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Abstract The current literature that attempts to bridge

between geometric morphometrics (GMM) and finite ele-

ment analyses (FEA) of CT-derived data from bones of

living animals and fossils appears to lack a sound biothe-

oretical foundation. To supply the missing rigor, the pres-

ent article demonstrates a new rhetoric of quantitative

inference across the GMM–FEA bridge—a rhetoric

bridging form to function when both have been quantified

so stringently. The suggested approach is founded on

diverse standard textbook examples of the relation between

forms and the way strains in them are produced by stresses

imposed upon them. One potentially cogent approach to the

explanatory purposes driving studies of this class arises

from a close scrutiny of the way in which computations in

both domains, shape and strain, can be couched as mini-

mizations of a scalar quantity. For GMM, this is ordinary

Procrustes shape distance; in FEA, it is the potential energy

that is stored in the deformed configuration of the solid

form. A hybrid statistical method is introduced requiring

that all forms be subjected to the same detailed loading

designs (the same ‘‘probes’’) in a manner careful to

accommodate the variations of those same forms before

they were stressed. The proper role of GMM is argued to be

the construction of regressions for strain energy density on

the largest-scale relative warps in order that biological

explanations may proceed in terms of the residuals from

those regressions: the local residual features of strain

energy density. The method, evidently a hierarchical one,

might be intuitively apprehended as a geometrical

approach to a formal allometric analysis of strain. The

essay closes with an exhortation.
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Biomechanics of elasticity � Biometrics of strain �
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Introduction

The subject of this note is a fundamental problem that

stands today athwart one current attempt at developing a

statistical method for finite element analysis (FEA). That

specific vision, the implementation of strain statistics as

some sort of extension or complement to geometric mor-

phometrics (GMM) specialized for biomechanics, was the

topic of an extended discussion in the course of the NSF-

sponsored meeting Virtual Anthropology Meets Biome-

chanics chaired by Gerhard Weber in Vienna, Austria on

October 20 and 21, 2010 (see Weber et al. 2011). In my

presentation at that meeting and in the ensuing discussion I

attempted to establish the proposition that all the currently

suggested modes of tying GMM methods to FEA analyses,

both published and unpublished, were so severely defective

on logical or mathematical grounds as to preclude their

valid application in any empirical bioscientific context.

That 2010 critique wove together a long list of features

focusing on incompatibilities of differential equation

implementation between the domains, in particular the

uniform term, along with incompatibilities of graphical

semiotics. One specific concern was the differential
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equation itself, the biharmonic equation (iterated Laplacian).

In the thin-plate spline approach, the quantity being mini-

mized is the integral of the squared second derivatives, and

the integral is taken over all of space, both where the

biological object is located and where it is not; but the

quantity minimized in the course of an elastic analysis

derives instead from the sum of squared deviations of the

first derivatives from unity, and the integral is taken only

over the region occupied by actual material. The uniform

term in particular, which is so crucial to the interpretation

of growth gradients in GMM because it has zero mor-

phometric bending energy, is not relevant to FEA, because

within any finite region it does not minimize elastic energy,

so that no real elastic transformations of biological material

can ever be uniform in the large. The treatment of semi-

landmarks is entirely different in the two formalisms, as the

‘‘sliding’’ operation in GMM effaces most of the ‘‘mem-

brane energy,’’ the within-surface strain tensor, to which

elasticity theory pays close attention, whereas the aspect of

translation normal to the mean surface, so important to the

statistics of GMM, is negligible when viewed as the strain

of a shell, the typical point of view of FEA. Regarding

semiotics, the diagram styles commonly encountered in the

current literature bridging GMM to FEA analyses omit any

indication of variability or dependence on models of load,

and no current papers provide any rhetoric for claims that

two particular images of strain fields are distinguishable or

indistinguishable, and, if the former, whether they are

nevertheless ‘‘similar’’ enough to merit a positive inter-

pretation of their commonalities. There is more discussion

along these lines in (Weber et al. 2011).

One can review most of these fundamentals without

direct reference to FEA’s actual equations or implemen-

tation details. The dilemmas turn out to derive not from the

details of FEA software but from discrepancies between

the mathematical physics of elasticity theory, which FEA

embodies, and the quite different mathematics (sans

physics) of GMM.

This specific topic fits quite comfortably within the

limits of theoretical biology as a special instance of our

community concern with methodology for studies of form

and function. The prediction of function by form, and also

the explanation of form by function, are among the stan-

dard modes of reasoning cutting across all the modern

biological sciences. Their appearance in the quantitative

biological literature is traditionally dated to D’Arcy

Thompson’s (1917) great treatise On Growth and Form,

but Thompson’s reasoning actually derived from a tradition

that was already three centuries old as he was writing.

Quantitative discussion of biological function under con-

ditions of varying form can be traced all the way back to

Galileo’s argument about the proportions of load-bearing

beams. But the methodology of this topic has not kept up

with the turn to systems description that characterizes

many other branches of organismal systems biology today,

to the extent that most of the occurrences of the trope

‘‘form and function’’ nowadays arise not in the biological

sciences but in the humanities. (For instance, a search on

http://www.amazon.com on May 29, 2012 using the

retrieval key ‘‘form and function’’ returns 1,421 hits, of

which the first is Moussavi (2009), which is a work on

architecture and architectonics. The next retrieval deals

with typography; the third, with jewelry design.)

To reclaim this phraseology for biology we proceed

reductionistically, word by word, inasmuch as each of the

three words ‘‘form,’’ ‘‘function,’’ and ‘‘and’’ involves

quantifications of its own. For form one modern locus of

major innovation is the domain of morphometrics with

which I have been associated for many decades (see, e.g.,

Bookstein 2006). The rhetorical analysis of the notion of

function is more fugitive, but we are used to the rhetorical

opposition of ‘‘function’’ with ‘‘evolution’’ as standing for

a difference in time scales (see, for instance, Hanken and

Hall 1993; or Lieberman 2011), while the composite phrase

‘‘functional morphology’’ is familiar from the curricula of

innumerable academic divisions of the biological sciences.

And the notion of ‘‘functional explanation’’ has a philo-

sophical literature all its own (see, e.g., McLaughlin 2007).

There remains the copula, the word ‘‘and,’’ whose

appearance in the grammatically analogous phrase ‘‘size

and shape’’ I have already discussed in this journal

(Bookstein 2009). As applied to quantitative studies of

‘‘form and function,’’ this essay will construe the word

‘‘and’’ as referring to the possibility of a successful joint

quantification comprising (1) the measurement of form by

one instrument or modality, (2) the assessment of function

by a physically separate instrument or modality, and (3) the

existence of a contingent relationship, such as a near-

identity or a regression equation, relating the quantifica-

tions (1) and (2). While the wording here is prolix, the

underlying concept is familiar. Galileo was talking about

form and function, for instance, when he pointed out the

exponents for beam strength as a non-dimensionless alge-

braic expression in measures of form.

