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Abstract

Survival analysis is an essential tool in healthcare for risk assessment, assisting clinicians in their evaluation and decision
making processes. Therefore, the importance of using expressive and high-performing survival models is crucial. With the
advent of neural networks and deep learning, a new generation of survival models has emerged, offering state-of-the-art
capabilities to capture the non-linear and complex relationships inherent in multimodal patient data for survival prediction.
However, these models often produce discrete outputs, resulting in survival functions that are coarse-grained and difficult to
interpret. This study advances previous research by further exploring interpolation techniques as a post-processing strategy
to improve the predictive accuracy of survival models. Our results show how the use of specific interpolation techniques
significantly improves the concordance and calibration of survival estimates. This analysis encompasses a wide array of med-
ical datasets, models, and interpolation techniques, demonstrating the effectiveness of the proposed approach and providing
actionable insights for survival model design.
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1 Introduction X, survival models compute a survival function S, represented
as

Machine learning algorithms have significantly advanced the

field of medical decision making and treatment planning. By S(t|x) = P(T > t|x),

harnessing the predictive power of these models, clinicians
can extract meaningful insights from complex, multimodal,
and nonlinear data. In particular, event time prediction plays
a critical role in improving the effectiveness of clinicians’
assessments and treatment strategies. In this context, survival
analysis [1], a specialized branch of statistics, focuses on
analyzing time-to-event data to generate event probability
functions. Using patient covariate characteristics, denoted as

where S(¢|x) is the probability that a subject will not expe-
rience an event up to time ¢. This analysis is critical for
identifying specific risk factors for individual subjects, with
common events in healthcare including disease onset, death,
relapse, and hospital discharge. Survival analysis differs from
traditional machine learning tasks such as classification and
regression in that it can handle censored data points, i.e., data
samples in which the event of interest has not occurred for
a given subject by the end of the observation period. Cen-
sored samples can be prevalent in several clinical datasets
due to the long duration of medical trials and the privacy
issues inherent in medical data collection. These issues pose
significant challenges to the use of data-intensive survival
models in healthcare.

B Alberto Archetti
alberto.archetti @polimi.it

Francesco Stranieri
francesco.stranieri @polito.it

Matteo Matteucci
matteo.matteucci @polimi.it

I Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy Deep learning models based on neural networks are
2 Universita degli Studi di Milano-Bicocca, Viale Sarca 336, becoming increasingly popular in survival analysis applica-
20126 Milan, Italy tions [2]. The advantage over classical techniques lies in their
3 Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 ab111ty to identify nonlinear patterns in survival data. In fact,
Turin, Italy neural network models — such as DeepSurv [3] — are more

Published online: 20 September 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-024-00343-y&domain=pdf
http://orcid.org/0000-0003-3826-4645

Progress in Artificial Intelligence

powerful than the popular linear Cox model, which is based
on the assumption that the risk ratio of experiencing cer-
tain events remains constant over time across subjects [4].
While neural models rival the generalization capabilities of
decision tree-based ensemble methods [5-7], they share a
common limitation: the estimation of survival outcomes only
at a discrete set of time points. Several methods have been
developed to overcome this limitation and allow fine-grained
risk assessment over time. For example, some approaches
redefine survival analysis as an estimation problem over a
finite set of time points [8]. While this approach naturally
integrates with neural networks, it may limit the estimation
accuracy of these models in real-world scenarios. Conversely,
other studies have focused on time-continuous adaptation,
either by refining classical survival models [3] or by model-
ing survival functions as piecewise constants [8, 9].

This work builds on our previous study of interpolation
techniques to bridge the gap between the discrete outputs
of neural network-based survival models, referred to as neu-
ral survival models, and the continuous domain of survival
analysis [10]. Here, our goal is to extend the evaluation con-
cerning the effectiveness of various interpolation methods
in converting the discrete-time outputs of neural networks
into continuous-time predictions. Our experimental evalua-
tion covers a wide range of healthcare datasets with different
data cardinalities and proportions of censored observations.
We explore a spectrum of interpolation strategies, including
linear functions, piecewise exponentials, and splines, applied
without any prior knowledge of the survival data. To improve
our approach and complete the analysis, we introduce a new
interpolation strategy that incorporates the Kaplan—Meier
estimator [11] as prior knowledge for predicting the survival
function.

We evaluate the performance impact of incorporating
interpolation into survival models using all the standard sur-
vival metrics: concordance index (C-Index), Integrated Brier
Score (IBS), and Cumulative Area Under the Curve (AUC).
Our results consistently show that interpolation techniques,
regardless of their specific nature, significantly improve
model performance. This improvement is particularly rele-
vant for time-dependent metrics such as IBS and Cumulative
AUC, which are more affected by fine-grained changes in
the survival function. Notably, the benefit of interpolation
becomes even more pronounced when the model’s output
neurons are significantly fewer than the number of unique
events in the dataset, highlighting the critical role of interpo-
lation in defining a more accurate survival function. These
findings complete our previous analysis in [10], indicating
that the application of interpolation as a post-processing tech-
nique serves as an effective regularization strategy in the
design of survival models. By integrating interpolation, we
can simplify the model architecture by reducing the number
of output neurons, which in turn lowers the data demands for
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successful model training. This aspect is especially advan-
tageous in clinical settings, where data availability is often
limited — but not as limited to prevent the use of neural
networks. On top of that, interpolation promotes smoother
predictions, aligning with the expected real-world behavior
of survival functions, thereby enhancing the model’s gener-
alization capabilities.

In conclusion, this research provides a thorough eval-
uation of interpolation as a lightweight post-processing
technique for improving the predictive capabilities of sur-
vival models across multiple datasets, models, and evaluation
metrics. By implementing this simple post-processing step,
survival models can achieve improved accuracy in predicting
time-to-event outcomes, thereby providing valuable support
to clinicians in patient care and treatment planning.

