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Abstract
Federated learning (FL) enables edge nodes to collaboratively contribute to constructing a global model without sharing
their data. This is accomplished by devices computing local, private model updates that are then aggregated by a server.
However, computational resource constraints and network communication can become a severe bottleneck for larger model
sizes typical for deep learning (DL) applications. Edge nodes tend to have limited hardware resources (RAM, CPU), and the
network bandwidth and reliability at the edge is a concern for scaling federated fleet applications. In this paper, we propose
and evaluate a FL strategy inspired by transfer learning in order to reduce resource utilization on devices, as well as the load on
the server and network in each global training round. For each local model update, we randomly select layers to train, freezing
the remaining part of the model. In doing so, we can reduce both server load and communication costs per round by excluding
all untrained layer weights from being transferred to the server. The goal of this study is to empirically explore the potential
trade-off between resource utilization on devices and global model convergence under the proposed strategy. We implement
the approach using the FL framework FEDn. A number of experiments were carried out over different datasets (CIFAR-10,
CASA, and IMDB), performing different tasks using different DL model architectures. Our results show that training the
model partially can accelerate the training process, efficiently utilizes resources on-device, and reduce the data transmission
by around 75% and 53% when we train 25%, and 50% of the model layers, respectively, without harming the resulting global
model accuracy. Furthermore, our results demonstrate a negative correlation between the number of participating clients in
the training process and the number of layers that need to be trained on each client’s side. As the number of clients increases,
there is a decrease in the required number of layers. This observation highlights the potential of the approach, particularly in
cross-device use cases.
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1 Introduction

Federated learning (FL) is a privacy-preserving machine
learning (ML) training strategy introduced by McMahan et
al. [1]. In FL, edge nodes contribute to a global model by
locally computing partial model updates, which are then
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exchanged with a server and combined/aggregated into a
global model. By iterating this process, we avoid sharing
or transferring private data [2–4] instead of moving data to a
central server, the model implementation is transferred to the
data owners’ local sites, where model training occurs. In this
sense, FL falls in the category of decentralized optimization.

In the most basic FL architecture, a single central server
constructs a global model in each communication (training)
round by aggregating model parameters sent by the edge
nodes. The limited internet connection bandwidth makes the
model weight transfer between the edge nodes and server a
bottleneck, contributing significantly to each round’s training
time [5]. In addition, training a large and complexNeuralNet-
work (NN) model at the edge node requires non-trivial time
and computational resources (memory, network and CPU).
Taken together, it is a challenge to accommodate increasingly
complex models in cases where the network connection and
the edge hardware have limitations.

FL often involves edge devices that are not homoge-
neous and have varying computational capabilities. As a
result, the research community has focused on addressing
the challenges posed by weak computing capacity devices,
commonly referred to as stragglers [6, 7]. These devices can
significantly slow the training process and may need to be
excluded from the round. Consequently, training a complex
model over massive data in federated settings is challenging
due to the presence of stragglers, which can slow down the
process and limit the node’s contribution to the round [8].

Therefore, different approaches have been proposed that
can reduce resource utilization during the training of a deep
learning (DL) model, both in centralized settings and decen-
tralized settings. One such strategy is to freeze pre-trained
model layers and to add a new output layer to be trained over
the new task data, where its weights will be adapted based
on the weights of the prior layers (transfer learning or fine-
tuning) [9, 10]. This approach is applicable in a centralized
paradigm. For distributed settings, two main parallel strate-
gies are in use to speed up training: (1) replicating a copy of
the whole model overall cluster nodes and then using data
mini-batches broadcasted by the cluster head (data paral-
lelism) [11, 12], and (2) distributing the model’s layers over
the cluster nodes, where each layer will be trained using the
entire data set, and a cluster coordinator is responsible for
parallel communication (model parallelism) [13–16].

Recently, a new approach inspired by transfer learning
aims to selectively freeze a set of layers and only update
the remaining layers in each iteration [17]. In this paper, we
explore the same strategy for local model training in the FL
setting. The goal is to (a) reduce the resource needs on the
edge device and, in this way, fit larger models by reducing
the training memory and CPU footprint for each update, and
(b) reduce network transfer costs by reducing the number
of updated parameters in each iteration. We are specifically

interested in investigating the feasibility of this approach for
scenarios where the hardware on the device is too limited
to train the entire model effectively (resource starvation). To
summarize, the main contributions of this article are:

• Our proposed approach draws inspiration from transfer
learning and aims to decrease the amount of resources
used on edge nodes/clients. By doing so, we aim to
enhance efficiency and dependability, thereby minimiz-
ing the occurrence of stragglers in a round. Additionally,
this approach is intended to enable edge devices/nodes
with constrained resources to operate more effectively
and provide a stable training environment.

• Reduce the amount of transferreddata (gradients,weights)
over the network between the edge nodes and the model
aggregator.

• Systematically evaluates the potential of the approach for
varying resource availability on the client side, including
the Jetson Nano1 as a constrained edge device.

The rest of this paper is organized as follows. Section
2 provides background on FL, model fine-tuning, transfer
learning and related work, as well as how the proposed
approach relates to general parallel training strategies. Next,
we introduce the proposed approach in Sect. 3. Section 4
describes the experimental settings. Finally, we conclude the
paper in Sect. 5.