My topic falls under this heading of ‘‘and’’ analysis,

mode (3), exploration of a practical quantitative notation

for contingent relationships (numerical regularities)

between measures of form and measures of biomechanical

function. More specifically, these would be measures of

form variation as juxtaposed to measures of the variation

of one particular type of biomechanical function. Our

assignment is made feasible by the prior development of

quantitative methods for these domains separately. For

describing variations of form under a logic of biological

homology, this is the methodology usually referred to

as GMM (see, e.g., Weber and Bookstein 2011, Chap. 4).
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For describing variations of biomechanical function, there

are as many methodologies as there are domains of the

measurement of function. In this essay I will concentrate

on the measurements that involve deformations of elastic

biological organs or tissues. The parent methodology, then,

is elasticity theory, which has constituted a branch of

applied physics for hundreds of years (cf. Todhunter 1886).

The subject supplies a major component of today’s

undergraduate engineering curricula: see, for instance,

Sadd (2009).

The argument to follow falls into three parts. It begins

with some relatively simple paradoxes generated by

inconsistencies between the mathematical foundations of

today’s GMM and biomechanics when considered sepa-

rately (without the ‘‘and’’ of ‘‘form and function’’). In other

words, if you do morphometrics the way you were taught,

and also do biomechanics the way you were taught, you

have no access to any semantics by which to talk about

them at the same time. In the central section, I explore the

existing literature of GMM more closely in search of a

possible formalism that circumvents these paradoxes. And

there is one: a modification of the method of relative warps

(principal components of form-variation) that optimizes the

prediction of biomechanical deformation instead. A closing

discussion indicates the function of this new construal as

bringing forward into the twenty-first century one canoni-

cal form of form-function studies, allometry, that has in

fact been with us nearly as long as D’Arcy Thompson has.

Some Elementary Contradictions and Paradoxes

Begin by focusing on the correspondence between GMM

and FEA when both are construed as relying on a single

summary scalar. Such a strategy is an innocuous peda-

gogical choice, not an essential aspect of the mathematical

development. For GMM that central scalar must be Pro-

crustes distance (although there will be comments on

morphometric bending energy from time to time in the

exegesis here). For FEA, it is the analogously positive

quantity that is strain energy, the net potential energy

stored in a solid that has been deformed from its resting

form by the application of reversible forces. For several

years now we have been teaching the multivariate methods

of GMM as derivable from solely the information encoded

in Procrustes distance. See, for instance, the introduction to

morphometrics in Chap. 4 of (Weber and Bookstein 2011),

or the more technical survey in Part III of (Bookstein

2013). For FEA, one can revert to the classic literature of

linear elasticity theory, subject of any of the elementary

textbooks (e.g., Sadd 2009; or Boresi et al. 2010), wherein

any observed deformation must minimize the potential

energy cost incurred over the course of the deformation.

This minimand, though capable of driving the entire ana-

lytic or computational setup all by itself, is nevertheless

encountered only rarely in reports of empirical analyses.

Papers such as Strait et al. (2009); O’Higgins et al. (2011);

or Cox et al. (2011) show simulated strains of a skull under

load in remarkable detail but nowhere mention the quantity

of work that must have been simulated in order to impose

those particular simulated strains. If the subject is a stress

analysis of chewing, for instance, the necessary quantifi-

cation would be the work done by the muscles of masti-

cation, work that has to be accounted in the organism’s

energy budget and that has itself presumably been opti-

mized over the mechanisms (muscle mass, muscle inser-

tions, tooth crown geometry) that are responsible for its

delivery.

In this initial simple setting, where each of GMM and

FEA is represented mainly by one nonnegative scalar

(Procrustes distance or strain energy, respectively), we can

learn a great deal merely by pursuing the following naive-

seeming question:

What is the statistical relationship, if any, between

Procrustes distance and strain energy for loads at the

end of a cantilevered bar?

The choice of a cantilever is suggested not only by its

position near the front of most textbooks of mechanical

engineering but because of its similarity to the role of the

mandible in chewing.

Corresponding to this simple question are results that

follow immediately from formulas in the standard text-

books. I consider two settings: one (Fig. 1) in which the bar

is of uniform cross-section, and a second (Figs. 2, 3, 4, 7, 8,

9, 10,11) in which it is instead tapered from one end to the

other. The tapers of the tapered beams will vary—that

gives rise to one Procrustes distance archive—and in

addition each beam will be subject to a load, giving rise to

a separate Procrustes distance. It makes no sense to com-

bine these two distances, because, it will be shown, the

analysis of the effect of a constant system of loads on a

varying initial form is a function of only a few relevant

parameters, not the huge mass of degrees of freedom typ-

ically agglomerated in any net Procrustes quantity such as a

set of relative warp scores.

The Uniform Bar

Assume a horizontal cantilever as shown in Fig. 1, with a

point load on the unsupported end. Then for a load directed

vertically (e.g., the weight W in the figure), the well-known

solution of Leonhard Euler (cf. Segel 1977) shows that the

beam must bend in a profile that is a suitable multiple k of

the unique polynomial -x2(3 - x), where x, now rescaled

to range between 0 and 1, is the positional coordinate along
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the beam. The coefficient k prefixing this polynomial is a

function of Young’s modulus together with the moment of

the beam in cross-section.

Let us restrict the discussion to realistically small ben-

dings of an original form that has a straight centerline. In

that setting these deformations all manifest Procrustes

distances proportional to the constant k, which serves as an

‘‘amplitude’’ of this specific convex-downward profile both

before and after a suitable Procrustes registration. But, also,

strain energy is proportion to the drop of the weight

attached to the end of the beam. This drop is by a distance

k�12�(3 - 1) = 2k, likewise proportional to k. Hence:

For the case of a simple cantilever beam loaded at the

free end normal to its axis, Procrustes distance of the

strained form from the initial form and strain energy

of the associated deformation change precisely in

proportion to one another as the applied load is varied.

That was for forces perpendicular to the axis of the

beam. For forces along the beam axis (forces like F in the

figure), there will result a material expansion or compres-

sion of the beam by some fraction ex along its axis. To a

first approximation, Procrustes distance will be propor-

tional to this same ex, but strain energy, which goes as

Hooke’s Law, is proportional to ex
2 instead. This is worth

setting off in its own indented paragraph:

For the case of a simple cantilever beam loaded at the

free end parallel to its axis, strain energy of the

associated deformation is proportional to the square

of Procrustes distance as the applied load is varied.