2 Background and related work

This section covers the definition of survival analysis and
censored data, as well as an overview of nonparametric
estimation of survival functions and metrics for model eval-
uation. Finally, the section defines the state-of-the-art neural
survival models.

2.1 What is survival analysis

Survival analysis is a branch of machine learning and statis-
tics that focuses on modeling the time of occurrence of
specific events within a given population. Event time esti-
mation is particularly valuable in healthcare, where it is used
to predict critical outcomes such as patient mortality, dis-
ease onset, relapse, and hospital discharge. As such, survival
analysis plays a critical role in enabling medical profession-
als to assess the risk of patients experiencing specific events.
Survival models leverage patient features, represented by a
vector x € RY with d dimensions, to generate a survival
function defined as

S(t|x) = P(T > t|x).

This function describes the probability that an individual will
not experience the event of interest up to time ¢. Each sur-
vival function starts at 1 for + = 0, indicating the absence
of the event at the beginning of the study. The function then
decreases progressively toward 0 as t — 00, ensuring event
occurrence over an infinite time scale. Lastly, the survival
function is non-increasing.

Certain survival models rely on estimating the instanta-
neous risk associated with an event over time, rather than
directly calculating the probability of survival. This instan-
taneous risk, also known as the hazard function, is expressed
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as

Pt <T <t+6t|T >t,
Kt = lim ¢=T-< (;t’ T=z0%
t—

This function quantifies the immediate risk of the event
occurring at time ¢, given that it has not yet occurred. Despite
the focus on the hazard function in some models, it is possi-
ble to compute the survival function from the hazard itself.
The relationship between the two is defined as

S(t|x) = exp <— /l h(u|x) du) . €))]
0

2.2 Censored data

In survival experiments, it is common for some subjects not
to experience an event of interest, such as failure, death, or
another endpoint, within the data collection period. In such
cases, a subject i is observed to survive up to a maximum
observed time Tyvax, but the exact time of the event f; remains
undetermined. The only known information about #; is that
it exceeds Tyax. Therefore, the event time is only known to
be later than the subject’s last follow-up. This scenario is the
most common for survival applications and it is referred to
as right censoring. Another common assumption on which
we will rely for the rest of the work, is that censoring occurs
at random. Censoring at random is a condition regarding the
relationship between the censoring mechanism and the event
time of interest. It is assumed that the reason an observation
is censored is unrelated to the value of the observed time
itself. This means the probability of an observation being
censored is independent of the event time, given the observed
covariates.

Censored samples populating survival datasets require
careful handling when training survival models. To account
for censored observations, survival datasets contain samples
in the form of

(X, 8i, t;).

Here, x; € R is the d-dimensional vector of input features
for subject 7, §; is a binary indicator reflecting whether the
event was observed (§; = 1) or censored (§; = 0) within the
data collection period, and #; represents the observed event
time or censoring time, depending the value of §;. This struc-
tured approach to data representation is crucial for accurately
modeling survival outcomes, taking into account both uncen-
sored and censored observations.

2.3 The Kaplan-Meier estimator

Among the simplest yet most widely used survival models,
the Kaplan—Meier (KM) estimator [11] is known for its abil-

ity to summarize the distribution of survival outcomes within
datasets. Essentially, this estimator produces an aggregate
survival function that reflects the overall survival trajectory
across the dataset, based solely on survival labels. As a non-
parametric model, the KM estimator makes no assumptions
about the probability distribution of the target data.

To compute the KM estimate for the survival function,
one must identify the unique time points within the dataset,
denoted as t1, 12, ..., tx, for K < N samples. At each time
point ¢;, the estimation requires the number of events ¢; > 1
occurring at ¢; and the number of subjects atrisk r ;. Subjects
at risk include those not yet censored or those for whom
t > t;. The KM estimator is then calculated as

Skm(t) = H ( —?)
j

Jitj<t

This formula computes the empirical survival rate at each
unique time point, cumulatively multiplying these estimates
to determine the overall survival probability. Notably, Sk ()
is independent of the feature vector x, as the KM estimator
relies solely on survival labels.

2.4 Evaluation metrics in survival analysis

The efficacy of survival models is evaluated using various
metrics, with the C-Index, IBS, and Cumulative AUC being
among the most common. The C-Index [12], in particular,
serves as a measure of the predictive accuracy of survival
models, quantifying the proportion of concordant pairs rel-
ative to all comparable pairs within a dataset. A pair of
subjects i, j is concordant when the predicted survival order
aligns with the actual event times; that is, if ; > ¢;, then
S(ti1x;) = S(tj|x;). Instead, a pair is comparable if, for
f; < tj, subject i is not censored, i.e., §; = 1. This metric
estimates the probability that, for any two randomly selected
subjects, the model will correctly predict the order of their
survival times. The C-Index is formalized as

C-Index = P (l‘i > 1;]|S(t]x;) > S(l‘j|Xj)) .

This equation evaluates the model’s capacity to accurately
sequence survival predictions. Notably, the C-Index does not
depend on time, relying instead on pairwise comparisons
across the dataset.

Due to the time-sensitive nature of survival analysis,
assessing the calibration of probability estimates over time
is crucial for model evaluation. The Brier score [13] is a
metric specifically designed for this purpose, computing
the weighted squared difference between the actual survival
status of a subject i at time ¢ and the predicted survival prob-
ability. The survival status is represented as 1 if the subject
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survives past time ¢ (r < t;) and 0 otherwise (r > t;). The
Brier score at time ¢ is defined as follows:

N
BS®) = - Y w01 < 1) — S(1)),

i=1

where 1(-) denotes the indicator function, and w;(¢) is a
weighting factor that adjusts for the presence of censored
data, thus reducing the bias from censoring in the evaluation.
This adjustment is achieved through the Inverse Probabil-
ity of Censoring Weighting IPCW) method [12, 14], which
assigns weights based on the inverse probability of censoring
at a given time ¢, as

() — !&-/G(n) ify; <t o

1/G(t) ift; >t

Here, G (¢) represents the KM estimate of the censoring dis-
tribution, calculated over the dataset with inverted censoring
indicators 8. The overall accuracy and calibration of a sur-
vival model over time can be summarized by integrating the
Brier score across the entire study period, leading to the IBS:

Tmax
/ BS(¢) dt.
0

The IBS provides a comprehensive measure of a survival
model’s calibration, factoring in the impact of censored data.
Contrary to the C-Index, which assesses prediction ranking
accuracy, the IBS evaluates the precision of survival proba-
bility estimates, where a score approaching 0 denotes optimal
model calibration.

