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Abstract Wildfire is a primary forest disturbance. A better

understanding of wildfire susceptibility and its dominant

influencing factors is crucial for regional wildfire risk

management. This study performed a wildfire susceptibility

assessment using multiple methods, including logistic

regression, probit regression, an artificial neural network,

and a random forest (RF) algorithm. Yunnan Province,

China was used as a case study area. We investigated the

sample ratio of ignition and nonignition data to avoid

misleading results due to the overwhelming number of

nonignition samples in the models. To compare model

performance and the importance of variables among the

models, the area under the curve of the receiver operating

characteristic plot was used as an indicator. The results

show that a cost-sensitive RF had the highest accuracy

(88.47%) for all samples, and 94.23% accuracy for ignition

prediction. The identified main factors that influence

Yunnan wildfire occurrence were forest coverage ratio,

month, season, surface roughness, 10 days minimum of the

6 h maximum humidity, and 10 days maxima of the 6 h

average and maximum temperatures. These seven variables

made the greatest contributions to regional wildfire sus-

ceptibility. Susceptibility maps developed from the models

provide information regarding the spatial variation of

ignition susceptibility, which can be used in regional

wildfire risk management.
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1 Introduction

As global temperatures warm, wildfires in China have

become a significant concern because of their increasing

frequency and severity, which has expanded the area that is

affected by wildfires. Understanding wildfire susceptibil-

ity—defined as the likelihood of suffering harm—and its

dominant influencing factors at a regional scale is neces-

sary for improving wildfire management. The precision of

wildfire forecasts needs to be improved, and understanding

the driving forces of wildfires is of great importance for

devising better strategies to mitigate wildfires and to

identify at-risk areas (Finney 2005).

Wildfire susceptibility analyses are useful for fire

occurrence prediction, zonation, and follow-up manage-

ment. Statistical models, such as regression models, which

have been developed from historical data to estimate the

probabilities of fire occurrence under various local envi-

ronmental conditions, are valuable for understanding gen-

eral historical trends. These models can be used to predict

outcomes, such as the expected number of fires in an area,

from explanatory variables such as vegetation patterns,

landforms, meteorological factors, and past fire history

(Weinstein and Woodbury 2010).

Despite an abundance of studies that predict wildfire

occurrence, many of these studies have employed tradi-

tional generalized linear models (GLMs), whose prediction

accuracy is relatively low. In recent years, machine-

learning methods have drawn researchers’ attention

because of their high modeling precision. Artificial neural

networks (ANNs) are widely accepted machine-learning

& Ming Wang

wangming@bnu.edu.cn

1 State Key Laboratory of Earth Surface Processes and

Resource Ecology/Academy of Disaster Reduction and

Emergency Management, Faculty of Geographical Science,

Beijing Normal University, Beijing 100875, China

123

Int J Disaster Risk Sci (2017) 8:164–181 www.ijdrs.com

DOI 10.1007/s13753-017-0129-6 www.springer.com/13753

http://crossmark.crossref.org/dialog/?doi=10.1007/s13753-017-0129-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13753-017-0129-6&amp;domain=pdf
www.ijdrs.com
www.springer.com/13753


methods, and they are often used as references with which

to evaluate the performance of other machine-learning

methods. ANNs are inspired by the sophisticated func-

tionality of the human brain, where hundreds of billions of

interconnected neurons process information in parallel, and

researchers have successfully demonstrated that ANNs

possess certain levels of intelligence (Hagan et al. 1996;

Wang 2003). ANNs are capable of identifying complex,

nonlinear relationships between input and output datasets.

They have been used widely, particularly to address

problems in which the characteristics of the underlying

processes are difficult to describe using physical equations

(Hsu et al. 1995).

Random forest (RF) algorithms are more recently

developed, but they are some of the most mature machine-

learning algorithms. RF algorithms have been used widely

in data mining, bioinformatics, management, economics,

and the medical sciences (Fang and Jian-Bina 2011). RF

algorithms are ensemble classifiers that use decision trees

as base classifiers, as proposed by Breiman (2001). They

are based on Breiman’s previous ensemble classifier bag-

ging predictor (Breiman 1996), and they add more ran-

domness by randomly selecting a subset of explanatory

variables at each split node. This improves model accuracy

and robustness simultaneously. Because of their high

classification precision and stability, RF algorithms have

been widely applied in economics, bioinformatics, envi-

ronmental modeling of earthquakes or landslide suscepti-

bilities (Catani et al. 2013), and forest fire susceptibility,

and most of these algorithms have achieved better results

than other methods (Aldersley et al. 2011; Oliveira et al.

2012; Massada et al. 2013; Rodrigues and de la Riva 2014).

Considering the extreme data imbalance regarding

wildfire ignitions and nonignitions, a cost-sensitivity

analysis is usually used in the models. Unlike most stan-

dard classifier learning algorithms that assume a relatively

balanced class distribution and equal misclassification

costs, a cost-sensitivity analysis ranks the importance of the

classes and assigns different misclassification errors dif-

ferent penalties (Domingos 1999; Elkan 2001; Sun et al.

2007). This method resolves a great deal of the poor model

classification performance that results from data imbal-

ances (Del Rı́o et al. 2014).

In this study, we established wildfire susceptibility

models using logistic regression, probit regression, an

ANN, a RF algorithm (RF-original), and a cost-sensitive

RF algorithm (RF-cost sensitive). All of the models were

fitted using the same explanatory and dependent variables,

and they used the same randomly selected training samples.

To evaluate model performance, we compared the five

models in terms of their prediction accuracy, the impor-

tance of the explanatory variables, and their predicted

spatial patterns of wildfire susceptibility.