Dependence on the Starting Form

Anatomical forms vary in geometry. In this particularly

simple setting, such variation could involve the thickness

of the bar. Assume that this is a three-dimensional struc-

ture, with thickness into the page identical to thickness
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Fig. 1 Scenario A: classical scenario of a cantilevered beam loaded

at its free end. The beam is intended as a structure in three dimensions

with a thickness into the page equal to its height as shown on the

page. As the magnitude of the force F or W is varied, strain energy for

forces like W perpendicular to the axis of the beam is proportional to

Procrustes length of the corresponding shape change. But for forces

like F parallel to the axis, strain energy is proportional instead to the

square of that Procrustes distance. The dots indicate the locations of

the 4 landmarks and 38 semilandmarks used to represent these beams

for Procrustes purposes
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Fig. 2 Scenario B: refinement of the preceding demonstration into a

two-parameter system of tapering beams. There are three groups of

beams, as the height on the left (fixed) end is 0.05, 0.07, or 0.10 of the

length of the beam. Our analysis lines them up approximately along

one single dimension corresponding to both morphometric bending

and biomechanical strain increase, which are loglinear with respect to

one another. Forces like the F in Fig. 1 are no longer considered, and

the force W is presumed constant over all analyses. The beam

deformations have all been computed according to the derivation by

virtual work that was set out in Nguyen (2007). The geometric design

here is plotted as an enhancement of a scatterplot showing the nearly

perfect proportionality of GMM bending energy to the square of the

FEA strain energy, as explained in the text. Icons, from lower left to

upper right, show unstressed and stressed positions of the following

exemplars: fixed end 10 % of beam length, free end double that; fixed

end height 10 % of beam length, free end a cusp; fixed end height

equal to 7 % of beam length, free end double that; fixed end 7 % of

beam length, free end a cusp; fixed end 5 % of beam length, free end

double that; fixed end 5 % of beam length, free end a cusp. The

thickness of the beam in the third dimension (into the page) is

presumed constant. BE bending energy. All logs are to base e. For the

derivation of the scaling of this plot, with its slope of *1, see the text
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upon the page. Then, according to the formulas, the

response to the bending load, the W in Fig. 1, will scale

inversely as the second moment of the cross-section of the

bar. That moment is proportional to the product of thick-

ness by the square of height, and so goes as 1/h3, where h is

that thickness (which is 0.1 in the figure—call this h0). But

the response to an axial load like F in the figure is simply

distributed over cross-sectional area, and so will scale

(in this example) as 1/h2 only. In all of these changes, the

corresponding Procrustes distance between the equilibrium

states of the beams will be proportional to |h - h0|. For

moderate ranges of h, corresponding perhaps to empirical

variation of homologous anatomical structures in contem-

porary or Pleistocene anthropoid/hominoid species, the

dependence of formulas like 1/h3 on h - h0 is not captured

at all well by the first term of the corresponding Taylor

series. Hence:

Shape changes of constant load applied perpendicu-

larly to the axis of beams that differ in anatomically

realistic ways do not relate linearly to any Procrustes

analysis of that same variation of the starting forms.

(And furthermore there remains the pesky matter of that

squared term for axial loads; these surely do not relate

‘‘linearly’’ to ordinations of shape space either—and the

dependence of this term on starting shape has a different

coefficient from the dependence of the effect in the normal

direction.)

The situation is thus extremely troublesome, trouble-

some enough that somebody should have pointed this out a

while ago. The Procrustes toolkit was explicitly designed to

be invariant against rotations of the coordinate system; so

were all the manipulations associated with thin-plate

splines. Yet the interrelations between GMM and FEA

arising in the course of this very simple textbook exam-

ple—perhaps the simplest possible—violate that rotational

invariance. Analyses of strain are not compatible with the

symmetries of the Procrustes toolkit. Phrased even more

pointedly, our standard analyses of form are not compat-

ible with the simplest analyses of biomechanical function, a

circumstance that must be regarded as terribly embarrass-

ing. The statistics of loads on a beam (such as the man-

dibular corpus) will be functions of angulation between

load and beam in a way that wholly confounds any linear

modeling of strain in terms of Procrustes distance, because

of the variation of the order of dependence (linear,

vs. quadratic) as a function of the direction of load, which

is, in turn, a function of anatomical variation in the form of

the mandible. A correct analysis will have to separate the

relation of strain energy to shape distance into these two

separate components, analyzing them first separately and

then together. The symmetries of the Procrustes toolkit no

longer apply to any joint statistical approach bridging

GMM to FEA, nor may we expect any linear modeling to

work sensibly when loads have an axial component

(to which the strain response is quadratic instead). Nor may

we expect responses to similar loads to be dominated by

effects linear in the first principal component of shape. The

dependence must be studied with far more subtlety.

A Tapered Bar

Figure 2 shows the situation for a cantilevered bar that is

now no longer uniform in cross-section but instead tapers

linearly from one end to the other. In the computational

design here, this taper varies according to one of three

settings of thickness at the left (fixed) end along with one

of 41 values ranging from 0 to 200 % of the initial height

at the free end. The 1st and 41st of each of these little

series have been sketched on the graph next to the points at

one end or the other of the incorporated curves that they

delimit. To simplify the algebra, I have not tapered the

third dimension (into the page or the screen) correspond-

ingly, but held it constant. Then the equation according to

which these beams deform under an end load normal to the

centerline remains a cubic polynomial (except for the

beams that come to a sharp edge, for which the equation is

quadratic instead of cubic), and the deformation incurs a

physical strain energy that is not hard to compute fol-

lowing the examples of Nguyen’s (2007) formulas. As

Fig. 3 implies, the analyst may relate this physical strain

energy to either of two different GMM quantities. One is

the Procrustes distance between the two forms of the beam,

deformed and undeformed. The other, the variant actually

used in Fig. 2, is the morphometric bending energy of the

same comparison, computed with respect to the unde-

formed beam.

As Fig. 3 shows, both relationships are loglinear except

at the (unrealistically) highest degrees of bending. But the

scaling is different in a way that adds additional insight to

the relation between GMM and FEA for more general

configurations. For all these beams, it remains the case that

strain energy is proportional to the fall of the weight

inducing the end load. For all the deformations, this is the

evaluation of the corresponding polynomial. It will always

be proportional to the form -x2(M - x), where M is a

function of the taper, except that for the beams that taper to

zero height, M goes to infinity, resulting in the simpler

profile that is just -x2, a parabola downward. To the extent

that -Mx2 is the dominant term in all these deformations,

Procrustes distance will be proportional to M, which is

proportional to the Mx2 evaluated at the endpoint x = 1 of

the beam. Hence, once again, Procrustes distance should be

expected to be proportional to strain energy except at the

highest values of strain, which bend the beam so much that

14 F. L. Bookstein
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the affine (vertical-only) approximation to Procrustes dis-

tance threatens to become invalid.

On the other hand, we might be more interested in a

different quantity likewise copied over from GMM, the

formal morphometric bending energy, defined as the inte-

gral over all space of the summed squared second deriva-

tives of the deformation. In this case of bending that is

negligible in the x-direction, this is the single term

(d2y0/dy2)2 (for a notation in which the point at ordinate y is

moved downward to new location y0). To the extent that

these curves are nearly parabolic, the net fall of the weight

is proportional to M, whereas the term (d2y0/dy2)2 over

space will be proportional to its values along the interval

from 0 to 1 (the beam itself), where it evaluates to M2.

