2D space (Lin et al. 2013; Jhong et al. 2017). 
However, there can be significant errors when expanding the 
water depth of partial points into spatial inundated depths. 
Another method is to directly predict the water depth on a 
spatial grid. For example, Chu et al. (2020) and Lin et al. 
(2020) constructed 14,227 and 10,000 ANN models with 
more than 10,000 inundated grid units each in their study 
areas for rapid prediction of inundated depths. Due to the 
large number of models and the complex weight optimiza-
tion and adjustment needed, however, building a large num-
ber of neural network models to predict water inundation 
depths across multiple grids encounters problems of com-
plex parameters, slow training speeds, and the consumption 
of too much computational time. Hou et al. (2021) attempted 
to improve these shortcomings by using a random forest 
(RF) approach, but this was only applied to rainfall data 
generated by the Chicago1 rainfall pattern generator, and 
the method was not verified at the watershed scale using 
real data.

When selecting ML technology for flood prediction, it is 
worth noting that most existing algorithms (such as SVM) 
are not suitable for multi-objective scenarios (Kabir et al. 
2020), that is, predicting flood variables (such as depth) in 
multiple units through a single model. Generally, the pre-
diction of water depth at one point can be solved satisfacto-
rily by constructing a single model using a single-objective 
regression method (Xu et al. 2020). However, spatial pre-
diction of inundated depths is a multi-objective problem. 
Multi-objective prediction is the generalization of multi-
target regression and classification (Nakano et al. 2022). In 
this regard, a RF method may be more appropriate in theory 
as it can solve both single-objective and multi-objective 
problems. Multi-objective random forest (MORF) does not 
over-fit the training data, has lower sensitivity to noise in 
the training sample, and can efficiently process high-dimen-
sional data, high-order interactions, and nonlinear problems 
of variables compared with other algorithms, such as lin-
ear or logistic regressions (Breiman 2001). Compared with 
other multi-objective algorithms like convolutional neural 

1  A single-peaked rainfall pattern with high peak intensity, proposed 
by Keifer and Chu (1957).
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networks (Kabir et al. 2020), MORF has fewer parameters, 
avoiding a large number of parameter settings, weight opti-
mizations, and long training times. Recently, MORF meth-
ods have made significant progress in solving multi-objec-
tive problems in many fields, such as shale gas production 
forecasting (Xue et al. 2021), vegetation condition prediction 
(Kocev et al. 2009), and earthquake early warning (Adhai-
tyar et al. 2021). Multi-objective random forest models 
should also be suitable for 2D flood inundation prediction, 
providing rapid computational speed and high spatial resolu-
tion in theory, but few applications have so far been reported. 
Hence, the performance of the MORF models that attempt to 
simulate and predict urban flood requires further discussion.

In summary, data-driven ML methods have lower compu-
tational cost and higher efficiency, and possess great poten-
tial for overcoming the shortcomings of traditional hydro-
dynamic models. This study aimed to develop an effective 
hybrid framework, which combined the advantages of the 
hydrological model, hydrodynamic model, and ML methods 
to achieve rapid and accurate prediction of urban flood. The 
main goal was achieved through: (1) constructing a high-
precision hydrological and hydrodynamic coupled model of 
urban flood; (2) producing a rainfall-inundation database 
using different designed rainfall events; and (3) developing a 
prediction model based on MORF to realize rapid and high-
precision mapping of urban flood. The study contributes to 
the advancement in risk management of urban flood disas-
ters and provides a methodological device and analytical 

framework for rapid forecasting of urban flood, disaster pre-
vention and mitigation, and flood-related risk management 
in urban areas.

2 � Data and Methods

This section presents an overview of the study area, the main 
sources of data employed in the project, and the relevant 
methodology used in this study.

2.1 � Study Area

The Chebei River Basin (CRB), with an area of 74 km2, is 
one of the severest flood-prone areas in Guangzhou City, 
China (Fig. 1). It has a subtropical monsoon climate with 
an average annual temperature of 20–22 °C and an average 
annual rainfall of about 1720 mm. The northern and central 
parts of the CRB are mostly mountainous areas, and the 
southern part is a relatively low-lying and highly urbanized 
area. With rapid urbanization development, the areal cover-
age of impervious surfaces in the Tianhe District, where the 
CRB is located, increased from 16% in 1990 to 71% in 2013 
(Pan et al. 2017).

Due to factors such as heavy rainfall, low-lying ter-
rain, and insufficient drainage capacity, part of the CRB 
often experiences rainstorm and flood disasters, and there 
are many flood-prone areas in the basin. For example, the 

Fig. 1   Map of the Chebei River 
Basin case study area in Guang-
zhou City, China
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extreme rainfall in Guangzhou on 22 May 2020 caused 
severe flooding in the city, resulting in four deaths. During 
this period, the water level of the Chebei River rose sharply, 
the maximum water depth over several highways exceeded 1 
m, and a large number of buildings were partially inundated, 
resulting in significant economic losses (Zhang et al. 2021).