2 Study Area and Data

Yunnan Province is located in southwestern China between

97�310–106�110E and 21�080–29�150N. It belongs to the

plateau type of the tropical monsoon climate zone, with

cool summers and warm winters, and a mean annual

temperature of 16 �C. Yunnan has distinct dry and wet

seasons, with a significantly uneven annual precipitation

distribution. Winter and spring account for approximately

20% of the 1100 mm annual precipitation. Yunnan has

three drought seasons: January to March, which affects

two-thirds of the province; November to December, which

affects one-half of the province; and April to early June,

which affects 22% of the province (Peng et al. 2009). The

continuous winter to spring drought is one of the main

causes of wildfires in Yunnan (Chen et al. 2012). Since

2000, droughts from September to December and January

to March have been more severe compared with historical

records, which has led to a more frequent and intense

winter to spring drought and increased wildfires in Yunnan.

The occurrence of droughts of greater magnitude and

longer duration suggests that megadroughts may occur in

parts of Asia (including Yunnan) that are affected by the

tropical monsoon. Such megadroughts can increase the risk

of wildfires, as well as their scope and severity.

The forests in Yunnan include tropical and subtropical

evergreen broad-leaved forests and temperate coniferous

forests growing in cold mountain areas (Fig. 1a). Except

for broad-leaved forests in southwestern Yunnan, conifer-

ous forests are the dominant tree species in most areas.

Wildfires in Yunnan mainly occur in winter and spring

from December to May, and they are concentrated in

spring from mid-February to mid-May (Chen et al. 2014).

The forest data in Yunnan used in this research were

derived from the Vegetation Map of the People’s Republic

of China (1:1,000,000) (Zhang 2007). The wildfire ignition

data in Yunnan used in this research were obtained from

the 9-year time series of the maps of national thermal

source distribution1 from the National Satellite Meteoro-

logical Center of China with an interval of 10 days, from

2002 to 2010, with 324 images in total. The wildfire

ignition vector points were gained by overlaying the

boundary of Yunnan upon the forest distribution data. The

distribution of the wildfire ignitions is shown in Fig. 1b. To

demonstrate the difference between wildfires in different

areas in Yunnan, we divided the study area into four parts,

according to their integrated physical geographic charac-

teristics (Huang 1989) as shown in Fig. 1a.

Figure 2 shows that wildfire ignitions were concentrated

in winter and spring, and that very few wildfires occurred

in summer and autumn. There was a gradually increasing

1 http://satellite.nsmc.org.cn/PortalSite/Default.aspx.
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Fig. 1 Distribution of forest in

Yunnan Province, overlaid with

the physico-geographical

characteristics of the regions

(a) and the wildfire ignition

distribution, 2002–2010 (b).
Data source a Huang (1989)

and Zhang (2007); b http://

satellite.nsmc.org.cn/PortalSite/

Default.aspx
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yearly trend. From 2002 to 2005, the number of wildfire

ignitions increased and this trend peaked in 2005 when 274

ignitions occurred. In 2006, the number of wildfire igni-

tions (273) was almost identical to that in 2005, but total

ignitions decreased in 2007 and 2008. In 2009 and 2010,

the number of wildfire ignitions increased dramatically

(321 in 2009 and 406 in 2010), with a significant increase

in winter wildfires. Satellite-detected fire ignitions included

medium and large fires, which were the focus of this

research, while the large number of small fires (usually less

than 1 ha) were not considered. In addition, we also

obtained the wildfire ignition statistical data for Yunnan

Province between 1990 and 2015 from the China Forestry

Statistical Yearbook (State Forestry Administration 1990–

2015).

Three categories of variables that can potentially influ-

ence the susceptibility of wildfire ignitions were consid-

ered. They include meteorologically-related variables,

vegetation-related variables, and landform-related vari-

ables. The meteorologically-related variables, which are

the most important explanatory variables, were obtained

from the climate forecast system reanalysis (CFSR) (Saha

et al. 2010). The CFSR is the latest global reanalysis pro-

duced by the National Centers of Environmental Prediction

(NCEP)2 of the United States. As the latest generation of

reanalysis data, the atmospheric-, oceanic-, and land sur-

face-analyzed products of the CFSR have some of the

highest horizontal resolutions, which reach approximately

0.312� 9 0.312� from 0�E to 359.688�E and 89.761�N to

89.761�S (1152 grids 9 576 grids, longitude/Gaussian

latitude), with a 6 h resolution. Compared with other

reanalysis data, such as ERA-40,3 JRA,4 MERRA,5 and

NCEP/NCAR,6 the CFSR 6 h products exhibit good per-

formance in capturing daily variability (Aldersley et al.

2011; Ebisuzaki and Zhang 2011).

Based on a review of the literature (Bonazountas et al.

2005; Thompson and Spies 2009; Braun et al. 2010; Li

et al. 2012; Miller and Ager 2013), 10 measurements were

selected directly from the CFSR dataset for assessing

wildfire susceptibility in Yunnan Province: 6 h average

temperature (T6h), 6 h maximum temperature (Tmax
6h ), 6 h

minimum temperature (Tmin
6h ), 6 h average surface tem-

perature (ST6h), 6 h precipitation rate (prate6h), 24 h pre-

cipitation (P24h), 6 h average specific humidity (H6h), 6 h

maximum specific humidity (Hmax
6h ), 6 h minimum specific

humidity (Hmin
6h ), and 6 h average wind speed (WS6h). The

10 measurements are integrated into 10 days mean/max/

min of 6 h and 10 days max and min of 24 h corresponding

variables (Table 1) because of the wildfire ignition data are

at 10 days temporal scale.

Because the majority of the model inputs are meteoro-

logical variables, wildfire point and forest data were

rescaled to better incorporate the scale of the meteorolog-

ical variables (the horizontal resolutions is approximately

38 km). A grid was classified as an ignition grid if at least

one wildfire ignition occurred in the grid during the

10 days period, whereas a grid was classified as a nonig-

nition grid if no wildfire ignition occurred. New forest

features of a grid due to gridding are characterized by

forest coverage ratio and maximum vegetation percentage

(Table 1).