2 Background and related work

2.1 Federated learning

FL is a new solution proposed by Google [2, 4, 18] to pre-
serve data privacy that aliens with General Data Protection
Regulation (GDPR). FL enables users or organizations to col-
laboratively train a MLmodel without transferring their own
data to a central storage system. Instead, the code is moved to
the data owners’ local sites in such a paradigm; incremental
local updates are combined into a global model every com-
munication round [19]. Typically, a server or aggregator is
responsible for managing the client nodes, communication,
distributing the global model weight, controlling the train-
ing rounds, and generating a global model from received
models using FEDAvg[1], FEDProx [20] and many other
aggregation methods. Firstly, the server starts the training by
distributing the ML model architecture with random weight.
Secondly, each client will receive the shared model, initiate
the training process using local data, and share the weight
updates with the server. Third, in each training round, the

1 https://developer.nvidia.com/embedded/jetson-nano-developer-kit.
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server combines all obtained weight updates using FEDAvg,
or other aggregation methods to update the global model
weight. Finally, newweights are distributed across the clients
to start a new training round; in this sense, all clients have
shared their knowledge without sharing their data [21].
Hence, FL maintains data privacy, reduces data transferring
costs, and shares different client or organization knowledge,
especially in healthcare scenarios where the data is more sen-
sitive. In addition, learning from different sources is required
to capture more knowledge about a given problem.[22].

2.2 Transfer learning andmodel fine-tuning

The shortage of the data samples needed to train aMLmodel
enables transfer learning and fine-tuning to reduce the train-
ing cost through transferring the knowledge from a large
pre-trainedmodel (source) to a newmodel (destination) using
the small number of new samples that will perform new tasks
[23, 24].

In transfer learning, only the last few layers of a large
source model will be trained over a new dataset for a spe-
cific task and adapt their weights based on the prior layers
[24]. While in the fine-tuning case, the whole pre-trained
model is trained over a new dataset and new task [9]. Despite
their difference, both techniques share the common aim of
enabling the use of DL in situations where there is a dearth
of training data. This is achieved by transferring knowledge
across related domains, substantially reducing training time
and resource consumption in a centralized fashion.

2.3 Training parallelization techniques

Here, we discuss the two main approaches that have been
introduced to address challenges in large-scale model train-
ing. In both cases, the focus is on parallelizing the training
process by utilizing large computational resources.

1. Training DL models requires a massive amount of
data and computational resources, which can be time-
consuming. The data parallelism [25] approach has been
widely used to address this challenge, using a parame-
ter server architecture to distribute the training workload
across multiple workers and speed up the process. In
this approach, the training dataset is divided into mini-
batches and each worker is assigned a different subset.
The parameter server maintains a full copy of the DL
model and communicates with workers to synchronize
gradients or weights [26]. Each worker receives a copy
of the DL model and a mini-batch of data, computes
local gradients, and shares them with the server parame-
ter. The server then updates the model parameters based
on the gradients received from the workers, using nega-

tive gradient direction or parameter averaging. The latest
values are shared with the workers [27, 28]. However, the
communication channel bandwidth capacity can become
a bottleneck as more workers join the training process,
leading to slower processing times. To address this issue,
a new architecture called AllReduce operations was pro-
posed, which does not depend on the number of workers
in the training process to maintain communication chan-
nel capacity [29].

2. To tackle complex tasks that require large DL models
with millions of parameters, training these models can be
very computationally demanding and resource-intensive.
Model parallelism is a useful approach to efficiently train
these models by creating a cluster of worker nodes with
a coordinator to parallelize the training process [30]. The
DL model is split into sub-layers and distributed among
multiple workers, with the coordinator maintaining the
model layers in sequential order, managing data flow,
and communicating between all workers. Each worker
is assigned a mini-batch of data that is shared among
all workers to update the worker-assigned model layers’
gradients. Finally, the coordinator combines all the layers
received from workers to produce the final model. This
approach can be implemented inmulti-GPU cores, where
each core acts as an independent worker [27, 31].

2.4 Related work

Several studies have been investigated speeding up and
reducing the cost of training DL models. These studies are
oriented to solve different problems before and during the
training process, such as complex and large models, short-
age in the training sample, a vast amount of training data
that demand high computational resources and time. Transfer
Learning has been proposed to tackle lack of training data via
transferring the knowledge from a related pre-trained model
to a new task [32] which is widely used in image processing
and natural language processing (NLP).

Different approaches have been proposed to distribute
the training process workload across a group of machines
(Cluster). Dean et al. [30] have developed aDistBelief frame-
work that supports DL model parallelism for large models.
The framework trains large models over a computing cluster
with thousands of machines. It comprises two main algo-
rithms: Downpour SGD, responsible for a large number of
model replicas and adaptive learning rates, while Sandblaster
is accountable for the parallelization process. In this study,
[15] authors have investigated the space of parallelization
strategies (i.e. SOAP), which includes Sample, Operation,
Attribute, and Parameter dimensions to parallelize a DL
model. Furthermore, they proposed FlexFlow framework
[15] that uses the SOAP space to search randomly for a fast
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parallelization strategy for a specific machine. In addition to
the frameworks mentioned above, more research has been
conducted on model parallelism, such as [11, 27, 33, 34].

For a large training data sample, Valiant [25] has intro-
duced the bulk-synchronous parallel (BSP) model, which
parallelises the training process by two main steps. Firstly, a
replica of the whole DLmodel will be placed on each device.
Secondly, the training dataset will be split into mini-batches
and then distributed among multiple workers to train the DL
model. Finally, each worker synchronises model parameters
with a different worker at the end of each iteration [35].
Moreover, Tensorflow [36], Coffe2 [37], and Pytorch [38]
frameworks have been used in both data and model paral-
lelism to parallelise the DL training process. Nevertheless,
Data parallelism is an efficient technique that can train a small
DL model with few parameters. While in a large model’s
case, this becomes an inefficient strategy that causes a scal-
ability jam in large-scale distributed training environments.