2.2 � Data

The digital elevation model (DEM) data (floating-point 
type) with a spatial resolution of 8m × 8m, used to con-
struct the hydrological and hydrodynamic coupled model 
were obtained from the Guangzhou Land Resources and 
Planning Commission. To characterize the blocking effect of 
buildings on surface flow, Google satellite images were used 
to depict the outline of buildings, and the building heights 
of the original DEM were updated to a fixed value of 10 m.

Drainage network data and land-use data were obtained 
from the Guangzhou Water Affairs Bureau and the National 
Geographic Center of China, respectively. Hourly rainstorm 
data from 1954 to 2012 recorded at the Wushan Station near 
the CRB were provided by the Guangzhou Meteorological 
Bureau, and these data were used to generate designed rain-
fall events. The observed rainfall and flow data were used for 
model calibration and verification, and these were obtained 
using field monitoring instruments with a temporal resolu-
tion of 5 minutes. To process the data, ArcGIS 10.2, Python 
v.3.8.5, R v.3.5.1, and Microsoft Excel 2016 were the pri-
mary software used.

2.3 � Methodology

The physical-based coupled model, ML model, method of 
rainfall design, and evaluation metrics are introduced in 
detail in this section.

2.3.1 � Overall Research Strategy

The main purpose of this study is to create a framework that 
can predict the maximum inundated area and depth, as well 
as to map the urban flood zones based on these prediction 
results. This framework mainly consists of three parts, which 
are depicted in Fig. 2.

First, a coupled model, based on the storm water manage-
ment model (SWMM) and a weighted cellular automata 2D 
(WCA2D) inundation model, was constructed to simulate 
the inundated area and depth. A rainfall database was gener-
ated by identifying the temporal distribution of local histori-
cal rainfall events, and then a rainfall-inundation database 
was further established using the coupled model.

Second, the inundated and noninundated grids were 
determined with 0.01 m as the water depth threshold, and 
these water depth raster data were read and converted into 

a two-dimensional array and that became input into the ML 
model. The MORF and k-nearest neighbor (KNN) models 
were constructed by generating training and test datasets and 
optimizing hyperparameters.

Finally, flood inundation prediction was achieved by 
inputting rainfall into the constructed ML model. The effec-
tiveness of ML model prediction, including accuracy and 
calculation time, was compared with the coupled model 
simulation.

2.3.2 � SWMM‑WCA2D Coupled Model

The SWMM provided a 1D model of the drainage network 
and was used to analyze the stormwater runoff in the drain-
age pipe system (Rossman 2015). This model is a popular 
tool for simulating urban hydrology and hydrodynamics 
using the 1D Saint–Venant equations, and includes modules 
for ground runoff generation, ground runoff convergence, 
and pipeline convergence (Wang et al. 2022). Since the 
SWMM lacks a surface overflow module, coupling SWMM 
with other 2D models enables rainfall inundation simulation.

Fig. 2   A schematic summarizing the hybrid modeling approach for 
rapid flood mapping developed in this study based on the SWMM-
WCA2D and ML models



257International Journal of Disaster Risk Science

1 3

The cellular automata (CA) model, first developed by 
Dottori and Todini (2011), can simulate 2D hydrodynamic 
processes. It utilizes the Manning equation to calculate inter-
active flows between cells. Guidolin et al. (2016) further 
introduced an interactive method to simplify flow conver-
sion rules between cells, and proposed a WCA2D inunda-
tion model. The main advantage of the WCA2D model is 
that it is more efficient in flood simulation and can reflect 
certain physical mechanism of surface flow movement, and 
the model was used to simulate inundated area and depth 
in our study.

We coupled the SWMM and the WCA2D models to simu-
late the process of urban rainstorms and associated flooding 
by importing overflow information from the SWMM into the 
WCA2D model, and finally we simulated the evolution of 
inundation using a graphics processing unit (GPU) accelera-
tion technology.

2.3.3 � Rainfall Event Design

Designed rainfall events were used to generate a rainfall-
inundation database for ML training. Rainfall event design 
that contains the features of local historical rainfall can 
improve the representativeness of the rainfall-inundation 
databases (Kim and Cho 2019). The characteristics of rain-
fall include return periods and rainfall patterns. The return 
period is related to the rainfall amount, while rainfall pattern 
refers to the temporal distribution of rainfall intensity during 
a rainfall event (He et al. 2022).