The altitude and surface roughness from the CFSR were

used as the landform factors in the analysis, while the

vegetation classes/subclasses and forest coverage ratio in

each cell were used as the vegetation factors. A list of all

the variables is shown in Table 1. To illustrate the char-

acteristics of the meteorological and geographical

Fig. 2 Monthly (a) and seasonal and yearly (b) variations of the wildfire ignition number in Yunnan Province

2 http://www.ncep.noaa.gov/.
3 http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc/.
4 http://jra.kishou.go.jp/JRA-25/index_en.html.
5 http://gmao.gsfc.nasa.gov/reanalysis/MERRA/.

6 http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.

html.
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Table 1 List of variables used in the models

Category Factor Meaning of variable Abbreviation

Temporal

factors

Season Spring, summer, autumn or winter in which wildfire occur Season

Month Jan., Feb., …, Dec. in which wildfire occur month

Meteorological

factors

Air temperature 10 days mean of 6 h average temperature mean10d T6hf g
10 days max of 6 h average temperature max10d T6hf g
10 days min of 6 h average temperature min10d T6hf g
10 days max of 24 h average temperature max10d T24hf g
10 days min of 24 h average temperature min10d T24hf g
10 days mean of 6 h maximum temperature mean10d Tmax

6h

� �

10 days max of 6 h maximum temperature max10d Tmax
6h

� �

10 days min of 6 h maximum temperature min10d Tmax
6h

� �

10 days mean of 6 h minimum temperature mean10d Tmin
6h

� �

10 days max of 6 h minimum temperature max10d Tmin
6h

� �

10 days min of 6 h minimum temperature min10d Tmin
6h

� �

Surface

temperature

10 days mean of 6 h average surface temperature mean10d ST6hf g
10 days max of 6 h average surface temperature max10d ST6hf g
10 days min of 6 h average surface temperature min10d ST6hf g
10 days max of 24 h average surface temperature max10d ST24hf g
10 days min of 24 h average surface temperature min10d ST24hf g

Precipitation rate 10 days mean of 6 h precipitation rate mean10d prate6hf g
10 days max of 6 h precipitation rate max10d prate6hf g
10 days min of 6 h precipitation rate min10d prate6hf g
10 days max of 24 h average precipitation rate max10d prate24hf g
10 days min of 24 h average precipitation rate min10d prate24hf g

24 h

precipitation

10 days mean of 24 h precipitation mean10d P24hf g
10 days max of 24 h precipitation max10d P24hf g
10 days min of 24 h precipitation min10d P24hf g

Specific

humidity

10 days mean of 6 h average specific humidity mean10d H6hf g
10 days max of 6 h average specific humidity max10d H6hf g
10 days min of 6 h average specific humidity min10d H6hf g
10 days max of 24 h average specific humidity max10d H24hf g
10 days min of 24 h average specific humidity min10d H24hf g
10 days mean of 6 h maximum specific humidity mean10d Hmax

6h

� �

10 days max of 6 h maximum specific humidity max10d Hmax
6h

� �

10 days min of 6 h maximum specific humidity min10d Hmax
6h

� �

10 days mean of 6 h minimum specific humidity mean10d Hmin
6h

� �

10 days max of 6 h minimum specific humidity max10d Hmin
6h

� �

10 days min of 6 h minimum specific humidity min10d Hmin
6h

� �

Wind speed 10 days mean of 6 h average wind speed mean10d WS6hf g
10 days max of 6 h average wind speed max10d WS6hf g
10 days min of 6 h average wind speed min10d WS6hf g
10 days max of 24 h mean of average wind speed max10d WS24hf g
10 days min of 24 h mean of average wind speed min10d WS24hf g
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environment of this study area, the spatial distributions of

the main influencing indicators are shown in Fig. 3.

Yunnan Province is divided into 783 grids according to

the CFSR meteorological reanalysis data and 419 of the

grids cover the forest area, so we have 419 samples from

each image. We obtained a 9 years time series of the

wildfire ignition data with an interval of 10 days, from

2002 to 2010, with 324 images in total. Hence, there is a

total of 419 9 324 = 135,756 samples. Among this large

sample, there are only 1665 ignition samples, indicating an

extreme imbalance between the number of ignition and

nonignition samples. To address the imbalance issue, 3330

nonignition samples were randomly selected to form the

training samples with the 1665 ignition samples for the

ANN, RF, and RF-cost sensitive models. A larger sample

of nonignition samples was used because the analysis

requires more information to capture the complete distri-

bution of the environmental variables across the entire

study area.

3 Methods

We adopted four modeling methods to establish fire igni-

tion models of Yunnan Province: traditional generalized

linear models (GLMs)—logistic regression and probit

regression, a machine-learning ANN algorithm, and a RF

algorithm.

GLMs are extensions of linear regression models that

can deal with dependent variables that follow non-normal

distributions (McCullagh and Nelder 1989). For binomial

distributions, logistic regression is most frequently used,

and probit regression is also often used in natural hazard

modeling.

A flow chart demonstrating the estimation of wildfire

susceptibility using the various methods is shown in Fig. 4.

The flow chart provides information regarding data pro-

cessing, modeling, and performance evaluation.