The authors [39] proposed a Freezeout approach to accel-
erate the training process by training each hidden layer in
the model for a set part of the training schedule, "freezing
out layers" progressively and the back-propagation of these
layers is avoided. Also, Chen et al. [40] have followed the
same strategy proposed in [39] to train the model by freezing
the hidden layers out one by one. A new approach has been
proposed by Xueli et al. [41] to freeze layers intelligently
during the training phase, where the differences of the nor-
malized gradient for all weighted layers have been computed
to identify the number of layers that should be frozen. This
approach has been developed on top of stochastic gradient
descent (SGD) and evaluated using large models (i.e. VGG,
ResNets, and DenseNets) in a centralized fashion.

Identifying the number of the freezing layers has been
investigated in [42] during the transformer fine-tuning pro-
cess for well know pre-trained models (i.e. BERT, and
RoBERTa) in the NLP field.Moreover, Yuhan et al.[43] were
proposed AutoFreeze framework for automatically freez-
ing layers to speed up fine-tuning by applying an adaptive
approach to identify all layers that need to be trained while
maintaining accuracy. Also, multiple mechanisms have been
developed to decrease the forward computation time while
conducting model fine-tuning by enabling client caching of
intermediate activation’s.

Based on the fact that the internal layer’s training progress
differ significantly, a knowledge-guided training system
(KGT) [44] has been proposed to focus more on those layers.
Sub consequently, KGT skips part of the computations and
communications in the deep neural network’s (DNN) inter-
nal layers (hidden layers) to accelerate the training process
while maintaining accuracy.

Chen et al. [5] were proposed a new scheme named Adap-
tive Parameter Freezing (APF) tackle the communication
bottleneck in FL settings. The APF is responsible for freez-

ing and unfreezing converged parameters during the training
rounds for intermittent periods. The model was fully trained
to identify the stable and unstable parameters for several
rounds, and then APF freezes the stable parameters based
on threshold increase gradually. In addition, the authors have
introduced a mechanism that dynamically adjusts the sta-
bility threshold at runtime when most of the parameters
have been classified as stable and decreases the stability
threshold by one-half. The results reveal that this scheme
has reduced the communication volumewithout compromis-
ing the model’s accuracy. However, this approach still relies
on memory to cash the prior parameters to check their sta-
bility and also requires both CPUs and RAMs to train the
entire model at the beginning, and each unfreezes period.
While our approach train sub-layers of the model selected
randomly, which significantly impacts the resources, train-
ing time, transferred data, and the final model accuracy, as
shown in our results.

Our approach stands out from existing methods in this
context due to its unique training strategy in FL settings. Our
strategy focuses on training different parts of themodel every
communication round, aiming to achieve several key goals.
These goals include, reducing resource utilization, minimiz-
ing the communication flow, and enabling the restricted edge
devices to participate in the training process without shar-
ing the raw data. Unlike other approaches reported in the
literature, where a complete model must be shared to train
the model, our approach avoids the need to share a complete
model. Instead, we adopt a more efficient technique where
each client randomly selects a different model layer every
communication round to be trained, which enables stragglers
(constrained devices) to effectively participate in each round
of the federated training.

3 Proposed approach

The approachwe propose involves selectively freezing layers
during client updates. Figure 1 shows the abstract diagram of
our approach, where each client (i.e. four clients) indepen-
dently selects a portion of the entire model randomly based
on the identified percentage (50% in this diagram, equivalent
to five layers out of 10), determines the layers to be trained in
FL settings during each communication round. As indicated
in the diagram, it’s important to note that each client trains
different layers in every round. This technique can be adapted
to work with any federated training strategy or aggregation
scheme, and it only requires modifications to be made on
the client side. As a result, it offers a high degree of flexibil-
ity and versatility, making it easy to integrate into existing
FL workflows. While there are many different aggregation
schemes with different properties, we have chosen to exem-
plify with the Federated Averaging (FedAvg) strategy in this
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work. FedAvg is an established FL aggregation algorithm
proposed in [1].

The FedAvg algorithm is a decentralized version of SGD.
In each training round, a subset of C clients receive a copy
of the recent global model. These clients execute E epochs
over their local dataset Dk to update the model weights Wk .
A new global model is constructed once the updated weights
Wk have been computed and sent back to the server. This new
global model is built by averaging all the received updated
weights Wk contributed by all participating clients n every
round.

This weighted average is then utilized to generate a new
version of the global model M . This process is repeated
until the model converges. The FedAvg algorithm, which
is unchanged in this paper, is outlined in Algorithm 1.

M =
C∑

k=1

nk
n
W (i)

k . (1)

Each iteration on the client side is outlined inAlgorithm 2.
The only difference from standard FedAvg is the layer selec-
tion step (line 3). In our approach, a random layer selection
strategy is used, although future work could explore more
advanced selection strategies.

Algorithm 1: FedAVG algorithm.C: Number of clients,
r: Number of rounds, Wi : Local model weights and M:
Global model weights
Input: Wt
Output: M(Wt )

1 Server executes:
2 initialized W0
3 Function FedAVG(k,Wt−1,Wt):
4 foreach t ← 1 to r do
5 St ← (sample a random set of clients)
6 foreach client k ∈ St in parallel do
7 Wk

t ← ClientUpdate(k,Wt , Nl )

8 Wt ← ∑K
k=1

nk
n Wk

t
9 end

10 Wt ← (Wt−1 + (Wt − Wt−1)/t)
11 end
12 return M(Wt )

In all experiments that follow we have used the FedAvg
implementation in the FEDn FL framework [21]. FEDn is
highly scalable and fully distributed and can be used without
modification for the evaluated strategy. This also illustrates
that the approach can be embedded in a production-grade
distributed system in a straightforward manner to reduce
resource utilization on the edge device. It should be noted,
however, that to fully benefit from the potential network
transfer reduction, some minor modifications to the FEDn
aggregation server would be needed.