Hence:

For the case of a tapered cantilever beam loaded at the

free end normal to its axis, Procrustes distance of the

strained form from the initial form and strain energy

of the associated deformation continue to be propor-

tional, now as the taper is varied, whereas GMM’s

bending energy is now proportional to the square of

Procrustes distance, which is to say, proportional to

the square of strain energy. This will be referred to

below as the scaling of biomechanical strain energy

to the 1/2power of morphometric bending energy.

Further examining Fig. 3, we notice that these beams

align on the graph, both in their strain energy and in their

GMM parameters, along a single nearly straight line. In

other words, the Procrustes variation among these initial
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Fig. 4 Conventional GMM analysis of the 123 tapered beams before

deformation. Left Procrustes shape coordinates. The presence of the

three subsamples (Fig. 2) according to height at the fixed end is clear

at the left margin of this figure, along with the systematic variation in

height at the right (free) end. Right conventional relative warp

analysis of these 123 beams shows no obvious linear ordination

resembling either horizontal axis in Fig. 3. The origin of the data in

three subgroups is now considerably clearer. We will see later that

something useful arises as a projection along the direction shown in

the heavy arrow floating at the top of the diagram. The regression in

the left-hand side panel of Fig. 9 projects out the component of the

shape space lying along the dashed line up there, which appears

visually to connect the right end of either of the lower two subscatters

to the left end of the subscatter immediately above. RW1, RW2
relative warp 1, relative warp 2
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shapes, which is considerable, is quite irrelevant to the

evaluation of their response to strain except for the one

single dimension along the arc here. But this is not any

convenient principal component of these forms, as one can

see from the RW1–RW2 scatter in Fig. 4. Nothing about

this figure indicates the simplicity of the finding at which

we will eventually arrive—the interpretation in terms of the

relation to biomechanics is not a natural component of the

GMM toolkit.

In a realistic setting of systemic anatomical vari-

ability, the parameter of starting form that best pre-

dicts response to an unchanging elastic load normal

to the axis of a tapered beam is not equivalent to any

self-evident principal-component-based summary of

the distribution of those starting shapes.

You simply have to do the hard work for your forms that

I did for the beams here, in other words, a scaling

analysis the way a good engineer would have been trained

to do it. You must search explicitly for the parameter that

answers the question the scientific context actually

requires (how do I relate the extent of a strain to the

details of the form undergoing the strain and the details of

the registration of the stresses upon the form) rather than

the question you wish you had been asked instead (how

do the results of the analysis of form I did yesterday

predict this strain that somebody told me to concern

myself with today).

Bending of a Cylindrical Shell

The preceding two examples involved no curving of the

starting form, no semilandmarks; the next example

involves both. Once again, although the application will be

to computations carried out as finite element analyses, the

example is one for which the elasticity analysis is known in

closed form. This is the topic of the bending of an initially

straight circular cylindrical shell, one having a radius that

is small in proportion to its length and a thickness that is

small in proportion to that radius. The problem has been

understood for approximately a hundred years, since early

work by Saint-Venant. The formula below is from Brazier

(1927), and the diagram in Fig. 5 is redrawn from

compression

tension

ovalization

Fig. 5 Scenario C: the bending

of an initially straight thin-

walled circular cylinder. Top
bending induces a compression

strain along half the generators

of the cylinder and a

corresponding tension along the

other half of the generators. As

these compressions or tensions

are proportional to distance

from the centerline of the

cylinder, they are somewhat

mitigated by an ovalization that

converts the cross-section of the

cylinder from circle to ellipse.

After Karamanos (2002).

Bottom the squared Procrustes

length of such a shape change is

the sum of two components: one

at large scale, proportional to

the square of the curvature of

the cylinder axis, and one at

small scale, corresponding to

the shift from circle to ellipse

and proportional to the fourth

power of the same curvature.

The smaller-scale term adds to

the Procrustes length of the

deformation but subtracts from

the strain energy. PD Procrustes

distance
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Karamanos (2002). Think of this, if you want, as a model

for what the zygoma is doing during chewing, or of stresses

on the supraorbital ridge.

As the Karamanos figure makes clear, the effect of

bending on a cylindrical shell is the composite of two

effects at quite different scales. At larger scale there is a

couple of forces on opposite sides of the axis of the cyl-

inder: a compression along the generators that are short-

ening, balancing a tension along the generators that are

lengthening. Distinct from these, and at much smaller

physical scale, is the so-called ovalization of the cross-

section: the diameter in the plane of the bending is short-

ened, and the diameter perpendicular to that plane lengthened.

(This makes intuitive sense: if the diameter in question is

shortened, both the compression and the tension in Fig. 5

are by smaller fractions, and thus require less strain

energy.)

Brazier (1927) derived the formulas that quantify this

intuition. In his notation, where r is the radius of tube in

cross-section (before deformation), c is the curvature of the

torus into which the cylinder is bent, t is the thickness of

the material shell, and E and r are Young’s modulus and

Poisson’s ratio of the material from which the cylinder is

made, then the strain energy per unit length goes as

E

2
pr3tc2 1� 3

4

r4c2ð1� r2Þ
t2

� �
:

The extent of ovalization turns out to go as c2r5/t2. For the

bending of the originally straight cylinder into a parabola,

Procrustes distance is proportional to the curvature c and

thus squared Procrustes distance to c2, whereas at the

smaller scale, the change of circular section into elliptical

section involves a Procrustes distance proportional to c2

(in its shape subspace, which can be presumed orthogonal

enough to that of the cylinder axis) and thus a contribution

to squared distance proportional to c4.

In a more compact notation,

Strain energy ¼ Aðr; tÞc2 � Bðr; tÞc4

ðwhere c is curvature) and

Procrustes distance squared ¼ A0ðr; tÞc2 þ B0ðr; tÞc4:

These are the same two expressions in powers of c2, but

with contrasting signs. The minus sign in Brazier’s formula

corresponds to the relaxation that ovalization embodies.

(At the larger geometric scale, the larger the Procrustes

distance, the larger the strain; but at the smaller geometric

scale, positive Procrustes distance goes with smaller strain

energy.) This joint structure can certainly be retrieved by

appropriate polynomial regression analysis, if we know in

advance what sort of signal it is that we are attempting to

retrieve: in this instance, dependence of strains on both the

square and the fourth power of Procrustes distance, the one

at large spatial scale and the other, with a minus sign, at

much smaller scale. Back in Fig. 2, that would be the

requirement of the equivalently strong prior knowledge

that the profile of centerline bending was an exact cubic

polynomial. But if we knew features like these in advance,

we would have completed our biomechanical analysis

already—there is no need for any finite-element software at

all when the analysis of form versus function has been

completed a priori.

The coefficient multiplying squared curvature in the

dominant term of Brazier’s formula for net strain energy

per unit length is r3t up to constants. Of the three powers of

r (radius of the circular sections of the torus), one conveys

the proportionality of strain to net area element of the

infinitesimal hoop involved, while the remaining product

r2t represents the second-order scaling of moment with

respect to the longitudinal axis, analogous to the same term

encountered in the analysis of the bending of the cantilever.