3.1 Logistic Regression

Logistic regression is the most fully developed and widely

used model to predict qualitative variables, especially

binary ones. A logistic regression model assumes that the

two-category response variable obeys a binomial distribu-

tion, and it specifies a logit link between the dependent and

independent variables. The mathematical expression of a

logistic regression model is:

logitðpðxÞÞ ¼ log
pðxÞ

1� pðxÞ

� �
¼ aþ b1x1 þ � � � þ bkxk

where pðxÞ is the expectation of random variable x,

especially in the binomial case. pðxÞ is the probability of

class ‘‘1’’ (fire ignitions); 1� pðxÞ is the probability of

class ‘‘0’’ (nonignitions); and the link function of the model

is gðyÞ ¼ log y
1�y

� �
. If we solve the equation, the model

also can be expressed as:

pðxÞ ¼ exp aþ b1x1 þ � � � þ bkxkð Þ
1þ exp aþ b1x1 þ � � � þ bkxkð Þ

Table 1 continued

Category Factor Meaning of variable Abbreviation

Vegetation

factors

Vegetation class Broad-leaved forest, coniferous forest and mixed coniferous broad-leaved forest Vegetation class

Vegetation

subclass

Subtropical coniferous forest, tropical and subtropical mountain coniferous forest,

subtropical broadleaved deciduous forest, subtropical evergreen broad-leaf forest,

subtropical monsoon evergreen broad-leaf forest, tropical monsoon forest, hylaea,

tropical and subtropical bamboo

Vegetation

subclass

Vegetation specific tree species of the forest Vegetation

Fuel types Nonflammable, medium flammable, flammable Fuel types

Fire spread rate High speed ([20 m/min), intermediate speed (2–20 m/min), low speed (\2 m/min) Fire spread rate

Forest coverage

ratio

The ratio between forest covered area and the whole grid Forest coverage

ratio

Max vegetation

percent

Maximum of the percentage of one vegetation covered area and the whole forest

covered area

Max vegetation

percent

Landform

factors

Altitude Average altitude of the whole grid Altitude

Surface

roughness

Average surface roughness of the whole grid Surface

roughness

Air temperature and specific humidity are observed 2 m above the ground, while wind speed is observed 10 m above the ground
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Fig. 3 Influencing indicators

and their spatial distribution.

a Annual average of

temperature, b annual average

of windspeed, c annual average

of humidity, d annual average

of precipitation. e altitude,

f surface roughness, g forest

coverage ratio, h max

vegetation percent
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Fig. 4 Flow chart for

establishing the wildfire

susceptibility models. Note: TP

is abbreviated for true positive,

TN for true negative, FP for

false positive, FN for false

negative, ROC for receiver

operating characteristic, AUC

for area under the curve of

ROC, GLM for generalized

linear models (logistic and

probit regression specifically in

this article), MSE for mean

squared error, RF for random

forest algorithm
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Considering the strong collinearity of the variables, we

developed a logistic regression model using a stepwise

procedure, while the best model was selected according to

the Akaike information criterion (AIC) (Posada and

Buckley 2004; Symonds and Moussalli 2011). Then, we

calculated the importance of the variables according to the

best model. All of the logistic regression processes were

performed using the logistic regression procedure in SAS

9.2 software (SAS Institute 2002–2003).

3.2 Probit Model

A probit model is another generalized regression model

that is commonly used to fit binary results. Probit models

and logistic regression models both belong to the gener-

alized regression model family. A probit model assumes

that the response variable obeys a normal distribution. The

mathematical expression of a probit model is:

pðxÞ ¼ Uðaþ b1x1 þ � � � þ bkxkÞ

where U is the cumulative distribution function of the

standard normal distribution.

The function curves of probit and logit models are very

close to each other so the estimation of the two models can

be close. The probit model is more accurate when the

dependent variable is normally distributed, and the logit

model is more robust when the dependent variable is not

normally distributed.

Similar to the logistic regression model, we established

the probit model using a stepwise procedure, and we

selected the best model based on the AIC. Then, we cal-

culated the importance of the variables according to the

best model. All of the probit regression processes were

performed using the probit procedure in SAS 9.2 software.

3.3 Artificial Neural Network

Artificial neural networks (ANNs) are a computational

model that is loosely analogous to axons in a biological

brain. ANNs are widely used in machine learning, com-

puter science, and other research disciplines and are often

used as references with which to evaluate the performance

of other machine-learning methods. To improve the per-

formance of ANNs, we optimized the structure of the ANN

according to the following empirical formula (Wang 2003):

l ¼ log2 n

where l denotes the node number of the hidden layer, and

n denotes the node number of the input layer. We estab-

lished the ANN models using nnet R package (Venables

and Ripley 2002).

For testing the model effectiveness, an ‘‘out of sample’’

data subset was created to provide an independent back-

testing view. In the training samples, we randomly selected

1500 out of 1665 fire samples and 330 out of 134,091 non-

fire samples, and in the testing samples, the unpicked 165

fire samples and 330 out of 134,091 non-fire samples were

used.

3.4 Random Forest

A RF algorithm is basically an ensemble nonlinear classi-

fication and regression machine-learning algorithm, which

was first proposed by Breiman (2001). The algorithm

improves model robustness and prediction accuracy by

aggregating classification or regression trees. The algo-

rithm also increases diversity and predictive power by

modifying the tree construction method. Each node of the

tree is split by the best variable, instead of all of the input

variables, from several randomly selected variables.

In terms of model performance, a RF algorithm provides

an indicator called an out-of-bag (OOB) error, which is the

prediction error of the observations that were not selected

by bootstrapping (referred to as OOB data). To evaluate the

importance of a variable in the RF algorithm, the difference

in the OOB error/mean square error or the Gini index was

calculated in each tree when the variable was randomly

permuted while all of the other variables remained the

same. Then the differences were averaged among all of the

trees, and they were used as the measurement indicator of

the importance of the variables in the RF algorithm. The

difference tells us the extent to which the predictive power

of a model is reduced when a given explanatory variable is

removed. As detailed in our model, we used the decrease of

the OOB error to evaluate the importance of each variable.

Compared with other more frequently used multivariate

regression or classification methods, the RF algorithm has

several advantages: (1) it is more robust to noise because it

randomly selects variables to split at each node; (2) it does

not require any assumption regarding the input variables;

(3) it allows interactions and nonlinearities among the

variables; and (4) it uses the dataset to the utmost. Fur-

thermore, it has a high tolerance of multicollinearity in the

input variables, which is very common in wildfire sus-

ceptibility assessments.

Because the model input data were extremely unbal-

anced between ignition and nonignition samples, we also

introduced a cost-sensitivity analysis into the RF model

(RF-cost sensitive) in addition to the standard RF model

(RF-original). The Yunnan wildfire susceptibility models

based on RF were established using the R packages ran-

domForest (RF-original) (Liaw and Wiener 2002) and

CORElearn (RF-cost sensitive) (Robnik-Sikonja 2004).