A total of seven rainfall pattern types were proposed by 
Molokov and Shtigorin (1956). These are pattern types I, II, 
and III (unimodal with early, late, and middle peaks, respec-
tively), pattern type IV (uniform), and patterns V, VI, and 
VII (bimodal with side, early and late peaks, respectively).

In this study, we used a rainfall design method based on 
local historical rainfall that was proposed in our previous 
study (Zhang et al. 2021). First, the historical rainstorm 
events were identified and classified into seven rainfall pat-
terns, the historical rainstorm process for each rainfall pat-
tern was obtained, and then the temporal distribution pro-
portion of different rainfall patterns was deduced. Finally, 
the total rainfall for the return period and distribution ratios 
were combined to generate rainfall events that accurately 
reflect the actual rainfall characteristics of the study area. 
The Chicago rainfall pattern, a widely used pattern in drain-
age planning and flood simulation, was also added to the 
rainfall database. In this case, a total of 48 rainfall scenarios 
(Fig. 3), each lasting 120 minutes, were designed, featuring 
eight rainfall patterns (I to VII, and Chicago) and six return 
periods of 1, 5, 10, 20, 50, and 100,years with total rainfall 
amounts of 65.88, 95.74, 109.90, 125.97, 144.82, and 157.73 
mm, respectively. In this study, rainfall intensity varies over 
time and is assumed to be uniform spatially.

2.3.4 � Multi‑objective Random Forest

A multi-objective random forest (MORF) algorithm was 
used for the rapid prediction of urban flood in this study. 
The implementation from single-objective to multi-objec-
tives generally includes the problem transformation method 
and algorithm adaptation method (Borchani et al. 2015). 
The former method combines the predictions of each sin-
gle-objective model, ignoring a certain spatial correlation 
between the individual objectives. A multi-objective model 
based on algorithm adaptation may have more advantages 
in improving the prediction accuracy of each spatial grid, 
because it predicts all targets simultaneously using a single 
model that captures all dependencies and internal relation-
ships (Borchani et al. 2015; Ling et al. 2022).

Random forest is an ensemble of classification and 
regression trees (Breiman 2001). The traditional RF is typi-
cally employed to solve single objective problems (Xiong 
et al. 2020; Liao et al. 2021), which are based on univari-
ate regression trees (URT). In URT, the impurity of a node 
is generally defined as the sum of squares of the single 
response variable values with respect to the node mean (Shih 
and Tsai 2004; Saha et al. 2016):

where 
−

y (t) is the mean value of the complete sample of y at 
node t, yk is the observed value of the response variable, and 
Nt is the number of data points at node t.

Starting from a single node at the top of the tree (contain-
ing all data), the tree grows by repeatedly binary splitting 
the data. Splits are typically chosen to minimize the impurity 

(1)i(t) =
1

Nt

∑

yk∈t

(yk − y(t))2

Fig. 3   Designed rainfall events consisting of six return periods (1, 5, 
10, 20, 50, and 100 years) and eight rainfall patterns (I to VII, and 
Chicago)
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of two nodes. Let a predictor variable Xp split the parent 
node t into two child nodes tL and tR at split point c; the 
impurity reduction related to node t caused by the splitting 
of Xp, Δi(c, t)Xp

 is calculated as follows (Saha et al. 2016):

where Nt, NtL and NtR are the number of data points at node 
t, left child node tL, and right child node tR, respectively.

To realize the simultaneous output and prediction of 
multiple objectives, MORF was further proposed (Kocev 
et al. 2007; Xue et al. 2021), and its submodel becomes 
multi-objective regression trees (MRT) (De’ath 2002; 
Struyf and Džeroski 2006). When constructing the MRT, 
the training dataset D with N instances includes m predic-
tor variables (X1, …, Xm) and d response variables (Y1, 
…, Yd), that is, D={(x(1),y(1)), …, (x(N),y(N))}. The con-
struction process of MRT is similar to URT, that is, the 
univariate response of URT is replaced with multivariate 
response (De’ath 2002). Multi-objective regression trees 

(2)Δi(c, t)Xp
= i(t) −

NtL

Nt

i(tL) −
NtR

Nt

i(tR)

redefine the impurity of the node td as the sum of squared 
error, i(td) , summing the impurity over the multivariate 
response, as follows (Borchani et al. 2015):

where y(l)
j

 represents the value of the output variable Yj of the 
instance l, and ȳj represents the mean value of Yj in the node. 
The splitting point is determined by selecting the minimiz-
ing sum of the squared error. Each leaf of the tree can be 
characterized by the multi-variable mean of its instances, the 
number of instances, and its feature values. The leaves of a 
MRT store vectors instead of individual values. Each com-
ponent of this vector represents a prediction for one of the 
targets. To better understand the structure of MRT, an exam-
ple of an MRT with five predictor variables and six targets 
is showed in Fig. 4. Finally, MORF can be constructed by a 
large number of MRT based on training sets through random 
sampling, and the spatial water depth of d grid cells can be 
predicted by MORF (Fig. 5).