Because the term arises from a compression or tension, it

corresponds to a maximum directional strain on the outer

surface that is proportional to cr, and would be graphed as

such on color maps of FEA simulations. There is a version

of the formula for cylinders that are curved to begin with

(see, again, Karamanos 2002). It would be instructive to

see how this remarkably simple formula matches either

computed strains along the long axis of ridges under sim-

ulated stress or actual strain-gauge measurements at cor-

responding points of a real biological structure.

Sketch of a Way Forward

To cut through all of these inconveniently counterintuitive

mathematical facts a principled reformulation of the

problem is required. This section sketches one possible

approach consistent with this intention.

There are three degrees of complexity at play here. Most

complicated is the representation of the solid bony skele-

ton, via a discretization of its CT scan or lCT scan. When

data come from the most modern machines this involves

from several million to several hundred million voxels,

each with material properties that might be scalar (bone

density) or tensor (the stress-strain relationship). A radical

simplification of this data resource arises from the sepa-

ration of space into bone vs. nonbone, followed by the

representations of the bony compartment that we call

GMM. Points are set on the surfaces of this separatrix, on

its edges, and on its characterizable discrete points (land-

mark points) when they might be available. The mathe-

matical space of these configurations, quotiented by the

group of similarity transformations, makes up a familiar

Riemannian manifold, Kendall’s shape space, that has

Procrustes distance for its metric. Many familiar forms of
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multivariate statistical analysis can go forward for these

representations once they have been projected onto a space

of shape coordinates, which live in the tangent space to the

manifold that touches at the sample average form. Usually

(though not in the examples here) one supplements this

shape space by one additional dimension conveying the

original geometric scale of the configuration. There results

a representation of up to a few thousand geometrical

degrees of freedom (df), far fewer than were embodied in

the original CT scans but not just a selection from those

millions of df insofar as we have added the information

borne in the labeling scheme (the ‘‘template’’) to whatever

was produced in obedience to the physics and engineering

of the scanner.

A second aspect of complexity is the sample of forms

involved in the comparative analysis. These might arise as

a haphazard collection of individual fossils, a systematic

sample from some medical imaging resource, a growth

study of selected individuals followed through time, an

evolutionary series recovered from sediments, or any

combination of these designs (see, for instance, the dis-

cussion in Bookstein and Ward 2012). To each sample

provenance corresponds a conventional interpretation of

the principal components of form that will be carrying the

suggested new biometric statistic. In the central example of

this paper, for example, the principal components (Fig. 4)

are rotated away from an alignment with within-group

allometry in order to accommodate a between-group

allometry (that variation of the overall thickness of the

beam) that might correspond to a subspecies-level taxo-

nomic distinction.

Of a dimensionality lower than either of these is the

third essential feature of our situation, the set of loads or

probes by which we pretend to stress our CT scans in order

to calculate the resulting strains. Each load is applied to

every specimen in the sample of forms, under the oversight

of the GMM scheme specifying exactly how points of

application of force or constraint correspond across the

specimens. Every load is presumed to be free of net vector

resultant and net torque, so that the deformed body may be

presumed at rest (we are not engaged in dynamics here,

only in statics). From well-known theorems of linear

elasticity, the effect of superimposed loads is additive in

the effects of those loads separately. From the paradoxes

reviewed earlier in this note, though, it appears that the

effect of loads is nonlinear in many of the parameters of the

GMM representations that attach to our original CT

imagery. Once the loads are realized in the space of each

individual specimen, it is the effect of those loads that is

modeled by the black boxes we call finite-element soft-

ware; but please keep in mind that the correspondence of

those loads from form to form is governed not by finite-

element algebra but by the geometry of shape space and the

requirement that forces and torques allow for an equilib-

rium solution.

GMM begins with minimization of a single summary

scalar, the Procrustes distance metric, and the preceding

discussion has suggested that it might be useful to make

explicit the corresponding minimand governing the finite-

element computations, the net strain energy of the

deformed configuration. The problem to be posed below

involves the approximation of one deformation by another

based on different information, and for that to make

mathematical sense, there needs to be a metric for the

approximation. In keeping with the existence of the gov-

erning minimand for the FEA, this metric might be taken as

the root-mean-square (RMS) discrepancy between the

strain tensors of the various deformations.

For this to work, we need a metric for 3 9 3 strain tensors.

The squared distance between two strain tensors (each taken

in positive definite form—the effect of the strain on lengths

and dot products along the cardinal axes)1 can conveniently

be taken as the canonical natural metric

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

i¼1 log2 ki

q
;

where the ki are the relative eigenvalues relating the two

matrices, the eigenvalues of either in a coordinate system in

which the other has been linearly transformed into a sphere.

See Mitteroecker and Bookstein (2009), for an informal

review of the mathematical reasoning underlying this claim.

The ‘‘length’’ of a single such 3 9 3 tensor can be taken as its

distance from the identity matrix of order 3, which stands for

the state of no deformation and thus no strain energy. The

formula assigns a value to this squared length that is the sum

of squares of the logarithms of its principal strain ratios.

From the approximation logð1þ �Þ� � we can approximate

this squared length as just the sum R�2
i of squares of the

deviations of its eigenvalues from unity. But, by Hooke’s

Law, that is precisely the formula for the strain energy

density of the little element being strained in this manner

(as long as the underlying material is isotropic). In other

words, in the limit of small strains, squared geometric length

of the strain tensor of a finite element is equivalent to its

strain energy density.

It is an important technical point that this biomechanical

quantity, the strain energy, does not correspond to any of the

standard Procrustes formulas—one cannot substitute Pro-

crustes distance for strain tensor distance R�2
i and still hope

to make biomechanical sense. Rather, neither elasticity

theory nor the FEA software has knowledge of Procrustes

formulas or any interest in them. For instance, Procrustes

distance is a function of the shape of the finite element; it

takes on a different value for long and skinny elements or

1 If any strain matrix has singular-value decomposition UDVt, U, V
orthonormal and D diagonal, each 3 9 3, then the representation is

(UDVt)(UDVt)t = UDVtVDUt = UD2Ut.

18 F. L. Bookstein

123



pancake-shaped elements than for elements that are nearly

cubical in shape. (Among these inconveniently anisotropic

elements are the elements right at the surface of the bone,

those whose strain tensors are typically the ones converted to

colors and plotted in the published figures.) Even deep inside

a form, where actual finite elements might be nearly cubical,

the corresponding Procrustes formula is Rð�i � �Þ2, the sum

of squares of the �’s around their average, not around zero.