Algorithm 2: Local client update, k: Number of clients,
Nl : Number of trained layers, Dk: Client k local dataset,
e: Number of local epochs, and η is the learning rate
Output: Wt

1 // Run on client k
2 Function ClientUpdate(k,Wt , Nl):
3 Wt (l) ← Select Nl layers from full model Wt randomly to

train
4 β ← (split Dk into mini batches)
5 for local epoch ei ∈ 1, . . . e do
6 for batch b ∈ β do
7 Wt ← Wt (l) − η∇l(Wt (l), b)
8 end
9 end

10 return Wt

4 Results and discussion

Our carefully designed experiments have yielded valu-
able insights: in a federated training setting with restricted
resources, choosing a limited number of layers at each client
location can achieve results comparable to training the com-
plete model at each site. A noteworthy observation we made
was that a negative correlation exists between the number
of clients and the number of layers that need to be trained
at each client location. As the number of clients increases,
the required number of layers trained per client decreases,
indicating that this approach can be especially effective
for cross-device use cases. These findings provide valuable
insights into FL optimization and offer practical recommen-
dations for limited resource edge device deployment.

We outline our experiments’ datasets, models, and config-
urations in the following subsections. We also introduce the
evaluation metrics we used to assess the performance of our
models (Sect. 4.1). Afterwards, we provide a comprehensive
discussion of the results we obtained (Sect. 4.2).

4.1 Experimental settings

To explore the viability of our proposed approach,we utilized
three open-source datasets and their associated ML models
initializedwith randomweight, specifically selected to repre-
sent a diverse range of application domains (computer vision,
NLP, and Internet-of-Things). Our investigation focused on
evaluating model convergence, network load and communi-
cation cost, impact on training time, and resource utilization.

• Experiment 1: This experiment focuses on a computer
vision task that utilizes CIFAR-10 dataset.2 The dataset
consists of 60, 000 colour images with dimensions of
32×32 pixels, grouped into 10 classes, with 6, 000 sam-

2 http://www.cs.toronto.edu/~kriz/cifar.html.
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Fig. 1 The abstract diagram depicts the proposed approach for training the ML model with four clients in the FL context. Where each client
independently selects 50% of the entire model layers randomly during every training round

ples per each. The dataset is divided into two subsets:
50, 000 training images and 10, 000 test images. In this
experiment, we randomly generated n-client data from
Cifar10, ensuring that each client held an equal number
of samples and that the data were independent and identi-
cally distributed (IID). Also, we used the VGG16 model
[45] in this experiment. Table 1 shows the model archi-
tecture, including layer types, output dimensions, and the
number of trainable parameters per layer. The model has
a total of 14, 736, 714 parameters and 14 trainable layers,
including the output layer. The generated model size is
53.5MB. For more information, please refer to the client
source code available on GitHub.3

• Experiment 2: This experiment is centred around senti-
ment analysis tasks using the IMDB dataset v1.0.4 The
dataset consists of 50, 000 reviews, with a maximum of
30 reviews per movie, equally divided between positive
and negative reviews. In [46], the dataset has been used
for sentiment analysis tasks, where a ML model predicts
whether a given review is positive or negative based on
the review text.We used aDLmodel to predict the review
decision for this task. Table 2 shows the detailed architec-

3 https://github.com/saadiabadi/cifar_updated.git.
4 https://ai.stanford.edu/~amaas/data/sentiment/.

ture of the model, including the layer types, dimensions
and parameters used to construct and generate the initial
model. It’s important to highlight that the dataset has been
randomly partitioned among n clients, where each client
received the same amount of data and maintained the
same class distribution, meaning all clients followed the
IID distribution. Further technical details can be found
on the client source code GitHub.5

• Experiment 3: In this experiment, the focus is on human
activity recognition (HAR)using theCASAdataset.6 The
dataset comprises 13, 956, 534 patterns collected over
two months from 30 homes using continuous ambient
and PIR sensors. Each pattern consists of a set of 37 fea-
tures linked to different sensors distributed throughout
the home, representing daily human activities such as
sleep, eating, reading, and watching TV [47]. It’s impor-
tant to highlight that each home’s data represents an
individual client in this setting; both the data size and
the number of patterns varied among clients, resulting in
a non-independent and identified distributed (Non-IID)
distribution. The goal of this experiment is to classify the

5 https://github.com/saadiabadi/IMDB_Example.git.
6 https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition
+from+Continuous+Ambient+Sensor+Data.
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output into 10 different daily activities for each user. We
use a Long Short-Term Memory (LSTM) model with an
input layer dimension of (100, 1, 36), four dense layers,
and one output layer. The model has 68, 884 trainable
parameters distributed across 6 trainable layers, and the
compiled model size is 254K B. For further technical
details, please refer to the client source code available
on GitHub.7

For all conducted experiments, we used one local epoch,
batch size 32, learning rate 0.01, and ADAM optimizer as
the local training parameters settings. Moreover, Python and
TensorFlow were used to implement the models and local
model updates. The experiments were performed on the
Swedish OpenStack Infrastructure as-a Service, SNIC Sci-
ence Cloud (SSC)8 [48].

To evaluate model performance, we used the accuracy
function provided by Tensorflow, whose return value that
falls between (0, 100), as shown in Equation 2, as well as
the loss function using categorical cross-entropy as shown in
Equation 3.

Accuracy = T P + T N

T P + T N + FN + FP
∗ 100% (2)

where T P , T N ,FP , and FN are the True Positives, True
Negatives, False Positives and False Negatives respectively.

Loss = −
N∑

i=1

yi . log ŷi (3)

where ŷi is the model prediction for i-th pattern, yi represent
the corresponding real value, and N is the total number of
samples.