(3)i(td) =
∑N

l=1

∑d

j=1
(y

(l)

j
− yj)

2

Fig. 4   Schematic diagram of the 
multi-objective regression tree 
(MRT) methodology

Fig. 5   Process of spatial 
water depth prediction using a 
multi-objective random forest 
(MORF) model Note: MRT = 
Multi-objective regression tree
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2.3.5 � K‑Nearest Neighbor Algorithm

The k-nearest neighbor (KNN) algorithm is a nonparametric 
regression prediction case-based learning method in the field 
of data mining, and is a popular method to deal with multi-
objective problems (Liu et al. 2019). In a KNN model, if a 
sample to be predicted is the most similar to the K samples 
in the training set, the results of the predicted sample can be 
determined based on these K samples. Similarity is defined 
in terms of a distance measure between two samples (each 
contains n data points). A popular choice is the Euclidean 
distance given by:

Using the nearest neighbor decision rule, an observation 
is assigned to the group to which most of its kth-nearest 
neighbors belong, and then the value of the dependent vari-
able corresponding to the observation is predicted. The KNN 
regression algorithm was used to search the K samples clos-
est to an unknown rainfall event (that is, predictor variables) 
in the rainfall-inundation database (that is, training set), and 
then we used these K samples for inundation prediction. The 
prediction results by KNN were later compared with those 
of MORF.

2.3.6 � Model Performance Indicators

The Nash-Sutcliffe efficiency (NSE) coefficient was adopted 
to evaluate the SWMM model accuracy (Nash and Sutcliffe 
1970), and it can be calculated by Eq. 5. The R2 score was 
used to evaluate the training effect of the ML model and 
represents the proportion of variance in the model that has 
been explained by independent variables, which can be cal-
culated by Eq. 6. The performance of the flood prediction 
model was evaluated by analyzing indices including mean 
absolute error (MAE), root mean square error (RMSE), and 
Pearson correlation coefficient (PCC). The MAE was used 
to determine the overall accuracy when estimating the mean 
value of the coupled model with the mean value of the ML 
model. The RMSE was based on squared error and is suitable 
for assessing the performance of the ML method on large-
scale flooding (Chu et al. 2020; Lin et al. 2020). The PCC 
was used to measure the consistency between the predicted 
water depth of ML and the results of the coupled model. The 
calculation of MAE, RMSE, and PCC was performed using 
Eqs. 7, 8, and 9, respectively:

(4)d(x, x�) =

√
(x1 − x�

1
)2 + (x2 − x�

2
)2 +…+ (xn − x�

n
)2

(5)NSE = 1 −

∑T

t=1

�
Qsim(t) − Qobs(t)

�2

∑T

t=1

�
Qobs(t) − Qobs

�2

where T is the total number of time steps, Qsim(t) is the simu-
lated discharge at time t, Qobs(t) is the observed discharge at 
time t, and Qobs is the mean observed discharge.

where Xi and Yi are the ith simulated water depth from the 
coupled model and the estimated value from the ML method, 
respectively; n represents the total number of samples; X 
and Y  are the simulated mean values of water depth from 
the coupled model and the estimated value from the ML 
method, respectively.

3 � Results

This section introduces the results on validation of the phys-
ical-based model, the creation of inundation database, the 
accuracy and efficiency of the MORF model, and the com-
parisons with the KNN model.

3.1 � Model Calibration and Validation

The SWMM used in this study was improved from our previ-
ous study (Zhang et al. 2021), and hence further calibration 
and verification were carried out. The initial values of the 
parameters were determined by referring to the SWMM user 
manual (Rossman 2015) and from values used in other cities 
in or around Guangzhou City (Wu et al. 2018; Wang et al. 
2021; Li et al. 2022).

The model was calibrated and verified using two meas-
ured rainfall-flow datasets (see Fig. 1 for location) on 2 June 
2021 and 21 June 2021. These two rainfall events had large 
amounts of total and concentrated rainfall, with total rainfall 
amounts of 59 mm and 104 mm respectively (Fig. 6). We 
used the SWMM to simulate the flow of the two rainfall 
events, and a comparison of simulated and monitored flows 
is presented in Fig. 6.