The Cumulative AUC [15] introduces a time-dependent
adaptation of the traditional AUC metric, widely used in clas-
sification tasks to evaluate a classifier’s ability to differentiate
between classes. In the context of survival analysis, the AUC
metric is tailored to assess a model’s ability in distinguishing
between subjects who experience the event before a specific
time ¢ and those who experience it afterward. The calculation
of the AUC for survival analysis incorporates time-dependent
outcomes as

IBS =

Tvax

> Zjl(tj >t Ztrj < r,') w; (1)
(X 1@ > 0) (216 < D)

AUC(t) =

In this equation, r; and r; denote the cumulative risk scores
for two individuals i, j, and w; (¢) refers to the [IPCW weights
of Eq. (2). By integrating the AUC over time, we obtain
the Cumulative AUC, which provides a comprehensive eval-
uation of a model’s discriminative power across the entire
duration of a study. Table 1 summarizes the characteristics
of the survival metrics presented.
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2.5 Related work

Neural networks have significantly improved the predictive
capabilities of traditional survival analysis models. The first
efforts were devoted to the extension of the Cox proportional
hazard model [4] (Cox PH), a foundational framework in
survival analysis, including neural networks into the compu-
tation [16]. The Cox PH model defines the hazard function
as

helx;) = hoyexp (x! B)

where ho(t) denotes the baseline hazard, and exp (XZT ,8)
scales this baseline hazard in accordance with individual
risk factors, imposing a linear relationship between the
covariates and the hazard. This formulation is based on the
proportional hazard assumption, central to many classical
survival analysis methods. This assumption states that the
hazard ratio between any two subjects remains constant over
time, enhancing model interpretability. In order to model
non-linear dynamics between subject features and survival
predictions, DeepSurv [3] introduced neural networks into
a survival model based on the proportional hazard assump-
tion. Like the Cox PH model, DeepSuryv is trainable via the
partial-log-likelihood loss function.

Nonetheless, the application of proportional hazard mod-
els to large datasets is frequently unsuccessful, as the
proportional hazard assumption may not accurately represent
the actual risk distribution encountered in real-life scenarios.
Addressing this challenge, DeepHit [17] is as a neural sur-
vival model that utilizes sigmoid functions for estimating
discrete event probabilities. Transitioning to a discretized
survival analysis framework opened numerous algorithmic
innovations for neural survival models. Notably, DeepHit can
handle survival scenarios characterized by multiple events
and competing risks through a specialized loss function that
accounts for event ordering.

The Logistic Hazard model [8, 18] addresses the chal-
lenge of time-varying effects by treating survival analysis
as a sequence of binary classification tasks. It predicts the
risk of events at discrete time intervals using a multi-output
neural network. Similarly, the Neural Multi-Task Logis-
tic Regression (N-MTLR) model [19] extends multi-task
logistic regression [20] with neural network integration, pre-
dicting event probabilities at successive time points, which
are then normalized by a softmax function.

Diverging from discretization strategies, the PC-Hazard
method [8, 9] assumes the hazard function to be piece-wise
constant, enabling the construction of a piece-wise expo-
nential continuous survival function. This approach employs
Poisson regression for model training, allowing for the inclu-
sion of any regression model into survival tasks. Table 2
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Table 1 Evaluation metrics in survival analysis and their properties

Metrics Optimization Time dependency Target measurement

C-Index Max (1) Time independent Risk evaluation concordance between subject pairs

IBS Min ({) Time dependent Survival probability calibration

Cumulative AUC Max (1) Time dependent Identify whether risk is higher or lower than a time threshold

collects the details related to the aforementioned survival
models.

As a final note, this work broadens the study initiated
in [10] by presenting an exhaustive analysis of interpolation
techniques. This includes previously examined interpolation
methods and introduces a novel interpolation approach that
integrates prior knowledge through a KM estimator, offering
a comprehensive exploration of methodologies.

3 Interpolation methods

This study analyzes several interpolation methods as post-
processing techniques for neural survival models. The struc-
ture of these models’ outputs is defined by a series of B time
instants, denoted as 71, 1, ...,7p, Where 0 < 71 < 1» <

- < 1p. For a specific individual with features x, the model
generates a sequence of survival estimates sy, 2, ..., 5B,
suchthat I > 51 > sp > --- > sp > 0. These points, known
as anchor points and represented by the pair (t;, s;), form the
discrete framework defining the model’s survival function
estimation, where S(t;|x) = s; foreachi = 1,..., B. To
preserve the properties of the survival function, it is assumed
that the points (0, 1) and (t, 0) are included as anchor
points, ensuring the survival function starts at 1 and asymp-
totically approaches 0 over time.

Neural survival models can be categorized into propor-
tional hazard models and non-proportional models. Within
the proportional hazard category, we find DeepSurv, charac-
terized by its neural network architecture with a single-output
neuron. This neuron serves as a coefficient for modulating the
baseline hazard, as denoted by the proportional hazard frame-
work. Concerning interpolation, the most natural approach
involves interpolating the baseline hazard, typically com-
puted via the Nelson-Aalen estimator [21]. Consequently, the
selection of anchor points B for interpolation is determined
by the estimator, corresponding to the count of unique event
times within the training dataset.