The two quantities are functionally equivalent over a mesh

only under special circumstances that are extremely unlikely

in practice. Hence just as FEA analysis has no use for Pro-

crustes parameters, so the general Procrustes shape analysis

pays no attention to the most important physical parameter

of a strain experiment, nor can it help formalize it for any

kind of subsequent analysis. (And shifting to form space

does not help resolve our dilemma, since strains change

volume and Centroid Size in different ratios, and the shift

from shape space to form space is not the same as ‘‘deciding

not to divide out Centroid Size.’’) Most important of all,

strain energy density follows material properties

(for instance, it is zero for the regions of air inside fossils),

whereas Procrustes distance knows nothing about the dif-

ference between air and tissue and accrues everywhere over

the form, indifferent to the segmentation of tissue from air

and, within the tissue, indifferent to the difference between

bone and softer tissues. If the beams in Fig. 2 were all hol-

low, the strain analysis would be totally different, but the

Procrustes analysis would be exactly the same.

Therefore, inasmuch as Procrustes distance and strain

energy are not interchangeable, our strategy will be as

diagrammed in Fig. 6. In the upper portion of this diagram,

under the heading ‘‘Virtual reality,’’ is the situation that is

accurate to the best of the ability of the biomechanicist. A

biologically interesting tissue (the concentric structure at

left) is represented by way of geometric extents and asso-

ciated material properties that are inferred from its CT

scan. The representation is deformed according to a sim-

ulated load (the heavy solid arrows) with the aid of an

expensive black box (the FEA software, heavy dashed

arrow). (An anonymous reviewer of an earlier draft of this

manuscript helpfully observed that as the price of this

software diminishes with calendar time, the problem I am

highlighting is actually becoming more serious rather than

less.) There results a deformed solid (right) with strains

inside all of its finite elements; it is these strains that will

sustain the figure of merit in real examples for which strain

energy is not available a priori in closed form. In the lower

part of the diagram is what we must do in addition if we are

to proceed with the extension of these analyses to some sort

of scientific explanation. Now the loads come from a space

of their own, representing multiple probes of the same

interesting tissue over multiple specimens. The starting

form is now represented in a GMM version that involves

no parcellations of space, only point locations (lower

center), and in place of the expensive FEA software we use

only statistical summaries of the experiences with virtual

reality, the earlier rounds of computation from the top of

the page. There results an estimated deformation, lower

right, that is not quite the same as what would have been

simulated by that FEA software. The rms difference

between the two strain fields calibrates the inaccuracy of

the approximation, and our job is to build the appropriate

statistical machine, the fusion of the information from

GMM and from the earlier experience with explicit loads,

for minimizing this rms. According to the paradoxes

reviewed early in this essay, this cannot be a linear pattern

engine, but instead must be something a good deal subtler

and more complex to install.

The machinery we need is a composite of two approa-

ches that have hitherto appeared in different literatures.

One, the study of quadratic shape trends, was treated in

Chap. 7.3 of Bookstein (1991), where it was introduced as

a biometrical method for examining the details of growth-

gradients and other aspects of continuous allometry in
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Virtual reality

Reduced model

CT
load

computed
 deformation

FEA
(black box)

loads

GMM
 version

statistical surrogate

Fig. 6 Summary diagram of the statistical strategy for building a

multiscale nonlinear bridge between GMM and FEA. The actual

finite-element analyses model the effect of loads on a parcellated CT

scan (upper left) using FEA software as a ‘‘black box’’ (upper center).

The usual graphical summary is a representation of the achieved

strain tensors (little crosses) within each finite element in turn (upper
right). In contrast, our modeling (lower center) combines a

representation of one or more patterns of load with a GMM version

of the same CT data as corresponding points rather than volumes

(lower left) in an approximation to the output of that black box (lower
right), with fitted values but also prediction errors in the locations of

the semilandmarks and in the predictions of the strain tensor
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shape studies. The other contributory stream comes from

modern applied systems theory: it is the toolkit of model

order reduction (Antoulas 2005; Schilders et al. 2008) that

is used to reduce the dimension of systems simulations

from a few million to up to a few dozen degrees of free-

dom, the tractable range for explanations or design of

further experiments.

Formally, the task is to understand the dependence of

strains on form for a sample of forms observed in CT

or lCT and subjected to a range of stress analyses by state-

of-the-art FEA. This will be presumed a fully crossed

design, each specimen subjected to each of the same list of

simulated stresses (with points of application of the stresses

supplied by GMM software so as to guarantee consis-

tency with the steps to follow below). Let there be L load

pattern probes, K specimens, NG shape coordinates of

(semi)landmarks in the GMM representation of form (plus

1, for size), and NF strain tensors, one per finite element of

the finite-element analyses. K is of the order of tens,

L likewise (and perhaps far fewer), NG of the order of a

thousand, and NF in the millions.

The first part of the report is a computation based on the

K 9 K matrix of Procrustes distances of the specimen

forms as they were encountered in nature before any

deformation. Each squared distance is a sum of squared

differences from one configuration to another over the NG

shape coordinates of the template. Subsequent analysis

proceeds step by step as follows.

1. Convert the Procrustes distance matrix of unstressed

forms to a matrix of relative warp scores by the

standard principal-coordinates double-centering proce-

dure (Torgerson 1958; Gower 1966; Weber and

Bookstein 2011, Chap. 4). The computation is an

eigenanalysis, K 9 K.

There results the pair of relative warps in Fig. 7, which,

for this particularly simple exemplar, exhausts all the

information in the Procrustes distance matrix. The scatter-

plot of their scores has already been displayed in the right-

hand panel of Fig. 4. In the general case, these should be

the principal coordinates of the Procrustes form distance

matrix, the version that incorporates a term for log

Centroid Size squared, because strain energy is indeed a

function of change in size (although the dependence is

quadratic, not linear). In the tapered-beam example here,

the effect of the strains on Centroid Size is negligible up to

very high levels of strain, and so it is sufficient to work

with the distances in the space of lower dimension, the

shape space only.

2. For each of the L load probes, analyze the strain energy

of the bent configuration under this condition by

ordinary polynomial regression. Strain energy will be a

sum over NF components, unless it is supplied in

advance by a textbook formula such as in the three

examples reviewed in connection with Figs. 1, 2, 5. In

this example, L = 1.

The obvious univariate regressions, Fig. 8, show no

meaningful sharing of information at all. Neither relative

warp, by itself, affords any sensible insight into the

relationship between unloaded form and response to the

load. This is unfortunate, as it is precisely this technique

that corresponds to the custom of the earlier publications I

have been criticizing. Rather, what is needed is a multiple

regression. It will prove sufficient to use terms through

second degree, Fig. 9. This regression, on a total of five

terms (RW1 and RW2 as extracted by the standard

Procrustes machinery, augmented by RW1
2, RW1RW2,

and RW2
2) accounts for 98.9 % of the variation of the strain

energy. (See also Fig. 10.)

Fig. 7 The only two relative warps for the 123 tapered beams capture

the correct two parameters in two tapered combinations. Left the

warps as grids; right as displacements of Procrustes shape coordi-

nates. Upper row, RW1; lower row, RW2. The two grids appear to be

mirror-images, but these forms are not symmetric around a vertical

midline, and so this mirroring is not a Procrustes operation—the two

RW’s are not ‘‘inverses’’

20 F. L. Bookstein

123



3. For each of the L load probes, analyze the deformed

shape of the semilandmark configuration and the strain

tensors at every semilandmark by the analogous

regressions. The regression here is for each of NG

shape coordinates.