(6)R2 = 1 −

∑n

i=1
(Xi − Yi)

2

∑n

i=1
(Xi − Y)

2

(7)MAE =
1

n

n∑

i=1

|
|Yi − Xi

|
|

(8)RMSE =

√√√
√1

n

n∑

i=1

(Xi − Yi)
2

(9)PCC =

∑n

i=1
(Xi − X)(Yi − Y)

�
∑n

i=1
(Xi − X)2

�
∑n

i=1
(Yi − Y)2



260	 Liao et al. Fast Mapping of Urban Flood Based on a Multi-Objective Random Forest Model

1 3

The results show that the simulated peak flow time at 
the monitoring point is basically in line with the monitored 
flow. The simulated and monitored flows for the two rainfall 
events are highly correlated, and the NSE coefficient reached 
0.78 and 0.73, respectively.

The 2D verification of the WCA2D model was carried out 
by comparing the simulated inundation range with historical 
waterlogging points. To simulate the location of the histori-
cal waterlogging points, we designed a rainstorm event using 
the Chicago rainfall pattern and a 100-year return period 
(Fig. 7). It was found that the internally flooded areas were 
mainly concentrated in low-lying areas along rivers, which 
was confirmed with comparison to observations.

The above results show that the coupled model (SWMM-
WCA2D) developed for this study provided acceptable 
simulations, which well described the actual water flow and 
flooding conditions, suggesting that the coupled model has 
good applicability and high reliability in the study area.

3.2 � Rainfall and Inundation Database

We constructed a rainfall-inundation database by inputting 
the different designed rainfall events into the coupled model. 
This database should contain as many different features as 
possible to improve the learning and generalization ability of 
the ML method. Table 1 summarizes the maximum inunda-
tion areas (h > 0.15 m) of the 48 scenarios. There were obvi-
ous differences in the inundation produced by the different 
rainfall events. When the return period increases, the inun-
dated area becomes larger. Under the same return period, 
the inundation resulting from single-peak rainfall patterns 
(patterns I, II, III, and Chicago) is significantly larger than 
that resulting from uniform and double-peak patterns. For 
example, the inundated area for pattern III rainfall with a 
100-year return period is 501.66 ha, which is 15.96% and 
15.53% larger than pattern IV (432.61 ha) and pattern V 
(434.21 ha), respectively. Generally, due to the nonlinear 
relationship between rainfall and inundation, the areas of 

inundation caused by rainfall of different patterns are quite 
different even for the same return period.

3.3 � Urban Flood Mapping Using the MORF Model

This section presents the parameters and optimization results 
of the MORF model, evaluates its performance in predicting 
inundation depth, and compares its results with the coupled 
model as well as the KNN model.

Fig. 6   Details of the validation of the storm water management model (SWMM). Rainfall 1 (blue) and Rainfall 2 (yellow) represent the rainfall 
monitored by rain gauge 1 and 2 in Fig. 1, respectively

Fig. 7   Details of the validation of the WCA2D model used in this 
study in Guangzhou City, China
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3.3.1 � MORF Model Construction and Optimization

After constructing the rainfall-inundation database, MORF 
was applied to learn the relationship between rainfall events 
and inundation scenarios. The independent variable in the 
model is the actual rainfall process (that is, if the rainfall 
duration is 120 minutes, there are a total of 120 input vari-
ables), and the dependent variable is the water depths at 
different spatial points (114,812 grid points in total). The 
48 simulated rainfall and inundation scenarios were divided 
into a training and a test dataset with a ratio of 8:2. The 
test set was randomly divided and fine-tuned to include as 
many different rainfall features as possible, such as rainfall 
intensity and peak time, to test the generalization ability of 
the model.

There are two important parameters when constructing 
the MORF—the number of trees in the forest (ntree), and the 
number of independent variables randomly selected for split-
ting at each node in a tree (mtry). Liaw and Wiener (2002) 
suggested generating a forest with an increasing number of 
trees until the increase in the number does not effectively 
improve prediction performance. It is generally recom-
mended for RF regression that mtry should equal one-third 
of the number of prediction variables (Saha et al. 2016). To 
explore the most suitable parameters, mtry was set to one-
sixth, one-third, and one-half of the number of independent 
variables, corresponding to 20, 40, and 60 respectively in 

this study. At the same time, ntree was gradually increased 
to test model performance Fig. 8. The results suggest that 
the model performed best when mtry and ntree were set to 
20 and 110, respectively, and these values will be used as 
the final parameter scheme, and all other parameters are set 
to their default values. The MORF model was built by using 
the package scikit-learn 1.0.2 of the Python program.