The second category covers neural survival models not
relying on proportional hazard, specifically DeepHit, Logis-
tic Hazard, and N-MTLR. In these models, the quantity of
output neurons corresponds to the number of discretization
bins B, set during the initial data discretization phase. This
parameter B can be adjusted at the start of the experiment. As

B increases, the granularity of the survival function estima-
tion improves, enabling a more detailed analysis. However, at
the same time, the parameter count of the neural network and,
consequently, the model complexity increase as well. The
PC-Hazard model is excluded from this discussion because,
within our framework, it is equivalent to the Logistic Hazard
model with the PWE interpolation technique from Sect.3.3.

Next, we discuss the interpolation techniques within
this framework, used to bridge the gap between anchor
points. Figure 1 illustrates an example of each interpolation
technique applied across all the models featured in our exper-
1ments.

3.1 Stepwise interpolation

Stepwise interpolation is acommonly employed technique in
existing literature for defining the survival function beyond
the discretization points. In this approach, for any given time
t within the interval [ri, Ti+1), the survival function at 7 is
set to the value of the nearest preceding anchor point, t;, as

S (t]x) = 5.

This method results in a survival function characterized by
a series of descending steps, which, while straightforward to
implement—requiring only the identification of the nearest
lower t; to time t—yields a non-continuous function. The
inherent discontinuities of this function may not accurately
mirror the true progression of survival functions observed
in real-world scenarios, which do not typically exhibit
abrupt transitions. Since this method does not effectively
connect subsequent anchor points, references to stepwise
interpolation and absence of interpolation will be used inter-
changeably throughout the rest of the work.

3.2 Linear interpolation

A natural extension from the stepwise method is to employ
linear connections between anchor points, thereby enabling
the survival function to exhibit a linear transition between
these points. This approach ensures function continuity and
differentiability almost everywhere, except at the anchor
points. The advantage of this method is mimic model
smoother, gradual changes, thereby acting as a form of reg-
ularization for survival models. For a given time ¢ within
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Table 2 Properties of survival models included in the experiments

Model Survival output Hazard ratio Number of anchors Feature processing
Cox PH [4] Continuous Proportional Fixed Linear
DeepSurv [3] Continuous Proportional Fixed Non-linear
DeepHit [17] Discrete Non-proportional Tunable Non-linear
Logistic Hazard [8, 18] Discrete Non-proportional Tunable Non-linear
N-MTLR [19] Discrete Non-proportional Tunable Non-linear
PC-Hazard [8, 9] Continuous Non-proportional Tunable Non-linear
Cox PH DeepSurv DeepHit Logistic Hazard N-MTLR
1.00
0.75
x
= 0.50 = - ﬂ
[¥2]
0.25 N N TS
0.00
0 2500 5000 7500 O 2500 5000 7500 O 2500 5000 7500 O 2500 5000 7500 O 2500 5000 7500
Time Time Time Time Time
— Step ——— Linear — PWE —— Spline — KM

Fig.1 Example of survival functions after interpolation for each model
(columns) and interpolation method (hue) on the TCGA-BRCA [22]
dataset. Each plot represents the survival function of the same sub-

the interval [ri, Ti+1), the survival function employing lin-
ear interpolation is calculated as

t—T
S (11%) = si + ———"— (si41 = 51).

i+1 — T

This formula ensures a smooth transition between estimated
survival probabilities, better reflecting the continuous nature
of real-world survival data.

3.3 Piecewise-exponential interpolation

The interpolation of survival functions using piecewise expo-
nentials comes from the PC-Hazard model [8, 9]. This model
employs a neural network to estimate a series of B anchor
points for the hazard function, under the assumption that
the hazard function remains constant within each interval.
Given the relationship between the hazard and survival func-
tions (Eq. 1), the resulting survival function is constituted as
a sequence of piecewise exponentials. The survival function
at any given time ¢ is thus calculated as

t—1
S(t|x) = s; - exp (Ai . —) ,
Ti+1 — T
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ject. For non-proportional hazard models, anchor points are depicted in
black. The KM estimator of each dataset is plotted in gray for reference

where the rate of change A; within each segment is

Ai=1In <Sli> .
si

This methodology enables a continuous transition of the sur-
vival function across time, modeling an exponential pattern
in the temporal dynamics of survival probability.

3.4 Monotonic cubic spline interpolation

The transition to spline functions, particularly Hermit splines
with a monotonicity constraint [23], represents an approach
to overcoming the differentiability issue observed at the
anchor points in linear and piecewise exponential interpola-
tion methods. These methods, in fact, exhibit abrupt changes
in the derivative at the anchor points. Spline functions, by
contrast, offer a method for creating smooth curves through
a sequence of carefully crafted polynomial functions, ensur-
ing a continuous and differentiable non increasing survival
function.

The implementation of Hermit splines for interpolating
survival functions relies on the Fritsch-Carlson method,
which guarantees monotonicity between a series of anchor
points. The first step of this method is to compute the secant
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lines between consecutive anchor points as

Si+1 — Si
g = AL
liy1 — 1

Then, the secant points are averaged as

1
mi =z i—1 +8i).

For the initial and final secant points, the method assumes
mi = &) and mp = §p. Considering all other consecutive
points, there are two cases. For consecutive anchors with the
same value s; = s;41, m; is set to 0, as the survival function
must be constant. Instead, for all the other anchor pairs, the
«; and B; coefficients are computed as

i = %_i and B; = —mél_“.
Finally, to ensure the monotonicity property, if o; > 3 or
Bi > 3, the secant coefficient m; are set to

m; = 35,‘.

Finally, the survival function interpolated with a monotonic
Hermit spline is computed as

S(ulx) = (2u3 —3ut+ 1) s+ (M3 —2u” + u) m;
+ (—2M3 + 3M2) i1+ (M3 - Mz) mit
where

I — 1t

lig1 — 1

This approach accurately models continuous smooth dynam-
ics, which are likely to represent real survival probabilities.