4.2 Results and discussion

The results are organized to evaluate various aspects of our
approach:model performance, the impact of scaling the num-
ber of the edge nodes (clients) on the model performance,
the possible minimal size of data exchange through the net-
work (networkworkload), the trained layers distribution, and
finally, the resources utilization efficiency using both VMs
and actual device (Jetson Nano).

4.2.1 Model performance

Our goal is to attain accuracy similar to conventional FL
methods while implementing a new strategy that maxi-
mizes the utilization of edge resources. This approach not

7 https://github.com/saadiabadi/Casa_IoT_Example.git.
8 https://cloud.snic.se/.

only upholds data privacy, which is crucial in any federated
training environment but also minimizes training costs and
reduces data transfer. To demonstrate the effectiveness of
this strategy, we conducted a series of experiments where we
trained different numbers of randomly selectedmodel layers.
Through these experiments, we systematically increased the
number of layers to assess their impact on the overall perfor-
mance of the model. To compare the accuracy of centrally
trained and FL global models, we varied the number of train-
able layers for the FL settings. Figure 2 shows the accuracy
of the VGG16 model trained on the CIFAR-10 dataset, both
centrally and in FL settings (10 clients and the data split par-
tition was equally across 10 clients), with different trainable
layers randomly selected per round.

The centralized model achieved an accuracy of 87.00%,
while the FL model, with all layers included in the train-
ing process, achieved a slightly lower accuracy of 86.08%, a
difference of only 0.92%. However, FL with slightly lower
accuracy offers a privacy-preserving training environment.
Our experiments revealed that training 10 randomly selected
layers in each round of the model was enough to capture and
learn the data behaviour, resulting around 85.70% in accu-
racy. Figure 2 indicates that the model began to converge
from the first round of training. As we reduced the num-
ber of trained layers to approximately 50% (7 layers) of the
model, the accuracy gap increased. Nevertheless, the accu-
racy remained 84.79% compared to the baseline, given the
reduction in cost achieved through this approach, as elabo-
rated in the subsequent sections.

We also observed oscillations in the model’s performance
at the outset of training with only 4 layers. The model faced
difficulties in capturing the complete data behavior using the
small number of layers in each round.

However, the model eventually achieves an accuracy of
79.00% in the later stages, which is approximately 7% lower
than the baseline accuracy achieved through conventional
federated training.

To highlight the advantages of our proposed approach,
we evaluated its adaptability and robustness across two dis-
tinct domains, utilizing both CASA and IMDB datasets in
FL settings, involving 10 clients, corresponding to 10 homes
in the CASA dataset and equal subset of data amount split
from the IMDB dataset. Figure 3 illustrates a convergence in
terms of model performance for both datasets. As depicted
in Fig. 3a, for the HAR task, training only 33% (2 randomly
selected layers every round) of the model resulted in good
accuracy (around 79.01%) compared to the fully trained (6
layers, 80.20%) model with a small gap. In contrast, train-
ing 50% (3 layers) or 66% (4 layers) of the model nearly
achieved the same level of accuracy as training all the model
layers. Interestingly, similar trendswere observed in theNLP
experiments, as demonstrated in Fig. 3b.

123

https://github.com/saadiabadi/Casa_IoT_Example.git
https://cloud.snic.se/


108 Progress in Artificial Intelligence (2024) 13:101–117

Table 1 The VGG16 model architecture details used in computer vision experiment

Layer type Output dimension Param # Layer type Output dimension Param #

conv2d (32, 32, 64) 1792 conv2d_7 (4, 4, 512) 1180160

batch_normalization (32, 32, 64) 256 batch_normalization_7 (4, 4, 512) 2048

activation (32, 32, 64) 0 activation_7 (4, 4, 512) 0

conv2d_1 (32, 32, 64) 36928 conv2d_8 (4, 4, 512) 2359808

batch_normalization_1 (32, 32, 64) 256 batch_normalization_8 (4, 4, 512) 2048

activation (32, 32, 64) 0 activation_8 (4, 4, 512) 0

max_pooling2d (16, 16, 64) 0 conv2d_9 (4, 4, 512) 2359808

conv2d_2 (16, 16, 128) 73856 batch_normalization_9 (4, 4, 512) 2048

batch_normalization_2 (16, 16, 128) 512 activation_9 (4, 4, 512) 0

activation_2 (16, 16, 128) 0 max_pooling2d_3 (2, 2, 512) 0

conv2d_3 (16, 16, 128) 147584 conv2d_10 (2, 2, 512) 2359808

batch_normalization_3 (16, 16, 128) 512 batch_normalization_10 (2, 2, 512) 2048

activation_3 (16, 16, 128) 0 activation_10 (2, 2, 512) 0

max_pooling2d_1 (8, 8, 128) 0 conv2d_11 (2, 2, 512) 2359808

conv2d_4 (8, 8, 256) 295168 batch_normalization_11 (2, 2, 512) 2048

batch_normalization_4 (8, 8, 256) 1024 activation_11 (2, 2, 512) 0

activation_4 (8, 8, 256) 0 conv2d_12 (2, 2, 512) 2359808

conv2d_5 (8, 8, 256) 590080 batch_normalization_12 (2, 2, 512) 2048

batch_normalization_5 (8, 8, 256) 1024 activation_12 (2, 2, 512) 0

activation_5 (8, 8, 256) 0 max_pooling2d_4 (1, 1, 512) 0

conv2d_6 (8, 8, 256) 590080 average_pooling2d (1, 1, 512) 0

batch_normalization_6 (8, 8, 256) 1024 flatten (512) 0

activation_6 (8, 8, 256) 0 dense (10) 5130

max_pooling2d_2 (4, 4, 256) 0

Table 2 Model specification for
the sentiments analysis
architecture

Layers Parameters characteristic

Embedding layer Max features = 20,000, maxlen = 100, embedding size = 128

Convolutional layer Kernel size = 5, filters = 64, pool size = 4

LSTM layer lstm outputsize = 70

One output Dense layer 2 outputs (positive or negative review)