3.3.2 � Comparison of Inundation Maps based on the MORF 
Model and the Coupled Model

The prediction effectiveness of the MORF model was veri-
fied by using 12 rainstorm and inundation scenarios, includ-
ing 10 designed rainfall events and 2 actual rainfall events. 
The 10 designed rainfalls used rainfall patterns I, IV, and 
VII with a 50-year return period, patterns II, V, and Chi-
cago with a 20-year return period, patterns III and VI with 
a 10-year return period, and patterns I and IV with a 5-year 
return period. Two actual rainfall events from 23 June 2021 
(R20210623) and 28 July 2021 (R20210728) were also used 
(Fig. 9). For these two events, the rainfall amounts in 2 hours 
were 72 mm (a one-year return period event) and 103 mm 
(a five-year return period event), respectively. Spatial distri-
butions of water depth predicted by the MORF model and 
the coupled model for rainfall pattern I with 5-year return 
period and pattern VII with 50-year return period in the test 
set were evaluated Fig. 10, and a comparison between the 

Table 1   Maximum inundation 
areas (ha) resulting from 
rainstorms with different return 
periods and rainfall patterns 
(see Fig. 3)

a Return time intervals expressed in years

Return perioda Rainfall pattern

I II III IV V VI VII Chicago

1 92.53 98.32 101.45 73.67 75.33 88.15 90.36 107.59
5 189.91 208.60 210.41 162.27 167.24 182.71 186.85 211.76
10 258.37 277.79 281.39 219.35 229.60 255.14 249.40 280.17
20 326.52 353.04 350.67 289.80 296.99 325.07 328.47 344.49
50 408.91 438.92 440.15 370.41 373.88 409.23 413.38 419.25
100 469.68 499.31 501.66 432.61 434.21 471.55 473.36 477.80

Fig. 8   Parameter optimization process of the MORF model: R2 changes with mtry = 20, 40, and 60 (a), and with ntree = 110 (b)
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MORF model predictions and those of the coupled model 
under the 12 test scenarios is shown in Figs. 11 and 12.

The spatial distributions of inundated depth predicted 
by the MORF model were similar to those of the coupled 
model, and the maximum water depth difference between 
them was typically less than 0.1 m. The flood-prone points 
and inundated area were generally consistent. Figure 12 
shows the scatter plot of correlation between inundated 
depth at each grid point predicted by the MORF model and 
by the coupled model. Nearly all grid points had high corre-
lations between predicted values of the two prediction meth-
ods, with significant linear correlations (P < 0.001). The 
performance indicators of the MORF model are presented 
in Table 2. The MAE values were between 3.4 cm and 9.6 
cm, with an average of 6.5 cm; the mean RMSE was 0.189, 
and the PCC reached an average of 0.951. The MORF model 
also showed high accuracy for water depth prediction when 
using the actual rainfall events.

From the perspective of computing time, the coupled 
model required more computing time, as each unit runs 
at high surface resolution. In the CRB study area, when 
the resolution of the topographic data was 8 m × 8 m, the 
maximum number of inundated grids in the target area was 
114,812. The MORF model was able to predict the max-
imum inundated range and water depth in the study area 
within 2 seconds for a given rainfall event, while the simula-
tion time of the coupled model, using SWMM and WCA2D, 
reached 468–1614 seconds. Hence, the prediction efficiency 
of the MORF model was approximately 200 times higher 
than that of the coupled model.

To show the advantages of the MORF model, we fur-
ther constructed a KNN model and compared its predic-
tion performance of spatial inundated depth with that of the 
MORF model. The distance metric of the KNN model is the 
Euclidean distance, and the optimal parameter K = 1 was 
obtained using the 10-fold cross-validation method (Wang 
et al. 2015). For the KNN model, the mean value of MAE, 
RMSE, and PCC is 7.9 cm, 0.247, and 0.935, respectively 

(Table 2). The results confirm that the spatial distributions 
of the predicted water depth of both the KNN and the MORF 
models were satisfactory, but the overall prediction accuracy 
of the MORF model was better. Although the training time 
of the MORF model and the KNN model reached 10 min-
utes and 1second respectively, they used similar amounts of 
computational time in terms of prediction efficiency.

In conclusion, the simulation results of the MORF and 
coupled models demonstrated little difference and showed 
strong correlation. As the computational time required 
for simulating and predicting water depths using the 
MORF model is short, and its accuracy meets all of the 
expected requirements, this study suggests that MORF has 
great potential for rapid and real-time prediction of flood 
inundation.