3.5 Kaplan—-Meier interpolation

The interpolation methods discussed thus far utilize the
information of the anchor points exclusively. However, in
scenarios where data are limited, adopting a smooth and sym-
metric interpolation approach between anchor points may
not necessarily yield optimal results. To address this chal-
lenge, integrating prior knowledge about the survival dataset
statistics has the potential of enhancing interpolation quality.
Our novel method incorporates prior knowledge by scaling
the KM estimation of survival data, Sxym (%), between subse-
quent anchor points. Given two consecutive anchor points,
(ti, s;) and (Ti+1, Si+1), the idea is to squish the KM esti-
mation in the interval [ri, 7i4+1) between the anchor values

s; and s;41. To this end, if Skm(Ti+1) 7 Skm(7i), then the
survival function is computed as

Sx) =si — A - (Skm (1) — Skm(Ti41))
where the scaling factor A; is

_ Sit1 — Si
Skm (Ti+1) — Skm(Ti)

i

The role of A; is to normalize the KM estimation between the
given anchor points. Conversely, in the case where KM esti-
mates at consecutive anchor points are equal (Skm (Ti4+1) =
Skm(1i)), the survival function simplifies to

1
S(tx) = 3 (si +siv1),

which is simply the average between the given anchor points.
By incorporating the KM estimation, this approach intro-
duces a data-driven element to the interpolation, allowing
for adjustments based on observed survival trends within
the dataset. This method leverages the censored nature of
survival data, potentially enhancing interpolation quality
compared to methods that do not account for such nuances.

4 Experiments

This section collects the experimental procedures involved in
the validation of interpolation techniques for neural survival
models. It includes a thorough description of the datasets
used in the experiments alongside a report of the architectures
and parameters defined to obtain the final results. To ensure
reproducibility, the source code of the experiments is publicly
available [24].

4.1 Datasets

To ensure a fair evaluation and maintain consistency with
similar studies, we selected our datasets from a well-known
collection of benchmarks in the field of survival analysis.
These datasets cover a diverse range of conditions such
as breast cancer, AIDS, and cardiovascular diseases, all of
which are commonly featured in survival analysis literature
and are easily available through coding libraries, underscor-
ing their broad adoption [15, 25, 26]. The selection of these
datasets was intended to demonstrate the robustness and
generalizability of our model across different survival dis-
tributions and contexts as in most works concerning survival
algorithms rather than specific conditions [3, 5, 17].

In this study, we focused on the most common survival
application: the analysis of right-censored single events. This
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scenario involves groups of subjects each experiencing a sin-
gle event of interest, such as a disease relapse, with censoring
only occurring at the end of the study. These datasets do not
include the case of rare-event survival analysis, which goes
beyond the scope of the work. In fact, in these settings, neural
networks are generally not recommended due to their need
for substantial data volumes. Thus, when the proportion of
uncensored data is below 10%, more statistically solid yet
less flexible methods are preferable.

The following describes the datasets utilized in the exper-
imental analysis, detailing their content, and includes Fig. 2,
which illustrates the KM estimators for each dataset, pro-
viding a visual representation of survival probabilities over
time. Additionally, Table 3 aggregates the summary statistics
of these datasets, including censoring percentage, follow-up,
and feature type distribution.

4.1.1 WHAS500

The Worcester Heart Attack Study (WHASS500) [27] is
a comprehensive dataset centered around cardiovascular
health, with a particular focus on individuals who have
suffered from myocardial infarction, commonly known as
a heart attack, between 1997 and 2001. WHASS500 tracks
health outcomes of 461 patients post-myocardial infarction
emplying a mix of administrative and clinical follow-up
mechanisms. Features include biometric parameters, such as
body-mass index, heart rate, and artial fibrillation alongside
temporal features such as cohort year, lenght of hospital stay,
and date of last follow-up.

4.1.2 GBSG2

The German Breast Cancer Study Group (GBSG2) [28] tar-
gets the recurrence of breast cancer post-treatment. With
cancer recurrence posing a significant threat to patient recov-
ery and survival, this dataset offers valuable insights into
the effectiveness of hormone treatments and the impact
of various covariates on cancer recurrence, including age,
menopausal status, tumor size, and node status. The dataset
originated from a randomized study conducted in Germany,
which collected data on women diagnosed with breast cancer.
The primary objective was to evaluate the impact of hormone
therapy on cancer recurrence. The follow-up procedure was
predominantly clinical, with periodic assessments to monitor
patient health and detect any signs of cancer recurrence.

4.1.3 TCGA-BRCA

The Cancer Genome Atlas (TCGA) is an international
genomics program aimed at characterizing and classifying
genetic mutations that can lead to cancer. It includes mul-
timodal data—tabular, image, and 3D—seeking to map the
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genomic changes across a wide range of cancers. Among
the initiatives of TCGA, the dataset we considered focuses
on the BReast CAncer study (BRCA), aiming at identify-
ing the genetic factors that influence survival outcomes in
breast-invasive carcinoma, taking into account the variabil-
ity introduced by geographic regions. The study’s follow-up
procedures include both administrative and clinical methods.
The dataset version included in this work is obtained from
Flamby [22], a collection of healthcare datasets for federated
learning. To adapt the dataset to a centralized setting, we col-
lected all data in a single node, while keeping the original
geographic region of the patients.

4.1.4 METABRIC

The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) [3, 31] aims at understanding
breast cancer through molecular taxonomy, facilitating the
development of personalized treatment strategies based on
tumor genetic profiles. The original dataset encompasses a
mix of clinical features and genomic data, including patient
demographics, tumor characteristics, treatment details, and
survival outcomes. Being an international data collection
effort involving Canada and UK, this dataset guarantees a
broad and diverse patient cohort. The follow-up procedures
include both administrative and clinical approaches, with
patients being monitored through medical records as well
as direct clinical assessments. In this work, we employ the
same feature subset of [3] to maximize comparability.