Number of the trainable layers = 4 layers

The generated model size = 10MB

Fig. 2 VGG16 model accuracy
for CIFAR-10 dataset using
different numbers of trainable
layers
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Fig. 3 Evaluating two different
DL architectures to perform
distinct tasks in terms of
accuracy a human activity
recognition task using CASA
dataset. b Sentiment analysis
task using IMDB dataset

4.2.2 Trainable layer distribution

As the number of clients participating in a training round
increases, the probability of engaging all layers of a model in
the global trainingprocess also rises. Simultaneously, the vol-
ume of training data expands. This heightened participation
and increased training data elevate the likelihood of training
all model layers over each client’s data as multiple rounds
progress. Consequently, this phenomenon significantly influ-
ences the model’s convergence.This effect is particularly
noticeable when we randomly select different trainable lay-
ers of the model (25%, 50%, and 75%) for training. During
the training process, we noticed that each client has the
opportunity to train every layer of the model at least once.
Moreover, the distribution of layers among all clients is
equitable, ensuring a balanced contribution to the training
process, as demonstrated in Fig. 4. The equal distribution of
model layers has been used across all clients with different
training settings (i.e. 4, 7, and 10 layers).

4.2.3 The impact of scaling the number of clients (edge
nodes) on the model accuracy

We conducted two more experiments to estimate the impact
by using different settings, such as the number of clients,
and the number of trainable layers. These experiments aimed
to determine how these factors affect model accuracy while
keeping the amount of data fixed.

• Exp. 1: In this experiment, we partitioned the dataset
among 10 distinct clients to train the entire model, which
consisted of 14 trainable layers, within the context of FL
settings.

• Exp. 2: In this particular experiment, we divided the
dataset into 20 partitions, distributed across 20 clients.
The objective was to train 7 trainable layers, which were
randomly selected during each training round in the FL
context. This corresponds to training half of the entire
model in each round.
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Fig. 4 VGG16 layers distribution across 10 clients during 100 training rounds using different parts of the model

Figure 5 shows the impact of scaling the number of clients,
using different numbers of trainable layers of the VGG16
model while keeping the data amount fixed. According to the
results, both experimental models demonstrated high accu-
racy (86.08% and 86.28%) in comparison to the centralized
model’s accuracy, with only a minor difference of approxi-
mately 0.92% and 0.72%, respectively.

We found that using more clients (with fewer resources)
and fewer trainable layers can achieve the same model per-
formance as training the entire model with fewer nodes. This
was particularly evident in the last 20 rounds, where double
the number of nodes were used to train 7 layers. That leads to
the conclusion, that with more clients, each layer had more
opportunities to be trained at least once per communication
round, resulting in better accuracy.

Another experiment has been conducted to evaluate how
scaling the number of clients, data ratio and trainable lay-
ers affected model accuracy. As depicted in Fig. 6, the bar
chart demonstrates a consistent enhancement in model accu-

racy as the number of clients are increased across all training
settings. Specifically, when training the model with seven
layers, scaling the contributors from 5 to 20, and expanding
the training data from a quarter to all the data, an accuracy
gain of approximately 15%was observed. The same scenario
was followed for 10 and 14 trainable layers.

Training the model with different numbers of layers using
varying numbers of clients had minimal impact on model
performance, evenwith an increased amount of training data.
Comparing the accuracy achieved using 20 clients to train 7
and 10 layers of the model revealed only a borderline differ-
ence of approximately 1% in accuracy, as shown in Fig. 6.
A slightly more significant gap was observed when compar-
ing the accuracy obtained by training 7 and 14 layers of the
model using 20 clients, with a difference of around 2%.

These findings indicate that training a model with fewer
layers can be a more resource-efficient alternative with-
out significantly compromising accuracy. The advantage
is that fewer layers requires less computational resources
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Fig. 5 Comparing the impact of reducing the number of trainable lay-
ers to half (7 layers) while scaling the number of clients (20 layers) to
double the number of clients (10 layers) used to train the whole model
(14 layers). This setting change was carried out while maintaining the

same amount of CIFAR-10 data for both scenarios. The objective was
to evaluate how these modifications influenced the global model’s accu-
racy

client side. This is particularly important while dealing with
restricted devices or limited computational capabilities.

The results also highlight the scalability of the approach,
as increasing the number of clients can compensate for the
reduced model depth, resulting in comparable accuracy to
training with more clients and fewer layers.

Moreover, we evaluate the effectiveness of our approach
by increasing the number of clients while keeping the data
amount constant to train 7 layers. As shown in Fig. 7, Despite
employing the same model architecture and total data size,
we have observed similar performance when using either
20 or 10 clients. It is important to note that we divided
the dataset into 10 and 20 partitions, which were assigned
to 10 and 20 clients, respectively. By increasing the num-
ber of clients involved in constructing the global model, we
noticed an improvement in the model’s performance. There-
fore, our findings indicate that the global model generated
by 20 clients outperformed the one built by 10 clients. Fur-
thermore, we observed that the model trained with 20 clients
achieved good accuracy, albeit slightly different from the
baseline. This can be attributed to the model’s capability to
learn hidden patterns from data with sufficient samples more
efficiently, even when the client has a smaller sample size.
These findings highlight the significance of involving more
contributors (clients) and selecting an appropriate number
of trainable layers in the FL settings, as they substantially
impact the model’s performance. Additionally, this outcome
allows for a more precise estimation of the training budget
and optimizing the utilization of available resources.