4 � Discussion

Rapid and accurate prediction of flood inundation induced 
by rainstorm is an effective nonengineering measure that can 
reduce loss of urban flood disasters (Berkhahn et al. 2019). 
In this study, a MORF algorithm-based fast simulation 
framework of urban flood prediction was introduced. Only 
one model is needed to predict the water depth at multiple 
grids at the same time while a large number of models are 
required in the previous studies (Chu et al. 2020; Lin et al. 
2020). The developed MORF model in the framework is 
competent for automatically mining the nonlinear relation-
ship between rainfall and inundation response in a rainfall-
inundation database generated by a physical model. It can 
also deal with new inundation scenarios by identifying the 
characteristics of an unknown (or predicted) rainfall event, 
rather than simply calling existing similar rainfall-inundation 
scenarios from a database like the KNN model. This ability 
is crucial for improving the model’s prediction accuracy. In 
addition, the actual rainstorms and the corresponding urban 
disasters that occur later can be added to the database and 

Fig. 9   Details of the two actual rainfall events used to test the effectiveness of the MORF model
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then the MORF model could be updated continually. In this 
case, the model would be more robust and accurate.

The framework of the MORF model has the advantages 
of fast construction, few parameter settings, high efficiency, 
and accurate urban flood prediction. Moreover, this study 
showed that the MORF model is at least 200 times faster 
than the coupled SWMM-WCA2D model with similar accu-
racy. In addition, our previous study (Zhang et al. 2021) 
found that the simulation times of another coupled model 
(SWMM- LISFLOOD-FP), a traditional hydrodynamic 
model (Coulthard et al. 2013), in the same study area were 
much longer. Their run times were typically up to 2 hours 

(executed in the same operating environment), while the 
MORF model developed here had typical run time of a few 
seconds. When the study area is large enough, or the grid 
spatial accuracy required is high (that is, a greater number 
of grid points), the high prediction efficiency of the MORF 
model will be more advantageous in comparison to a hydro-
dynamic model, without significant loss of accuracy.

In this study, we set the duration of rainfall to 120 min-
utes. However, the model demonstrated satisfactory predic-
tions under actual input rainfalls, whose duration was less 
than 120 minutes. In practice, the duration of rainfall may 
exceed, or be shorter than 120 minutes. To test water depth 

Fig. 10   Comparison of inun-
dated depth predicted by the 
MORF model and the coupled 
model. The images in a rep-
resent rainfall pattern I with a 
5-year return period, and those 
in b present pattern VII with a 
50-year return period in the test 
set, respectively
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prediction using the MORF model with longer rainfall dura-
tions, we extended the rainfall duration to 240 and 360 min-
utes, and then regenerated the rainfall-inundation database 
and reconstructed the MORF model. Table 3 shows that the 
results of the three evaluation indices under different rainfall 
durations are satisfactory, meaning that the MORF model is 
still robust under changing rainfall durations.

With current computing power and available algorithms, 
building an accurate real-time early warning and forecasting 
system for urban flood based on artificial intelligence (AI) 
has become particularly important for disaster prevention 
and mitigation. The importance of AI has increased because 
rainstorm and urban flood disasters usually occur suddenly 

and cause serious disaster losses in a very short time. The 
proposed framework can provide strong support for early 
warning and forecasting of such disasters. The framework 
is a hybrid with the advantage of high-precision and high-
efficiency as it carries over the accuracy of the traditional 
physical model and simultaneously includes the computa-
tional efficiency of ML. With the improvement of rainfall 
“nowcasting” technology, near real-time forecasting of the 
amount and spatial-temporal distribution of rainfall (for 
example, 1 to 3 hours) can be done in advance. The predicted 
rainfall can then be put into the framework, and accurate 
information of inundated area, water depth, and flood-prone 
points can be quickly obtained in advance. Solutions can 

Fig. 11   Spatial differences of inundated depth predicted by the 
MORF model and the coupled model. (a, b) represent patterns I 
and IV with 5-year return period, (c, d) represent patterns III and VI 
with 10-year return period, (e−g) represent patterns II, V, and Chi-

cago with 20-year return period, (h−j) represent patterns I, IV, and 
VII of 50-year return period, and (k, l) represent actual rainfall events 
“R20210623” and “R20210728”, respectively. The specific designed 
rainfall process can be found in Fig. 3
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then be rapidly adopted to reduce property and infrastructure 
damage and loss of life.