The second-order polynomial regression with five predic-

tors that accounts for 98.9 % of the variation of strain

energy accounts for 99.69 % of the Procrustes shape

variance in the same configurations (versus only 95.4 % of

the same variance, for the regression on the first-order

terms only). The expansion of the prediction machinery to

incorporate quadratic effects thus reduces the extent of

shape variation left unexplained by 93 %, confirming the

essential nonlinearity of these accountings but also their

relatively gentle character. It would appear that we have

analyzed only the net strain energy, not the strain tensors

per se; but in this specific example, where only the vertical

coordinate is shifting, not thickness, the information in a

strain tensor is functionally equivalent to the information in

the shape coordinates themselves—taking advantage of

that coincidence, we simply ignore the Mitteroecker–

Bookstein formula.

4. For large ranges of shape, deformation, or function, the

analysis may be more comprehensible when strain

energy and its density are converted to logarithms.

If we take the logarithm of strain energy before doing the

regressions in Fig. 9, we obtain the analyses in Fig. 10, from

which undesirable curvature has been wholly eliminated.

The geometry of the predictor shape patterns is hardly

affected at all—the linear term, for instance, is still the

direction indicated upon the scatterplot at the right in Fig. 4.

5. The relative warps are, by design, features at the

largest scales. Interesting biomechanical interpreta-

tions become possible just when the residuals from

these large-scale explanations of strain or of displace-

ment appear to be concentrated in particular regions of

the form. The overall analysis may thus be considered

a hierarchical regression approach, with findings at

different scales interpreted using different vocabularies

of quantification.

In the tapered-beam example here, that is indeed the

case. As Fig. 11 shows, the residuals from the large-scale
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Fig. 8 The prediction of strain

energy by the two relative warp

scores separately looks

unpromising. The near-

symmetry here is intriguing but,

in the end, unhelpful
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25Fig. 9 Multiple regression

proves an effective tool for

bridging the GMM data base to

the FEA computations. Left the

best linear predictor of strain

energy from the two relative

warp scores. The horizontal axis

here is the projection sketched

already in the right-hand panel
of Fig. 4. Right improved

prediction when using the three

quadratic terms in RW1 and

RW2 as well. SE strain energy
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analysis that are largest in mean square are those right at

the end of the beam, where the effect of the tapering

parameter is the strongest (see Fig. 2). In the present set-

ting, this is a mathematical artifact of truncating the Taylor

series for the true model, which is a ratio of polynomials in

the taper parameters, at just the site upon the models where

the effect of parameter range (the length of those segments)

is largest. In settings more driven by data than by that sort

of pedagogical artifice, these would be domains in which to

look for special explanations in terms of selectively plau-

sible morphogenetic or biomechanical factors of far more

local scope.

6. When there are multiple load probes—when L [ 1—

one can continue the procedure via extraction of the

principal components of those regression formulas

themselves, followed by a similar analysis of the

residual strain fields.

If the strains were represented in a linear vector space,

this would just be an ordinary partial least squares (PLS)

analysis of the covariance structure of the strains against

the shape coordinates; but the strains are not represented in

such a space, so the PLS possibility is blocked. Never-

theless, the proposal is a close cousin to the method of

snapshots that is often invoked to import proper orthogonal

components into computational fluid dynamics studies. The

L separate load-specific matrices of Procrustes distance

after deformation will each have a principal coordinates

analysis, and for each the principal coordinates can be

represented as a rotation of the principal coordinates for the

Procrustes distances of the same K forms before defor-

mation. The model reduction would proceed by a standard

method of multidimensional scaling, Carroll and Chang’s

(1970) INDSCAL, and will not be discussed further here.

By this means, we have established a model of reduced

dimensionality, of greatest use if it spans from two to four

dimensions, that, all at the same time—

• covers the principal dimensions of variability of the

undeformed specimens,

• spans the spaces of effects of one or more load

prototypes,

• permits the extension of linear regressions of strain on

load to accomodate the reality of nonlinear strain

formulas, and

• has a computable error as a predictor of strain. In the

examples here, for which no explicit strain tensor

needed computing, we see this in the fit of that energy

(and, even better, of the logarithm of that energy) to the

analogous regressions on the relative warps of the

undeformed beams. In more realistic cases, where

strain energy is computed post hoc from the actual

strain tensors returned by the FEA software, an

analogous error would be computed as the rms

difference between the reported strains and those

arising from the GMM-mediated reconstructions. I do

not demonstrate this second version here.

Discussion

To the extent that these regressions exhaust most of the

available variance of outcomes, our methodological goal

has been achieved (and if the assumptions do not obtain,

there is no alternative logic that would make any sense in

its place anyway). In that happy circumstance, the con-

nections identified between features of the form and

smaller-scale features of the strain map responding to the

specific loading patterns of the probe set can be extracted

from this biometric context and treated as novel explana-

tions of either function or form pursuant to the study

context. Here in 2012 it is irresponsible to content our-

selves with images of strains that lack all information about

uncertainties and thereby all possibility for numerical or

biotheoretical inference. If there is to be a bridge between
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Fig. 10 Recomputations after a

log-transformation. Most of the

prediction error in the multiple

regressions of Fig. 9 is

circumvented when the

dependent variable is replaced

by its logarithm. This is the

same variable that runs along

the vertical axis in Fig. 3

22 F. L. Bookstein

123



GMM and FEA analyses, it must be based on valid sta-

tistical approaches to the information they share, infor-

mation which is realized only in the context of particular

models of biomechanical load. The approach here exploits

the parallel construal of each of the two techniques as a

minimization of a scalar quantity (Procrustes distance or

strain energy, respectively) and implements the biomathe-

matical style of explanation by observing the alignment

(or not) of principal coordinates of form with systematic

aspects of the variation of strain as the probes of a study

cycle through all of the load configurations that were

considered important that day.

The logic of this load-dependent aspect of the phenom-

enon is complementary to that of Ulrich Witzel (see, e.g.,

Witzel and Preuschoft 2005), who, in effect, treats shape

coordinates as functions of load in a particularly high-

dimensional nonlinear computational setting. (Witzel’s, in

turn, can be viewed as the most recent in a series of

investigations, beginning with D’Arcy Thompson’s, of ‘‘the

origins of form in force.’’) The approach of this paper

instead examines the dependence of strains on shape coor-

dinates, which may be a more nearly linear (or at least more

gently nonlinear) explanatory domain more suited to

eventual explanations in terms of selection gradients or

similar phenomena that can be formalized as regressions.