4.2.4 Training time

In the previous sections, we demonstrated the ability tomain-
tain accuracy while freezing parts of the model. Nonetheless,
it is crucial to consider the effect on training time, mainly
when dealingwith largermodels. Nevertheless, our approach
demonstrates its effectiveness in accelerating the training
process. This is achieved by distributing sub-layers of the
entire model among the clients to be trained over clients’
local data within the FL network, ultimately reducing train-
ing time.

Figure 8 illustrates the total training time (inmin) required
by 10 clients to complete 100 training rounds. Training the
entire model takes approximately 331 min while training
75% of the model saves approximately 21 min (a 7% reduc-
tion in time). There is a significant difference of 63 min
between training 4 layers (25% of the model) compared to
training 14 layers. By training approximately 50% of the
model, we can save around 36 min (a 10% reduction com-
pared to training the entire model) while still maintaining
accuracy (refer to Fig. 2). Take into account that the observed
time reduction is relatively low, influenced by various factors
such as the computational resources of individual clients, the
size of the local datasets, and the presence of straggler clients,
making the training round longer.

Additionally, Fig. 9 demonstrates the time required for a
single client to complete 100 training rounds. As the number
of trained layers increases, the training time grows linearly,
impacting computational resources in terms of cost and avail-
ability.

Analyzing the training time across various rounds to
achieve a specific accuracy level is crucial. Table 3 illustrates
the time required to train 4, 7, 10 and 14 layers, respectively,
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Fig. 6 Show the impact of scaling the number of clients, adjusting the
number of model layers, and increasing the dataset size on the global
model’s performance.Training approximately 75%of themodel yielded
a high accuracy level, closely approaching the fully trained model, with

only a tiny performance gap. Furthermore, training 50% (half) of the
model still achieved a high level of accuracy, with negligible differences
observed in themodel’s performance as the number of clients increased,
as demonstrated in the case involving 20 clients

Fig. 7 The impact of training a consistent number of model layers (7) over a fixed amount of data while scaling the number of clients on model
performance. Notably, the model’s accuracy demonstrated improvement as the number of clients increased, ultimately outperforming the model
trained with fewer clients

Fig. 8 Total time required for
10 clients to complete 100
global rounds when training
different parts of VGG16 model
over CIFAR-10 dataset
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Fig. 9 The time spent by one
client to train the VGG16 model
over CIFAR-10 dataset using
different trainable layers (cost
per client per global
communication round)

Table 3 The time required (in
min) to achieve a certain level of
accuracy (Acc.) during various
communication rounds to train
the VGG16 model by 10 clients
in the FL context

40 rounds 60 rounds 80 rounds 100 rounds

Number of layers Time Acc. (%) Time Acc. (%) Time Acc. (%) Time Acc. (%)

4 Layers 107 70.54 161 75.95 214 77.72 268 79.02

7 Layers 118 79.95 177 83.26 236 84.4 295 84.75

10 Layers 124 81.73 186 83.82 248 85.08 310 85.68

14 Layers 132 82.79 199 85.25 265 85.88 331 86.08

Table 4 The average transferred
data size for different numbers
of trained layers during a
communication round with 10
participating clients

4 Layers 7 Layers 10 Layers 14 Layers

No. of training parameters 34.88 M 67.92 M 101.3 M 147.2 M

Transferred data size 133.1 MB 259.1 MB 386.5 MB 561.6 MB

and the corresponding accuracy obtained after 40, 60, 80 and
100 training rounds.

Training 4 layers selected randomly from the complete
model achieves 70.54% accuracy within 40 rounds, which
requires 104 min. Notably, increasing the number of rounds
by 20 each time consistently requires around 53 min,
demonstrating a constant trend. Furthermore, a substantial
enhancement in model performance is observed, obtaining
79.02% accuracy after 100 rounds. This pattern is consistent
across different layers. Variations were observed when com-
paring the execution time for training different layers within
the same communication rounds category. For instance, the
timedifference between training7 and10 layers for 40 rounds
is 6 min, and for 60 rounds is 9 min. However, the accuracy
difference among different layers with the same number of
rounds remained relatively close. Comparing a fully trained
model (14 layers) after 100 roundswith 7 and 10 layers shows
an insignificant accuracy difference, confirming that training
a portion of the model while maintaining good accuracy.

4.2.5 Transferred data size and number of trainable
parameters

The size of transferred parameters (weights) in the FL set-
tings naturally depends on the number of trainable layers
in the neural network. In addition to the benefits mentioned
above, layer sub-selection can potentially reduce the amount
of resources required on the client side. This can include com-
puting power, storage space, and network capacity needed for
communication

Table 4 presents the number of trainable parameters and
transferred data size for different training settings over 100
training rounds with 10 clients, highlighting the linear corre-
lation between the number of trainable layers and serialized
data size.

Additionally, we observed a significant time difference
(see Fig. 8) between training a model with 4 layers (268 min)
and 14 layers (331 min), with a difference of 63 min. When
considering factors such as model accuracy (refer to Fig. 2),
transferred updated gradients, number of trainable param-
eters (as shown in Table 4), and training time (see Fig. 8),
these effects will be discussed in more detail in the upcoming
section.
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) 4.2.6 Resources utilization based on VM’s