The randomForest package is based on Breiman and Cut-

ler’s original Fortran code, which was used to implement

Breiman’s RF algorithm for classification and regression.
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The CORElearn package improves the classification results

for imbalanced class data by introducing a cost-sensitive

algorithm into the RF algorithm.

3.5 Model Evaluation and Comparison

The performance of the five models was evaluated and

compared from three aspects: prediction accuracy, variable

importance, and spatial pattern of ignition susceptibility.

Here we describe the methods and indicators used for the

model evaluation and comparison.

3.5.1 Prediction Accuracy

To compare the precision of the results of the five models,

we used the prediction accuracy for each class and the

whole model, and the area under the curve (AUC) of the

receiver operating characteristic (ROC) plot (Hanley and

McNeil 1982) as indicators of model performance. The

class prediction accuracy of fire ignitions is also known as

the model sensitivity or the true-positive rate (TPR), while

the class prediction of nonignitions is also known as the

model specificity or the true-negative rate (TNR).

The ROC plot is a graphical representation of the false-

positive error rate and the TPR for a binary classification

model, and it includes all possible threshold values (Zhou et al.

2009). The x axis of the ROCplot represents the false-positive

error rate, which is equal to 1 minus the model specificity,

where the model specificity is the class prediction accuracy of

nonignitions. The y axis of the ROC plot represents the TPR,

which equals the model sensitivity, where the model sensi-

tivity is the class prediction accuracy of fire ignitions. The

AUC of the ROC plot is a popular standard metric to assess

model classification prediction accuracy because of the ease

of interpreting its results, as well as its threshold indepen-

dence. AUC values range from 0.5 to 1, where 0.5 equals a

completely random prediction and 1 means a perfect predic-

tionwithoutmisclassification.According to previous research

(Bradley 1997; McCune and Grace 2002), an AUC between

0.5 and 0.7 denotes poor model prediction accuracy and per-

formance, an AUC between 0.7 and 0.9 denotes moderate

model prediction accuracy and performance, and an AUC

greater than 0.9 denotes excellent model prediction accuracy

and performance.

3.5.2 Variable Importance Evaluation

We adopted two methods to measure the importance of the

variables in the models. The first method was the original

variable importance measurement in each model (except

ANN, which cannot evaluate variable importance): the R2

decrease for the GLM and percentage increment in OOB

error for the RF. The percentage increase in the OOB error

is the mean of the difference in the OOB error in each tree

when the variable is randomly permuted while all of the

other variables remain the same. This tells us the extent to

which the predictive power of a model is reduced when a

given explanatory variable is removed.

The second method was a jackknife estimator of the

variable importance based on the change in the AUC using

the testing data (Massada et al. 2013). This estimator

provides directly comparable results among the models

because any binary classification system can be used to

calculate ROC curves and to determine the precision of a

diagnostic test. The method separately establishes a full

model and a partial model (without the variable), and it

calculates the AUC using the testing data. The jackknife

estimator is the difference between the AUC of the full

model and the AUC of the partial model, as the below

equation shows:

I:O:V:j ¼
1

n

Xn

i¼1

AUC
ið Þ
full � AUC

ið Þ
jð Þ

� �

where i denotes the test sample that is dropped, and j de-

notes the variable that the partial model excludes.

The jackknife estimator represents the information

provided by a given variable that is not present in the other

variables. In addition, we calculated the AUC of the model

by excluding one variable at a time, and we compared the

AUC values of the models that lacked a single variable,

and ranked the variables accordingly.

3.5.3 Spatial Pattern

We calculated every 10 days wildfire ignition susceptibil-

ity for each grid using the five models. We used the

maximum wildfire ignition susceptibility for the 9 years as

the wildfire ignition susceptibility of the grid. Then we

compared the wildfire ignition susceptibility spatial pat-

terns predicted by the five models both qualitatively (using

graphic images) and quantitatively (by calculating the

Spearman correlation coefficient between each pair of

maps).

4 Results

Here we present the results from the five models, including

two traditional generalized linear models (GLMs)—logistic

regression and probit regression, and three machine-

learning models—ANN, RF-original, and RF-cost sensi-

tive. The prediction accuracy, variable importance, and

spatial pattern of each model result are evaluated and

compared, followed by the model sensitivity analysis.
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4.1 Prediction Accuracy

Figure 5 shows a four-fold plot illustrating the number of

samples and class percentage of true positive (TP), true

negative (TN), false positive (FP), and false negative (FN)

values for the evaluation of the fitting performance of the

five models. The proportion of correctly classified samples

(TP, TN, TP ? TN) is summarized in Table 2.

The GLMs, including the logistic regression and probit

regression, performed the worst, with accuracies of only

77.60 and 78.20%, respectively, for wildfire ignition and

66.24 and 65.99%, respectively, for all samples. The ANN

performed well when predicting wildfire ignitions, with an

accuracy of 83.78%, but it performed poorly when pre-

dicting nonignitions, with an accuracy of only 78.44%. The

RF-original exhibited the most balanced prediction accu-

racy, with an accuracy of 84.26% for ignitions and 88.35%

for nonignitions. The RF-cost sensitive model performed

the best, with an accuracy of 88.47% for all of the samples

and 94.23% accuracy for wildfire ignition prediction.

Compared with traditional models, such as the logistic

regression model, the probit model, and the ANN, the RF-

cost sensitive model increased the total accuracy by 22.23,

22.48, and 9.56%, respectively, and by 16.63, 16.03, and

10.45%, respectively, for the wildfire ignition prediction.

All five models exhibited excellent prediction perfor-

mances. We drew ROC curves of the five models, as shown

in Fig. 6. The ROC curves clearly show that the RF-cost

sensitive model had the best performance, with an AUC of

0.9848, followed by the RF-original model, the ANN, the

probit regression model, and the logistic regression model,

with AUCs of 0.9651, 0.9346, 0.9297, and 0.9296,

respectively.