4.1.5 AIDS

The Australian AIDS Survival Dataset (AIDS) [29] aims to
understand the survival patterns of patients diagnosed with
AIDS in Australia before July 1, 1991. It includes a total
of 2839 entries, each equipped with features like age, state
of origin, sex, date of diagnosis, and reported transmission
category. To ensure patient confidentiality, this dataset has
been released with a slight jitter preprocessing. No indication
concerning the type of follow-up is provided in the dataset
documentation.

4.1.6 SUPPORT

The Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT) [30], conducted between
1989 and 1997, was a research initiative aimed at enhanc-
ing decision making and care for critically ill hospitalized
patients, particularly those nearing the end of life. SUP-
PORT was structured into two phases: a 2-year prospective
observational study focused on characterizing care and treat-
ment preferences, followed by a 2-year controlled clinical
trial. The type of follow-up procedures are both administra-
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Table 3 Summary statistics of the datasets used in the experiments

Dataset Samples Censored (%) Numerical features Categorical features Follow-up
WHASS500 [27] 461 62 7 9 A,C
GBSG2 [28] 686 56 5 3 C
TCGA-BRCA [22] 1048 86 1 38 A,C
METABRIC [3] 1904 42 5 4 A,C
AIDS [29] 2839 38 1 3 -
SUPPORT [30] 9105 32 24 11 A, C

For each dataset, the table collects its cardinality, the percentage of censored samples, the number of numerical and categorical features, and the

type of follow-up — administrative (A) or clinical (C)
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Fig. 2 Survival probability (first row) and censoring probability (second row) of the datasets included in the analysis. The survival probability is
obtained with the KM estimator of the origianl dataset, while the censoring probability is the KM estimator of the dataset with inverted event labels

tive and clinical, with patients being followed for 6 months
post-study inclusion, with non-deceased participants being
matched against a national death index up to 1997.

4.2 Experimental procedure

This section outlines the experimental setup designed to
assess the effectiveness of the proposed interpolation meth-
ods within neural survival models. Initially, a fixed random
seed is utilized to allocate 80% of each dataset to a training
set, with the remaining 20% constitutes the test set. Fur-
thermore, the training set undergoes an additional division,
using an 80-20% split to define a validation set. Stratification
based on censorship labels is employed during each dataset
division to maintain representative sample distributions. The
results are averaged over 50 runs, each employing a distinct
random seed, thereby altering dataset splits. To ensure consis-
tent comparability conditions across different models, each
model’s training and evaluation are conducted on the same
dataset splits within a given run.

Experiments encompass training and evaluation of several
survival models, covering Cox PH [4], DeepSurv [3], Deep-
Hit [17], Logistic Hazard [8, 18], and N-MTLR [19], each
discussed in Sect.2.5. Notably, Cox PH and DeepSurv rely
to the proportional hazard assumption, which imposes the
number of anchor points B for survival function estimation

to be equivalent to the count of unique event times in the train-
ing dataset. Conversely, for the remaining models—DeepHit,
Logistic Hazard, and N-MTLR—B is an adjustable hyperpa-
rameter. Our previous research [ 10] has demonstrated that the
best survival performance across survival models is predom-
inant at lower B values, where result changes in interpolation
methods are noticeable. Consequently, this study conducts an
exhaustive analysis by examining a range of B values from
2 to 10.

In the experimental setup, all models utilize neural net-
works for feature processing, with the exception of Cox PH,
which employs a simple linear layer to translate features into
subject-specific risks. The neural network architecture is the
same across all models, consisting of a dense network with
a single hidden layer. Specifically, the architecture features
an input layer matching the number of subject features and
a hidden layer comprising 32 nodes. For proportional haz-
ard models, such as Cox PH and DeepSuryv, the output layer
contains a single output. In contrast, non-proportional hazard
models have B outputs, corresponding to the number of dis-
cretization bins utilized. All layers except for the output one
are followed by a ReLU activation function. To mitigate the
risk of overfitting, particularly in smaller datasets, a dropout
layer with a probability of 0.1 is implemented as a regular-
ization strategy. The Adam optimizer, with a learning rate
of 0.01, is employed for parameter optimization. Training is
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conducted over 300 epochs, adopting an early stopping rule
with a 10-epoch patience. The batch size is fixed at 128.

Upon training completion, each model is equipped with
interpolation techniques as detailed in Sect.3, encompass-
ing stepwise (Step), linear (Linear), piecewise exponen-
tial (PWE), monotonic cubic spline (Spline), and Kaplan-
Meier (KM) methods. The performance of each model-
interpolation method combination is then evaluated accord-
ing to the C-Index, IBS, and Cumulative AUC, as defined in
Sect.2.4. For time-dependent metrics—IBS and Cumulative
AUC—a discrete integral is calculated across 250 points,
spanning the 20th to the 80th percentiles of each dataset’s
time distribution. This choice mitigates the influence of more
volatile regions at the beginning and end of the survival time-
lines, where data may be less reliable due to scarcity.

4.3 Results
This section comments on the results obtained in the experi-

ments. The analysis focuses on the variation of anchor points
and censorship percentage of the datasets.
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4.3.1 The impact of anchors

Figures 3, 4, and 5 present the performance metrics—C-
Index, IBS, and Cumulative AUC—for the evaluated models
across each datasets and the proposed interpolation methods.
This analysis specifically examines the impact of varying
the number of anchor points, B, within non-proportional
hazard models. In fact, as already observed, for Cox PH
and DeepSurv, the number of anchor points is inherently
fixed, corresponding to the number of anchors of the base-
line hazard function. Conversely, for the remaining models,
B is a modifiable parameter, offering a tunable dimension to
explore.