There is a cost to the hierarchical regressions of strain

fields on form recommended here, a cost paid mainly ‘‘in

silico.’’ The method requires the computation of all KL of

those finite-element analyses: the development of a work-

flow for applying ‘‘the same’’ loads to each of a whole

sample of CT scans, and its realization over a weekend, or a

month, on some university’s high-performance grid. The

reward for this care is the apparent mastery of the infor-

matics by which FEA and GMM have drawn on the same

geometric data, as they must have done. If you achieve a

reduction of the prediction error to some 1 % or so of the

variance of shape or of strain energy, as in the example of

the tapered beam, you are entitled to claim a corresponding

degree of understanding of the associated allometric

explanations; if you can further rationalize the emergence

of spatial foci of the residuals from those regressions, per-

haps speculative explanations of a biological sort may

emerge as well. Conversely, if a paper does not report the

extent to which starting form together with load model does

in fact explain the variation of the outcome strains, then no

matter how colorful the presentations of those strains, no

authority should be granted the adjacent diagrams as

regards biomechanical or evolutionary explanations.

I put forward this partition of strain phenomena in terms

of dependence on the large-scale relative warps as the

appropriate GMM version of the scaling analyses that have

been a familiar style of biomechanical explanation of form

ever since the time of Galileo. Explanations associated

with the regressions (the predictions of strain by large-

scale features of shape) should be seen not as functional or

evolutionary but simply as allometric. They express mainly

a previously hidden dimensional analysis of the various

geometric coefficients in the laws of elasticity. For bio-

logical explanations to emerge from FEA analyses they

must emerge via the strategy demonstrated in Fig. 11:

analyses of the information left over after the effect of

scaling is regressed out via these same first few relative

warps of shape. The proper role of GMM analysis in

interpreting multiple FEA computations, then, may well be

this service of pulling out the part of the observed strain

patterns that arises on purely geometrical grounds, so that

there is a chance to see biological explananda in the

residuals.
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Fig. 11 Prototype for a multiscale analysis: semilandmark-specific

(or strain-specific) residual variances from semilandmark-by-semi-

landmark regressions on the shape features of largest scale. The radius

of each circle (plotted at the mean location of the corresponding

semilandmark over the 123 deformations) is proportional to the

standard deviation of the residual of the corresponding semilandmark

after the quadratic regressions of the right-hand panel in the preceding

figure. The segments through these circles connect the extremes of

variation of the corresponding points over the full sample of 123 bent

beams. In this artificial example, the concentration of unexplained

variation at the free end of the tapered bars arises as truncation error

in the Taylor series that the regressions are approximating, a

truncation error that grows as the size of the effect (the displacement

of the beam’s end, the net strain energy of the deformation) increases.

Any focus of the residual signal—any local maximum of residual

amplitude interior to the domain of analysis—would evince a

potentially biologically interesting phenomenon at smaller geometric

scale. In real applications the dependent variable would not be

position, as in this simplistic example, but instead the computed strain

tensor, using the strain metric given in the text
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The division of the space of summary descriptions of

strain into those of geometrically ‘‘large scale’’ versus

those of ‘‘small scale’’ shares this rhetoric with several

other multivariate application domains. In GMM itself,

there is a variant of the relative warps analysis whereby

patterns emerge in order of a specific quantity balancing

spatial scale against variance accounted for (Bookstein

1991). The parameter governing this balance, notated a, is

at the discretion of the user. For standard relative warps

analysis it takes the value zero, but the GMM–FEA match

might proceed better if it were set at a value of 0.5, cor-

responding to the scaling of biomechanical strain energy

with respect to morphometric bending energy, or at some

empirically derived value instead. In factor analysis, the

issue of how many factors to extract is always present, and

likewise in partial least squares the issue of how many

singular vector pairs to investigate further. There are other

domains in which the examination of residuals proceeds

separately from the examination of predicted effects, for

instance, the separation of an observed group difference of

form into its allometric and its non-allometric components

(Schaefer et al. 2004). In the world of econometrics a

multivariate time series may be explicitly partitioned into

an autoregressive component versus a shock or perturba-

tion—in this setting it is the order of the autoregression, the

number of past observations of the series to take into

account, that is uncertain—and in dynamical systems the-

ory the Kalman filter likewise separates any suitable series

observed incrementally into a predictive component

updated at every observation together with an ‘‘innova-

tion’’ that applies only to the latest observation (but that

represents a true resetting of the state of the process). In all

these domains the setting of the boundary between the

scope of the contrasting explanatory styles is a matter of

craftsmanship, not theorems. That is not the case in the

example of the tapered beam only because the count of

relative warps (dimensions of geometrically feasible pre-

diction) was capped at 2 by the design of the computational

experiment.

I encourage proponents of any biostatistical analytic

style in this domain to become far more critical of their

own methods than is the custom at present, and urge their

readers—and mine—to become far more skeptical of pre-

viously published pattern claims. Only from extended new

data sets analyzed by the methods of the heightened rigor

advocated here can arise the persuasive new worked

examples that lead to novel biomechanical or evolutionary

insights. Those who pursue analyses on this particular

interdisciplinary interface must be much more demanding

of the biomathematical protocols on which they rely, and

our community should insist that data sets be rich enough

to sustain these more stringent methods of analysis rather

than serving mainly to illustrate hypotheses that were

already embraced qualitatively a priori. For example, there

are clear implications of the methods here for the design of

biomechanical studies of empirical strain: applications of

loads must be on homologous principles from form to

form, loading must apply to all the forms of a data set

(not just forms chosen as extreme according to the relative

warps analysis), and it is best if there are multiple loading

patterns applied to the sample of forms, not just a single

simulated ‘‘function.’’ It will be interesting to see to what

extent the relatively simple results of the toy example here

are emulated in biological samples. But any such applica-

tion needs to be cognizant at all times of the statistical

structure of the unstrained shapes—the presence or not of

multiple taxa, the presence of allometry or sexual dimor-

phism within taxon—and, as already noted, the simulation

of loads that drives the biomechanics must be in accord

with the geometric scaling (of relative beam size, relative

shell thickness, relative position of components) that is

already captured in the morphometrics. Due attention must

also be paid to the discrepancy of scaling dimensions

described in connection with our first example: strain

energy goes as the first power of a Procrustes distance for

loads in some directions but as the second power for loads

in other directions. Interpretation of regressions or other

linear machinery is likely to be defeated by these consid-

erations quite early in any analysis that relies on conven-

tional multivariate statistical simplifications if aspects of

scaling are not explicitly formalized as they were in con-

nection with our examples here.

In short, it is time for some principled skepticism about

the bridge between GMM and FEA: skepticism about the

pro-forma applications of standard GMM, and principles

borrowed from the applied mathematics of continuum

mechanics, which is so much deeper than the mathematics

of GMM. The methods of GMM can serve to differentiate

between two subspaces of the strain-related reports

emerging from FEA analysis: the component that has the

nature of a scaling, locked to the large-scale features of the

variation of form; and the residual component, which is

the proper domain for the biological and biomechanical

styles of explanation. It may be that this discrimination

between two forms of logic applied to the same FEA

computations is the highest and best use of GMM in con-

nection with FEA: as a quantitative rhetoric for separating

the more obvious from the less obvious in those beautiful

color pictures of strain.
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