4.2 Importance of the Variables

The variable importance rank of each model is listed in

Table 3. The results show that forest coverage ratio, month,

season, surface roughness, 10 days minimum of the 6 h

maximum specific humidity (min10d Hmax
6h

� �
), and 10 days

maxima of the 6 h average and maximum temperatures

(max10d T6hf g and max10d Tmax
6h

� �
, respectively) contributed

most to the susceptibility to wildfire ignition. Moreover,

the seven most important variables appeared in all four of

the optimal models, indicating that they are dominant

influencing variables of wildfire ignition under different

modeling methods.

The most important variable, forest coverage ratio,

which is the ratio between the forest cover area and the

area of the whole grid, was the most important variable in

the GLMs, and it was very important in the RFs. The forest

coverage ratio accounted for 0.0454 and 0.0449 of the R2

values in the logistic regression and probit models,

respectively, and it accounted for approximately 6.9 and

6.8%, respectively, of the R2 values of the full models. The

forest coverage ratio also accounted for 3.24 and 2.69% of

the OOB error decrease in the RF-original and RF-cost

sensitive models, respectively.

The second important variable, month, was most

important in the RFs, and it was very important in the

GLMs. The third most important variable, season, ranked

second or third in all four models. Together, month and

season accounted for 0.0223 and 0.0253 of the R2 values in

the logistic regression and probit models, which accounted

for approximately 3.4 and 3.8%, respectively, of the R2

values of the full model. They also collectively accounted

for 12.67 and 12.10% of the OOB error decrease in the RF-

original and RF-cost sensitive models, respectively. The

high importance of month and season very likely results

from the distinct monthly and seasonal patterns of wildfire

ignitions (Fig. 2b) in which winter and spring accounted

for an overwhelming majority of the wildfire ignitions.

Detailed by month, we observed a gradual increase in

wildfire ignitions from December to March (peak), and a

gradual decrease from March to May. The pattern is mainly

the result of the distinct dry and wet seasons in Yunnan

Province.

The rainy season in Yunnan usually starts from the mid-

May and lasts until the end of October, and the dry season

starts in early November and lasts until around 20 May. At

the beginning of the dry season, although the precipitation

declines substantially, there is sufficient water in plants and

soil because of the accumulation of water during the rainy

season and the low evaporation rate that results from low

temperatures. Therefore there were few wildfire ignitions

in November because the forest was reasonably humid. As

the dry season continues, the plants and soil continue to

lose water, and the forest dries out until wildfires break out

in December and increase in number in January. By the

following spring, most of Yunnan is under a dry and warm

tropical continental air mass. The steady air mass leads to

warmer temperatures, more sunny days, and greater evap-

oration, which results in continuously accelerating water

loss. The wildfire ignition risk increased significantly in

February and peaked in March. After April, the rainfall

intensity and frequency increase gradually in Yunnan as

the wet season approaches. Hence, the wildfire ignition risk

decreased significantly until June, when there were only a

few wildfire ignitions in Yunnan. In July through

September (the middle of the wet season), no wildfire

ignitions were observed in Yunnan Province.

In addition, temperature and moisture were vital drivers

of wildfire ignitions. The 10 days minimum of the 6 h

maximum specific humidity (min10d Hmax
6h

� �
) in each grid
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ranked fifth in terms of importance to wildfire ignition

susceptibility; the 10 days maxima of the 6 h average and

maximum temperatures (max10d T6hf g and max10d Tmax
6h

� �

of the grid ranked sixth and seventh, respectively.

4.3 Spatial Pattern

Figure 7 shows the spatial patterns of wildfire ignition

susceptibility estimated by the five models. Southern

Yunnan, Wenshan and Baoshan, and some areas south of

the Hengduan Mountain exhibited the highest wildfire

ignition susceptibilities. All of the models, except the

ANN, predicted the two high ignition susceptibility areas,

while the ANN only predicted a small part of southern

Yunnan to have high susceptibility.

We observed a similar result from the Spearman cor-

relation coefficient of each pair of the five models

(Table 4). The two GLMs (the logistic regression and

probit models) exhibited highly correlated results. The

GLMs and RFs produced similar wildfire ignition suscep-

tibility maps with strong correlations (Spearman correla-

tion coefficients[0.75), and the ANN produced a different

map that was only moderately correlated with the rest of

the models. This corresponds to the comparison of the

susceptibility maps shown in Fig. 7.

The map of wildfire ignition susceptibility can be further

used to generate an ignition probability map by using the

Monte Carlo approach (Metropolis 1987; Ye et al. 2017).

To illustrate this, we used the annual ignition data from

1990 to 2015 of Yunnan Province to fit a distribution and

randomly generated the number of annual ignitions for

1000 years. The specific location point of each wildfire

event was generated based on ignition susceptibility maps

derived from Fig. 7e by using the acceptance-rejection

method (Casella et al. 2004). Figure 7f shows some spatial

similarity to the ignition susceptibility map but it provides

information about the probability of ignition.

4.4 Model Sensitivity

The optimization of the models may also influence their

prediction accuracy and model performance. Apart from

the GLMs with fixed optimal method, the optimization of

the ANN and RF algorithm needs more discussion. In the

ANN model, the node number of the input layer was

n = 50; according to the empirical formula (Wang 2003),

l ¼ log2n, the optimized node number of the hidden layer

was close to l = 6. Therefore we simulated l = 5–9, and

for each l, we built 100 ANN models. The highest accu-

racies occurred when l = 5 or 9, but considering the pre-

diction of ignition, l = 6 was the best model, although it

had a rather high failure ratio (Table 5). But the main

shortcoming of the ANN is its lack of robustness. The

failure ratio in Table 5 represents the ratio of the ANN

models that predicted that all of the samples belonged to

the nonignition class, almost more than half of the models

cannot predict at all.