In this section we empirically study practical resource con-
straints by varying the computational resources available
clients side byusingdifferentVMflavors in theSNICScience
Cloud. Table 5 reports the measured percentage of CPU and
RAM utilization for local training when varying the number
of trainable layers. We conducted experiments starting from
the ssc.xsmall flavor, which simulates devices with restricted
resources, and gradually scaled up the client resources to the
ssc.xlarge flavor. As shown in Table 5, using the ssc.xsmall
flavor allowed us to train only 4 layers of the VGG16 model,
utilizing both CPU and RAM fully, and requiring 1119.49
seconds. Due to resource limitations, the client cannot train
additional layers using the available resources. However, by
scaling up to the ssc.small flavor, we were able to train up
to 10 layers without any issues. Training the entire model
required the essential resource of the ssc.small.highcpu fla-
vor (2 VCPUs, 2 RAM). When training 4 layers, 90% of the
CPU and 64.64% of the RAMwere allocated, with a training
time of 535.24 seconds compared to the ssc.xsmall flavor.
Training half of the model resulted in a 4% increase in CPU
and RAM utilization, slowing down the training process by
approximately 11 seconds. Comparing the local training pro-
cess for 14 and 4 layers, we observed a significant resource
utilization gap (CPU: 8%, RAM: 12.14%) and an increase
in training time by 84.41 seconds, highlighting the need for
more computational power to perform the task.

To expedite the training process for a single client, it often
demands an increase in computational resources, such as
CPU and RAM. However, this can lead to higher overall
training costs and limitations in scaling up these resources,
potentially resulting in a single point of failure. As a solution,
scaling out the number of clients with lower resources can
mitigate these challenges. Training the model partially while
increasing the number of clients, we’ve shown in Fig. 6 that it
doesn’t adversely affect the model’s accuracy. Consequently,
this strategy allows for the model training process to involve
constrained devices like Jetson Nano or VM’s with limited
configurations (e.g., ssc.small). This approach enables the
establishment of a cluster incorporating restricted nodes to
train the ML model in FL setting. The primary goal is to
reduce training costs and enhance resilience against failures.

4.2.7 Resources utilization based on Jetson Nano

We conducted an additional experiment using an actual
restricted device, the Jetson Nano 2GB kit. 9 This experi-
ment aimed to observe the behaviour of the device in terms
of resource utilization during the local model training pro-

9 https://developer.nvidia.com/embedded/jetson-nano-2gb-
developer-kit.
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Table 6 The local training cost in terms of time (s), CPU and RAM per round using Jetson Nano 2GB client (Quad-core ARM CPU, 2GB RAM)

Training time (s)

4 Layers 7 Layers 10 Layers 14 Layers

191.4 235.6 257.8 -

Resources Consumption

CPU RAM (MB) CPU RAM (MB) CPU RAM (MB) CPU RAM (MB)

46.55% 1747 (88.61%) 48.23% 1821 (92.38%) 50.63% 1881 (95.68%) - -

cess for different subsets of layers. 10 We utilized a lighter
version of the VGG16 model by reducing the dimensions of
the previous model’s layers by half and setting the batch size
to 4. This adjustment aimed to avoid out-of-memory issues.

Table 6 reports the training time and resource consump-
tion per training round for different trainable layers on the
JetsonNano. It can be observed that training 4 layers requires
191.4 seconds per round and demands 46.55% and 88.61%
of the CPU and RAM, respectively. These resource demands
are still manageable for the device. However, as we increase
the number of trained layers, these values increase accord-
ingly. Comparing the training time for 4 and 10 layers, we
noticed a difference of approximately 66 seconds, which can
be significant in critical scenarios. Furthermore, training 10
layers resulted in a 4% and 7% increase in both CPU and
RAM consumption, respectively.

However, during the training process of the entire model,
the Jetson Nano crashed (cannot finish the training) due to a
lack of memory. Finally, this experiment on the Jetson Nano
device further supports the benefits of training themodel par-
tially on restricted devices, as it allows for efficient resource
utilization and avoids memory limitations.

4.3 Limitations of the proposed approach

The proposed approach can be implemented in any FL
framework with consistent behaviour. Integrating differen-
tial privacy (DP) into our technique and comparing it with
vanilla FL with DP may impact the results, but our approach
maintains its fundamental characteristics. Adding DP intro-
duces additional thresholds to both, significantly influencing
training time and model accuracy.

However, it’s important to acknowledge certain limita-
tions in the proposed approach:

1. The number of selected layers remains fixed during
the FL training process, potentially affecting client per-
formance and execution time in local training. This
constraint could be mitigated by dynamically selecting

10 https://github.com/saadiabadi/Jetson-Nano-Setup-Fedn.git.

an optimal number of layers each round based on the
ideal resources for each client.

2. With the emergence of large languagemodels (LLM), the
approach might require additional engineering to handle
the sophistication of such complex models.

3. Each client’s sequential training of layers represents a
limitation that could be addressed through more sophis-
ticated strategies in future iterations.

5 Conclusion

This paper introduces a novel approach for training DL
models in the FL setting, aiming to efficiently utilize edge
node resources and reduce network workload. The proposed
approach trains a specific number of the model’s layers,
randomly selected every training round, and freezes the
remaining layers. This approach can enable IoT devices
with restricted resources (as exemplified here with the Jetson
Nano) to participate in training larger models.

The approach was evaluated for three tasks: sentiment
analysis using the IMDB dataset, object detection using the
CIFAR-10 dataset, and human activity recognition using the
CASA dataset, each with different model architectures. The
experimental results demonstrate that training only a part
of the model in the FL setting has a significant impact on
resource utilization, communication, training budget, and
model performance. Furthermore, increasing the number of
contributors also considerably affects model performance
while keeping the amount of data fixed as we demonstrated
in the results.

Overall, the study demonstrates the potential of our
approach to train DL models in a FL setting efficiently,
enabling participation from a diverse range of devices and
clients without sacrificing model performance.

In future work, the authors plan to investigate strategies
for selecting layers based on the available resources of each
client and the number of trainable parameters per layer, con-
sidering the expected heterogeneity in real-life use cases.
Additionally, exploring measures of each layer’s importance
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for model improvement could be an interesting avenue for
further research.
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