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Abstract
Malignant epithelial cell tumor also known as cancer is a deadly disease requiring a very costly and complex treatment. Early
and accurate diagnosis of tumor plays an important role in reducing the mortality rate. With the rapid development of gene
chip technology, gene expression data based tumor classification is helpful for accurate decision-making and has achieved
great attention of researchers. Due to gene expression data having the properties of multi-class imbalance, high noise and
high-dimensional small samples, in this paper, selective ensemble of doubly weighted fuzzy extreme learning machine (SEN-
DWFELM) is presented for tumor classification. In view of good generalization performance of extreme learning machine
(ELM), feature weighted fuzzy membership is embedded in ELM for eliminating classification error from noise samples. It
considers the influence of feature importance on classification to acquiremore accurate fuzzymembership. Simultaneously, by
removing features with smaller weights it reduces the dimensionality of samples to improve training efficiency. Considering
imbalanced learning, the weighted scheme is also introduced to enhance the effect of minority class samples on classification.
Furthermore, doubly weighted fuzzy extreme learning machine (DWFELM) based selective ensemble algorithm is proposed
to make classification performance more robust. Partial-based DWFELMs are selected using binary version of an improved
whale optimization algorithm, and the selected base DWFELMs are integrated by majority voting. Finally, the proposed SEN-
DWFELM is comparedwith conventional ensemblemethods and variants of SEN-DWFELMon various gene expression data.
Experimental results show that SEN-DWFELM remarkably outperforms other competitors in accordance with classification
performance and can effectively deal with tumor diagnosis problems.

Keywords Gene expression data · Feature weighted · Fuzzy extreme learning machine · Selective ensemble · Whale
optimization algorithm

1 Introduction

Tumor includes malignant and benign tumor, where malig-
nant epithelial cell tumor also known as cancer is a hazard
to human health [1]. So accurate and timely treatment of
cancer is of vital importance in reducing the mortality rate.
Nevertheless, the same cancer caused by many factors can
have different symptoms, and it is difficult for traditional
methods to identify cancer precisely [2].With the rapid devel-
opment of gene chip technology, gene expression data based
tumor classification can acquire more accurate results and
has drawn a lot of research interests [3]. In virtue of gene
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expression data having the properties of multi-class imbal-
ance, high noise and high-dimensional small samples, it is
indispensable to carry out research on gene expression clas-
sification.

Extreme learning machine (ELM) proposed by Huang et
al. [4] is a new type of single hidden layer feedforward neural
networks (SLFNs). In virtue of good generalization perfor-
mance with a fast learning speed, ELMhas been successfully
applied to various practical application [5–8]. Inspired by the
ensemble idea [9, 10], the stability along with generaliza-
tion performance of single ELM can be further improved.
AdaBoost constructed a serial ensemble model. The weight
distributed for every training sample is updated in the light
of classification performance of the former classifiers before
every iteration [11]. Li et al. [12] proposed that weighted
ELM is put into the amended AdaBoost framework, namely
boosting weighted ELM. The weight distributed for every
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training sample from different class is updated apart. Cao et
al. [13] proposed V-ELM that completes ensemble of ELMs
and then reaches the decision by majority voting. Lu et al.
[14] proposed DF-D-ELM and D-D-ELM that select some
base ELMs by the dissimilarity measure and then integrate
the selected ELMs by majority voting.

Nowadays, gene expression classification brings extreme
challenge. Existing methods usually ignore the influence
of noises and outliers on classification and are extremely
sensitive to noises and outliers. Zhang and Ji [15] intro-
duced a fuzzy membership to solve the problem. The fuzzy
membership can be flexibly set on different applications.
Moreover, existing methods usually assume balanced class
distribution and are unfit for handling data with complex
class distribution. Data processing approach and algorith-
mic approach are two strategies handling imbalanced dataset
[16]. In data processing approach, there is mainly under-
sampling and oversampling studied for balancing the size of
every class [17, 18]. Data processing approach changes sam-
ples distribution and probably brings about losing crucial
information, whereas algorithmic approach has come into
wide use in handling imbalanced dataset without changing
samples distribution [19, 20]. Gupta [21] proposed weighted
twin support vector regression based on K-nearest neighbor
(KNN), which decreases the effect of outliers and achieves
better generalization performance. Hazarika et al. [22] pro-
posed density-weighted twin support vector machine (SVM)
considering 2-norm of slack variables and equality con-
straints, which validate the usability and efficacy of the
proposed model for binary class imbalance learning.

This paper takes an interest in algorithmic approach,
and presents selective ensemble of doubly weighted fuzzy
extreme learning machine (SEN-DWFELM) for tumor clas-
sification. Firstly, doubly weighted fuzzy extreme learning
machine (DWFELM) is constructed. ReliefF is a high-
efficiency feature optimization algorithm, which can effec-
tively cope with noisy data and missing data without limiting
data types [23]. ReliefF-based feature weighted fuzzy mem-
bership is developed to eliminate classification error from
noises and outliers. It not only considers the decrease in
the dimensionality of samples but also considers the impact
of feature importance on classification. Simultaneously, the
weighted scheme is introduced to enhance the relative influ-
ence of minority class samples and lessen the bias against
performance from imbalanced dataset.