We simulated the RF-original models with different

number of trees (Table 6). The table shows that the total

accuracy of all of the models was greater than 80%, and

when the number of trees was greater than 20, the total

accuracy was greater than 85%. The maximum total

accuracy was 86.85% for 80 trees, which is more than the

85.57% accuracy for 20 trees. The increased precision is

not worth it, given the increased computation complexity.

bFig. 5 Fitting performance of the five models. Number and class

percentage of true positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN) values for the evaluation of the fitting

performance of the five models in the fourfold figures: a logistic

regression, b probit regression, c ANN, d RF-original, e RF-cost

sensitive

Table 2 Class prediction accuracy of each model

Ignition

(%)

Nonignition

(%)

Total accuracy

(%)

Logistic 77.60 66.10 66.24

Probit 78.20 65.84 65.99

ANN 83.78 78.44 78.51

RF-original 84.26 88.35 88.30

RF-cost

sensitive

94.23 88.40 88.47

Fig. 6 ROC curves of the five models
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In conclusion, the OOB error for the model prediction

precision was not sensitive to the number of trees.

We trained the RF-cost sensitive model using different

ratios of ignition and nonignition samples to find the best

sample ratio, the results of which are shown in Table 7. As

the number of nonignition samples increased, the accuracy

of ignition prediction decreased, while the accuracy of

nonignition and total predictions increased. Considering

the balance between the prediction accuracy of the ignition

and nonignition samples, 1:2 is the best ratio for the igni-

tion and nonignition samples.

5 Discussion

The purpose of evaluation and comparison of the models is

to find appropriate models for better prediction accuracy

and better understanding of regional wildfire ignition sus-

ceptibility. In this study, we show that susceptibility is

highly influenced by meteorological variables such as

humidity and precipitation. Regional drought in Yunnan

has a connection with wildfire ignition susceptibility and

we discuss this susceptibility in greater detail, as well as

explore forest management practice using the analyzed

ignition susceptibility.

5.1 Wildfire and Drought

Yunnan’s yearly variation in wildfire (Fig. 2b) is consid-

erable, because there is a very strong connection between

the number of wildfire ignitions and drought. Severe

droughts in winter and spring, early summer, or midsum-

mer occurred continuously from 2003 to 2007. The drought

in the spring and summer of 2005 and the spring drought in

2006 were the most severe droughts in the last 50 and

20 years, respectively. Frequent droughts yielded a con-

tinuous increase in the wildfire ignition number from 2003

to 2006. We speculate that there are three reasons for the

unexpected decrease of wildfire ignitions in 2007: (1) the

winter and spring droughts were obviously less severe than

those in 2005 and 2006; (2) the spring drought in 2006

caused two wildfires and consumed a great deal of the

combustible material in the forests, while the drought

suppressed the germination and growth of forest plants and

further reduced the amount of combustible material in the

forests; and (3) the reduction of combustible material that

resulted from the abundant wildfires in 2003–2005 cannot

be ignored. In contrast, the severe freezing rain and snow

events in early 2008 greatly reduced the number of winter

wildfires, at the same time that winter moisture reduced the

number of spring wildfires to the same level observed in

2003. Yet these precipitation events also produced

unprecedented amounts of combustible material, which led

to a large increase in the number of wildfires in subsequent

years. This wildfire increase was enhanced by the spring

and summer drought in 2009 and the severe once-in-a-

century drought in 2010.

Studies of Yunnan droughts have found that in the

twenty-first century droughts between September and

December have been more severe than those occurring

before 2000. Droughts between January and March have

remained at the same level since 2000, but have been more

severe than the droughts of the 1990s (Zhang et al. 2013).

Both these trends led to more frequent, intense, and con-

tinuous winter to spring droughts, which aggravate wild-

fires in Yunnan. There is evidence that more megadroughts

occurred historically in those parts of Asia (including

Yunnan) that are subject to the influence of the tropical

Table 3 List of the seven most important variables in the four models under different measurement methods

Variable Logistic Probit RF-original RF-cost sensitive Rank

(average)
Rsq (rank) AUC

(rank)

Rsq (rank) AUC

(rank)

OOB

(rank)

AUC (rank) OOB

(rank)

AUC (rank)

Forest

coverage

ratio

0.0454 (1) 0.016 (1) 0.0449 (1) 0.0161 (1) 0.0324 (4) 0.0009 (6) 0.0269 (6) 0.0010 (2) 1 (2.75)

Month 0.0054 (4) 0.0019 (5) 0.0061 (6) 0.0022 (6) 0.0807 (1) 0.0012 (3) 0.0723 (1) 0.0004 (4) 2 (3.75)

Season 0.0169 (3) 0.0044 (3) 0.0192 (3) 0.0051 (3) 0.0460 (2) -0.0001 (12) 0.0487 (2) -0.0003 (14) 3 (5.25)

Surface

roughness

0.0027 (7) 0.0008 (11) 0.0045 (9) 0.0013 (9) 0.0258 (6) 0.0018 (1) 0.0306 (5) 0.0007 (3) 4 (6.38)

min10d Hmax
6h

� �
0.0016 (12) 0.0004 (15) 0.0069 (5) 0.0023 (5) 0.0235 (11) 0.0011 (5) 0.0322 (4) -0.0003 (13) 5 (8.75)

max10d T6hf g 0.0025 (9) 0.0008 (9) 0.0053 (8) 0.0020 (8) 0.0246 (8) -0.0003 (15) 0.0257 (8) -0.0002 (12) 6 (9.63)

max10d Tmax
6h

� �
0.0031 (6) 0.001 (7) 0.0007 (17) 0.0003 (17) 0.0253 (7) 0.00004 (8) 0.0239 (11) 0.0001 (7) 7 (10.00)

Numbers represent the decrease of R2/AUC or the increment of OOB error and rank of each variable
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Fig. 7 Spatial pattern of susceptibility for each model: a logistic regression, b probit regression, c the ANN, d RF-original, and e RF-cost

sensitive, f depicts ignition probability
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monsoon. This trend was particularly pronounced during

the Little Ice Age (1450–1850) compared with the Med-

ieval Climate Anomaly between 950 and 1250 (IPCC

2013). Additionally, since 2000, Yunnan already has

experienced two megadroughts, one in 2005 and one from

2009 to 2011. All of this reveals an extremely high risk of

megadroughts in Yunnan. Considering the strong link

between drought and wildfire, megadroughts can increase

the frequency and severity of wildfires, as well as expand

the area affected by wildfires.