Analysis of Fig.3 highlights several trends across differ-
ent experimental setups regarding concordance. Firstly, it
is evident that the concordance index is influenced by the
number of anchor points, B. Specifically, models employ-
ing Step interpolation exhibit worse concordance at lower B
values (B < 5) than other interpolation methods, with per-
formance converging towards the same value as B increases,
as shown in [10]. This phenomenon aligns with expectations,
as a higher B reduces the impact of interpolation by provid-
ing a more detailed survival estimation through the anchors
themselves. Moreover, models based on proportional haz-
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ards demonstrate negligible variation across interpolation
methods. This lack of performance difference is attributed
to their fixed number of anchor points, which corresponds
to the number of unique time points. Additionally, Linear,
PWE, Spline, and KM interpolations show comparable con-
cordance across the whole spectrum of anchor values tested.
Notably, despite incorporating prior knowledge, KM inter-
polation does not consistently outperform simpler methods
such as Linear in most scenarios. Remarkably, for B > 4,
the concordance index across all models approximates a sim-
ilar value, indicating a convergence in performance with an
adequate number of anchor points.

Figure 4 showcases the IBS results, where most insights
from the concordance analysis (Fig.3) remain applicable.
Again, proportional hazard models exhibit minimal varia-
tion in IBS outcomes. At the same time, for non-proportional
hazard models, the difference in IBS between Step interpola-
tion and alternative methods diminishes with an increase in
the number of anchor points. Furthermore, IBS results tend
to converge across all models for B > 4, provided that an
interpolation method other than Step is used. A distinct trend
observed in the IBS analysis, diverging from prior obser-
vations, pertains to the performance of PWE interpolation.
In WHAS500, GBSG2, TCGA-BRCA, and METABRIC,

PWE interpolation significantly underperforms with respect
to other methods, including Step, particularly at lower anchor
values. On top of that, a relevant finding is the advantage of
KM interpolation in terms of IBS for the largest datasets,
AIDS and SUPPORT, especially in the lower anchor range
(B < 4). This finding shows that the KM method, despite
not improving concordance, is able to capitalize on the cen-
soring information of the data to improve calibration. The
KM advantage is noticeable in the IBS comparison as this
is the metric most sensible to the censoring distribution. In
particular, IPC weighting, as detailed in Sect. 2.4, affects the
IBS importance over time, guaranteeing an advantage of KM
in larger datasets, where survival dynamics between anchors
are likely to be less noisy.

Finally, Fig. 5 provides insights into the Cumulative AUC
trends, reinforcing observations made from the analysis
of Figs.3 and 4. Specifically, for non-proportional models
where the number of anchor points, B, can be adjusted,
a significant difference in AUC between the Step interpo-
lation method and others is evident in lower values of B.
For datasets with a smaller number of samples, WHAS500
and GBSG?2, the performance difference becomes negligi-
ble after a threshold of 5-6 anchors. In contrast, for larger
datasets, TCGA-BRCA, METABRIC, and AIDS, this thresh-

@ Springer



Progress in Artificial Intelligence

Cox PH

075 T——

DeepSurv

0.50

WHAS500
AUC

DeepHit

Logistic Hazard N-MTLR

L
" e e
e

oo
B2060 % % ¢ ¢
(O]
0.40
m O
€000 e e e e e
© o4 $ ¢ ¢ ¢ ¢ A
2,07 e SEsmmm—
m O
0.60
£2
42050
<<
0.50

0.75
0.50
0.25

SUPPORT
AUC

Baseline Anchors Baseline Anchors

—— Step —— Linear

Anchors

—— PWE

Anchors Anchors

—— Spline — KM

Fig. 5 Cumulative AUC (1) for each combination of datasets (rows), models (columns), and interpolation method (hue). Anchor values are

represented on the x-axis. Results are averaged over 50 runs

old shifts up to 10. The SUPPORT dataset shows an even
higher threshold, where the difference in AUC between Step
and other interpolation methods remains significant beyond
10 anchors. Notably, across the analyses, KM interpolation
does not exhibit advantages in terms of Cumulative AUC
when compared to methods other than Step.

4.3.2 The impact of censoring

The analysis of interpolation results can be approached from
an alternative perspective by examining the influence of the
censorship percentage in survival data. Specifically, Figs. 6,
7, and 8 illustrate the C-Index, IBS, and Cumulative AUC
metrics for various interpolation methods across multiple
dataset splits. In these experiments, a censoring threshold
c € [0.1,0.9] is set, and a number of dataset samples is
randomly selected to maintain a ¢ ratio between censored
and non-censored samples. These plots display metrics for
¢ values ranging from 10 to 90%, in increments of 2%. It is
important to observe that selecting random dataset subsets
based on a predefined censoring ratio may result in datasets
of significantly reduced size or datasets that do not accu-
rately represent the original population. Consequently, the
subsequent analyses primarily focus on the comparative per-
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formance of interpolation methods at each specified c level,
rather than the absolute performance metrics and their varia-
tions with ¢. Additionally, for each non-proportional model,
the parameter B is fixed at 5. To accommodate potentially
smaller datasets, the number of hidden neurons in each net-
work is reduced from 32 to 8 and the maximum number of
training epochs from 300 to 200.

Figure 6 illustrates the C-Index across varying censorship
thresholds c. Building upon the observations from Sect. 4.3.1,
data suggest that proportional hazard models are not affected
by the choice of interpolation method, regardless of the cen-
soring ratio. Conversely, in non-proportional models, slight
differences in concordance can be observed between the Step
interpolation method and others within TCGA-BRCA and
AIDS. Notably, these differences become more pronounced
at higher censoring rates.

Figure 7 shows the impact of ¢ on the efficacy of various
interpolation methods from the IBS perspective. While the
observations regarding proportional hazard models remain
consistent, indicating no significant influence of interpo-
lation method on model performance, a different scenario
is observed for non-proportional hazard models. Here, the
choice of interpolation method markedly influences IBS.
Specifically, this is the only instance where the Step method
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demonstrates superior performance compared to its counter-
parts. In fact, Step yields lower IBS values in datasets with
smaller sizes, WHAS500, GBSG2, and TCGA-BRCA, at
censoring ratios below 50%. Conversely, in all other scenar-
ios, alternative interpolation techniques are more effective
than Step. Particularly in larger datasets, AIDS and SUP-
PORT, KM outperforms Linear and Spline.