Generally, the framework proposed by our study does not 
seem “smart” enough because a large number of calcula-
tions and simulations has to be conducted to construct the 
database before mapping the urban flood when encountering 
real-time or predicted rainstorms. But it can generate the 
flooding map with a few seconds and then in return gain 

precious reaction time for the residents. The framework can 
be considered a feasible approach for real-time prediction 
until substantial breakthroughs on the coupled model’s algo-
rithm and general computing power take place in the future. 
The framework is reasonable and suitable for any region, but 
for the study in the Chebei River Basin (CRB), there are still 
some limitations. First, our work was limited by data acces-
sibility; only two rainstorm events were used for calibration 

Fig. 12   Correlation of inundated depth predicted by the MORF 
model and the coupled SWMM-WCA2D model. (a, b) represent pat-
terns I and IV with 5-year return period, (c, d) represent patterns III 
and VI with 10-year return period, (e−g) represent patterns II, V, 

and Chicago with 20-year return period, (h−j) represent patterns I, 
IV, and VII with 50-year return period, and (k, l) represent the actual 
rainfall events “R20210623” and “R20210728”, respectively. The 
specific designed rainfall process can be found in Fig. 3

Table 2   The MAE, RMSE, and 
PCC values of the test data 
(2h) with the MORF and KNN 
approach

a Test rainfall return time intervals expressed in years

No. Test rainfalla MORF KNN

MAE (m) RMSE (m) PCC MAE (m) RMSE (m) PCC

1 50 (I) 0.080 0.223 0.981 0.100 0.272 0.973
2 50 (IV) 0.051 0.144 0.986 0.104 0.293 0.966
3 50 (VII) 0.073 0.198 0.983 0.101 0.282 0.971
4 20 (II) 0.069 0.188 0.966 0.099 0.282 0.931
5 20 (V) 0.050 0.172 0.966 0.091 0.304 0.902
6 20 (Chicago) 0.096 0.321 0.916 0.090 0.269 0.939
7 10 (III) 0.034 0.113 0.981 0.077 0.262 0.902
8 10 (VI) 0.047 0.125 0.973 0.073 0.227 0.920
9 5 (I) 0.048 0.175 0.931 0.073 0.259 0.898
10 5 (IV) 0.084 0.245 0.887 0.061 0.221 0.916
11 R20210623 0.063 0.162 0.907 0.015 0.091 0.965
12 R20210728 0.080 0.200 0.931 0.065 0.198 0.942
Average 0.065 0.189 0.951 0.079 0.247 0.935
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and verification of the coupled model. Accuracy could be 
improved if more events were used. Second, we only used 
the designed rainfall events and assumed a total of 48 rain-
fall scenarios. Better effect could be obtained if real rainfall 
events that cover different return periods and rainfall patterns 
were used. In addition, our research mainly considered the 
rapid prediction of inundation under spatially generalized 
rainfall, and it is worth further research to extract the spatial 
characteristics of rainfall to achieve a rapid prediction of 
inundation under spatiotemporal changes of rainfalls. Third, 
ensemble learning methods can be considered, such as com-
bining the prediction results of multiple models, to improve 
the accuracy and robustness of the predictions. Finally, we 
focused on predicting the maximum inundated depth due to 
its significant impact on flood risk. But flood inundation is a 
dynamic process, and how to predict the dynamic inundation 
process is also a subject for further consideration.

5 � Conclusion

In this study, we proposed a framework for fast mapping of 
urban flood inundation. We first constructed a high-accu-
racy coupled model based on SWMM and WCA2D. Then 
rainfall events with different characteristics were designed 
and entered into the coupled model to construct a rainfall-
inundation database. Finally, a prediction model, using a 
data-driven ML method based on MORF, was constructed 
and its prediction performance was systematically evaluated. 
The prediction model based on MORF was further compared 
to that based on KNN. The main conclusions of this study 
can be summarized as follows:

(1)	 Our coupled model can deliver accurate information 
about inundated areas and water depths. The NSE coef-
ficients of the two simulated flow events reach 0.78 

and 0.73 respectively. The inundated area simulated by 
the coupled model is consistent with historical water-
logging points. Therefore, the coupled model well 
described the actual water flow and flooding conditions, 
and presented good applicability and high reliability for 
the study area.

(2)	 A total of 48 different scenarios were used to construct 
a rainfall-inundation database. By inputting the rainfall 
events of eight rainfall patterns and six return periods 
(1, 5, 10, 20, 50, and 100 years) into the coupled model, 
inundation scenarios under 48 different kinds of rainfall 
events were simulated. Due to the nonlinear relation-
ship between rainfall and inundation, there are obvi-
ous differences in inundation under the different rainfall 
events even with the same return period.

(3)	 The prediction model based on a MORF method 
can effectively learn the complex nonlinear relation-
ship between rainfall and inundation, and provide 
satisfactory prediction and maps of inundated depth 
under designed and measured rainfall events. The spa-
tial distribution of inundated depth predicted by the 
MORF model is similar to that simulated by the cou-
pled model, with differences typically less than 0.1 m 
and an average correlation coefficient of 0.951. The 
overall prediction performance of the MORF model is 
also better than a KNN-based method. The prediction 
efficiency of the MORF model is much higher as the 
computation time is 200 times faster than a coupled 
model, suggesting that it shows a good prospect in real-
time prediction for urban flood.
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