5.2 Wildfire Susceptibility and Forest Management

The spatial patterns of the wildfire susceptibility estimated

by the five models (Fig. 7) indicate that the high suscep-

tibility areas in Yunnan are southern Yunnan, Wenshan and

Baoshan, and some areas south of the Hengduan Moun-

tains. The high susceptibility of southern Yunnan and

Wenshan and Baoshan can be explained by their higher

forest fuel loads than other areas. These areas have the best

water and heat condition and the highest vegetation den-

sity, which leads to faster accumulation of combustible

material. The Hengduan Mountains play an important role

in the spatial pattern of wildfire susceptibility in the region.

Yunnan is controlled by warm and dry westerly winds and

a northerly air current in the dry season. When the westerly

wind passes over the Hengduan Mountains, the air current

descends, leading to an increase in air temperature and a

decrease in humidity. At the same time, the mountain

ranges block the entry of cold air from the north and warm

and moist air from the south, which results in very limited

rainfall. Therefore, the Hengduan Mountains intensify

wildfire susceptibility in Yunnan, especially in the southern

area of the Hengduan Mountains.

The wildfire susceptibility maps generated in this study

provide objective and clear guidance for wildfire manage-

ment in Yunnan from the aspect of spatial variation. Spe-

cial attention should be paid to the region’s high

susceptibility areas. The most important variables include

temporal, vegetation, and meteorological factors that are

directly linked to the wildfire susceptibility. These vari-

ables must be correctly understood and perceived by

regional and local wildfire managers in order to mitigate

the area’s serious wildfire hazard.

6 Conclusions

This study has confirmed that of the five models investi-

gated, the RF-cost sensitive analysis was the best method

for predicting wildfire ignition susceptibility. The RF-cost

sensitive analysis had the highest accuracy (88.47%) for all

of the samples, and 94.23% accuracy for wildfire ignition

Table 4 Spearman correlation coefficient of the wildfire ignition

susceptibility spatial pattern

Probit ANN RF-original RF-cost sensitive

Logistic 0.98435 0.39593 0.75690 0.80649

Probit 0.47432 0.77369 0.81266

ANN 0.49771 0.44432

RF-original 0.93499

Table 5 Prediction precision of the ANN models

Ignition Nonignition Total accuracy Failure ratio

l = 5 0.831692 0.793520 0.793988 0.70

l = 6 0.896734 0.767605 0.769189 0.68

l = 7 0.855210 0.789178 0.789988 0.60

l = 8 0.866230 0.779119 0.780187 0.56

l = 9 0.864068 0.793745 0.794607 0.48

Failure ratio means the ratio of the ANN models that predict all

samples as belonging to the nonignition class. Ignition represents the

average prediction precision of the fire samples, while nonignition

represents the average prediction precision of the nonignition sam-

ples; total accuracy stands for the average predict precision of all

samples. All of the averages were calculated without failure models

Table 6 Prediction precision of the RF-original models

Number of trees Total accuracy

10 0.8262262

20 0.8520521

30 0.8556557

40 0.8628629

50 0.8592593

60 0.8634635

70 0.8632633

80 0.8684685

90 0.8672673

100 0.8662663

Table 7 Prediction precision of different sample ratios using the RF-

cost sensitive model

Ignition Nonignition Total accuracy

No cost-matrix 0.8426426 0.8835492 0.8830

1:1 0.9723724 0.8043567 0.8064174

1:2 0.9423423 0.8839743 0.8846902

1:3 0.8960961 0.9217770 0.9214620

1:4 0.8606607 0.9488034 0.9477224

1:10 0.6282282 0.9883885 0.9839712
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prediction in Yunnan. Compared with widely used GLM

models (logistic regression and probit regression models)

and the ANN, the RF-original model increased total

accuracy by 22.23, 22.48, and 9.56%, respectively, and the

wildfire ignition prediction by 16.63, 16.03, and 10.45%,

respectively. Wildfire susceptibility can be assessed using

various models, which range from conventional regressions

to more recently developed machine-learning models.

Careful processing of data samples is needed, however, to

resolve issues of data imbalance and to avoid potentially

misleading results due to the overwhelmingly large number

of nonignition samples. The tradeoff between overall

accuracy and ignition prediction also needs special atten-

tion. High sensitivity (the TPR) should be obtained for

good ignition prediction, and the specificity (the TNR) and

accuracy factors should also be given consideration.

Although the performance of machine-learning methods

(the ANN and RF models) investigated in this study was

better than that of the logistic and probit regressions, the

numbers of layers in the ANN and trees in the RF should be

further tested to achieve optimized results.

The importance of variables in the RF models indicates

that the factors mainly influencing Yunnan wildfire

occurrence are forest coverage ratio, month/season, surface

roughness, 10 days minimum of the 6 h maximum specific

humidity, as well as the 10 days maxima of the 6 h average

and maximum temperatures. The most susceptible areas

were located in southern Yunnan and some areas south of

the Hengduan Mountains. Under a future global warming

scenario, wildfire susceptibility in Yunnan could further

increase, particularly in terms of frequency and duration.

Grow of this potential hazard threat is a result of the

increasing severity of continuous, large-scale winter to

spring droughts in the region. The identified dominant

influencing factors help us to better understand wildfire

occurrence, and the developed susceptibility map provides

guided spatial information for regional wildfire risk

management.
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