Finally, Fig. 8 collects the Cumulative AUC results across
different censorship ratios, largely following the patterns
observed in Fig.6. The principal distinctions in AUC are
observed between Step and non-Step interpolation meth-
ods within the context of non-proportional hazard models.
Notably, the discrepancy in AUC performance is more pro-
nounced than the concordance gap observed earlier across all
plots. This highlights the significant influence of interpola-
tion method choice on model performance in terms of AUC,
especially in non-proportional hazard models.

5 Discussion
Interpolation techniques serve as a postprocessing step in

the implementation of neural survival models, facilitating the
construction of continuous survival function estimates from

a discrete set of anchor points. Our investigation into various
interpolation methods, ranging from simple linear interpo-
lation to methods integrating prior knowledge on survival
data, reveals distinct trends. Notably, interpolation’s impact
on proportional hazard models such as Cox PH and DeepSurv
is negligible. This outcome aligns with expectations, given
these models’ reliance on a large number of anchor points,
equal to the unique time points in the training set. Therefore,
the effect of interpolation is limited, due to the fine-grained
survival estimation provided by the anchors themselves.
Conversely, non-proportional hazard models present a
different scenario. Within the extended plethora of tested
datasets, when the number of anchors B is low (B <
4), interpolation enhances survival metrics, particularly the
Cumulative AUC. Even with a higher anchor count, inter-
polation does not degrade performance, demonstrating its
potential as a beneficial or, at least, neutral addition to
survival models. Interestingly, the choice of interpolation
technique—be it Linear, PWE, Spline, or KM—does not
significantly influence the overall outcome, provided model
calibration is not the primary concern. Thus, employing the
simplest Linear interpolation method can augment survival
performance with minimal computational overhead.
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However, in specific cases where calibration is the most
critical modeling concern, the impact of interpolation can dif-
fer. By inspecting the IBS metric, the naive Step method falls
short with respect to the other techniques, with few excep-
tions for smaller datasets and censoring ratios lower than
50%. Conversely, in most other cases, especially when cen-
soring is higher than 50% or when datasets are very large, the
KM interpolation is shown to generally outperform the oth-
ers. While the difference in IBS is low, it is still statistically
significant, highlighting how an interpolation technique that
leverages existing censoring information in survival data can
provide a slight performance boost. This difference is likely
to be more significant as datasets increase, leading to the
necessity of more precise interpolation methods, able to cap-
ture finer details between anchor points.

Summarizing our findings, we propose the following
guidelines: for models based on proportional hazards, inter-
polation is unlikely to alter results significantly. For non-
proportional models, instead, Linear interpolation gener-
ally enhances the overall performance. Yet, in applications
demanding optimal model calibration, i.e., the IBS is the met-
ric of primary concern, the choice of interpolation may vary,
with KM interpolation being a sound choice, especially for
datasets with a large cardinality or high censoring ratios.
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As a final note, our research primarily aims to improve
model performance in terms of survival metrics exclusively.
Despite the focus on medical scenarios, it is essential to clar-
ify that our work does not seek to draw actionable conclusions
on treatment planning for specific diseases or conditions.
Instead, our objective is solely to improve algorithmic mod-
eling in survival analysis. As such, the application of these
methodologies to specific medical contexts should be care-
fully evaluated by domain experts to ensure compatibility
with the intended application scenarios.

5.1 Ethical considerations

Our research delves into survival analysis, a field strongly
related to risk assessment based on artificial intelligence
within the healthcare sector. As a key statistical tool for
modeling event occurrences over time, survival analysis con-
tributes significantly to informed medical decision making
and the allocation of hospital resources. However, relying
solely on statistical inferences derived from deep learning
algorithms may lead to overly simplistic conclusions, par-
ticularly in instances where the underlying data may be
inaccurate, incomplete, or fail to reflect the complexities of
real-world clinical scenarios. Consequently, we emphasize
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how essential is the inclusion of domain-specific expertise
and experiential knowledge into the decision making pro-
cess, supplementing the quantitative outputs generated by
these models.

Moreover, handling patient data properly—specifically
concerning transparency and consent—assumes critical impor-
tance within the healthcare domain due to the inherently
sensitive nature of such information. Our investigation relies
exclusively on the use of established public datasets, which
are commonly utilized across the majority of studies on sur-
vival analysis research, thereby ensuring adherence to ethical
standards concerning individual and data proprietor rights.
Also, this approach promotes a standardized and repro-
ducible evaluation of new algorithmic survival techniques.

In conclusion, while our study primarily concentrates on
refining the algorithmic framework underlying survival mod-
els, it simultaneously acknowledges the ethical implications
inherit to conducting survival analysis within a healthcare
context. Our objective is to enhance the reliability of these
models, advocating for a healthcare paradigm in which statis-
tical analyses serve to support—rather than substitute—the
clinical judgments of medical professionals.

6 Conclusion

In this study, we have explored the impact of various inter-
polation techniques on the performance of state-of-the-art
neural survival models. The core of our investigation centered
on the effect of interpolation in connecting the anchor points
predicted by discrete neural networks, thereby allowing the
evaluation of continuous survival estimates. Our empirical
analysis, conducted across a comprehensive array of bench-
mark datasets and models, demonstrates that integrating
interpolation techniques enhances both the concordance and
calibration of survival models. Therefore, by bridging the gap
between anchor points, interpolation not only creates smooth
and realistic survival curves, but can effectively improve sur-
vival metrics with a minimal computational overhead. Data,
source code, and results of our analyses are publicly available
and reproducible.
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