Furthermore, binary version of an improved whale opti-
mization algorithm (IWOA) is put forward for selecting some
base DWFELMs integrated by majority voting. Whale opti-
mization algorithm (WOA) is a new meta-heuristic method
imitating hunting behaviors of humpback whales [24]. With
good search capability and simplicity property, WOA has
been widely used for tackling various optimization prob-
lems [25–29]. However, the property of WOA has still much

room for improving as described by Mafarja et al. [30].
Therefore, in this paper, population initialization based on
quasi-opposition learning strategy is adopted to accelerate
convergence. The dynamic weight and nonlinear control
parameter are proposed for coordinating the exploitation
and exploration ability. By various experiments, comparison
results show the proposed SEN-DWFELM can acquire bet-
ter classification performance and is suited for coping with
gene expression data.

The remaining section of this paper is arranged below.
Section2 discusses related works based on gene expression
classification. Section3 presents the description of prelimi-
naries. In Sect. 4, the proposed method is explained in detail.
In Sect. 5, the experimental design and comparative results of
related algorithms are presented. Finally, Sect. 6 states con-
clusions of the paper.

2 Related works

Recently, many methods have been developed for tackling
gene expression classification problems. Gao et al. [31] pre-
sented a hybrid gene selection method, where information
gain (IG) is initially used for filtering redundant and irrele-
vant genes, then SVM is used for further removing redundant
genes and eliminating noises. Selected genes are again
served as input for SVM classifier, and the proposed method
achieves superior classification performance. Rani et al. [32]
presented a two-stage gene selection method, where mutual
information (MI) is firstly employed for selecting genes
having higher information relevant to cancers, then genetic
algorithm (GA) is again employed for identifying the optimal
set of genes in the second stage. Besides, SVM is employed
for classification and the proposed method acquires higher
classification accuracy. Tavasoli et al. [33] introduced anopti-
mized gene selection method, where Wilcoxon, two-sample
T-test, entropy, receiver operating characteristic curve, and
Bhattacharyya distance are employed in the ensemble soft
weighted approach. Moreover, parameter optimization of
SVM is performed by a modified water cycle algorithm
and the proposed method shows its robustness in terms of
accuracy. Lu et al. [34] presented an efficient gene selection
method combining the adaptive GA and the mutual informa-
tion maximization (MIM), which remarkably removed the
redundancies of genes. Four different classifiers are used
for classification, then the proposed method shows reduced
genes provide higher classification accuracy. Mondal et al.
[35] used entropy-based method for differentiating between
breast tumor and normal tissue. In addition, random for-
est, naive Bayes, KNN and SVM are used for breast cancer
prediction. Experimental results show SVM obtains better
accuracy. Shukla et al. [36] introduced a new wrapper gene
selection method, where minimum redundancy maximum
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relevance (mRMR) is firstly used for selecting relevant genes
from gene expression data, then teaching learning-based
algorithm in combination with gravitational search algo-
rithm is employed to select the informative genes from data
reduced bymRMR.Naive Bayes classifier is again employed
to classify cancer, and experimental results demonstrate its
effectiveness regarding optimal number of genes and clas-
sification accuracy. Dabba et al. [37] incorporated modified
moth flame algorithm in MIM to evolve gene subsets and
used SVM for detecting cancer. The proposed method pro-
vides greater classification accuracy. All these algorithms
have focused on solving gene selection problem. However,
confrontedwith the properties ofmulti-class imbalance, high
noise and high-dimensional small samples of gene expres-
sion data, it is crucial to find an appropriate classifier for
addressing these problems.

3 Preliminaries

3.1 Weighted extreme learningmachine (WELM)

Given a training dataset comprising N different samples
(x j , z j ), where x j = [x j1, x j2, . . . , x jm]T ∈ Rm is an m×1
feature vector and z j = [z j1, z j2, . . . , z jn]T ∈ Rn is an n×1
target vector.With activation functionG(x) and hidden nodes
L, the mathematical pattern of SLFNs can be expressed as
follows.

L∑

k=1

βkG(ak · x j + bk) = z j j = 1, 2, . . . , N (1)

where ak = [ak1, ak2, . . . , akm]T means the input weight
vector for the link between the kth hidden node and input
nodes, ak · x j means the inner product for ak and x j ,
bk means the bias for the kth hidden node, and βk =
[βk1, βk2, . . . , βkn]T means the output weight vector for the
link between output nodes and the kth hidden node.

Training samples can be approximated with zero error in
SLFNs if L is identical with N. Then the formula (1) can also
be given as follows.

Hβ = Z (2)

H =
⎡

⎢⎣
h(x1)

...

h(xN )

⎤

⎥⎦

=
⎡

⎢⎣
G(a1 · x1 + b1) . . . G(aL · x1 + bL)

... . . .
...

G(a1 · xN + b1) . . . G(aL · xN + bL)

⎤

⎥⎦

N×L

Fig. 1 Algorithm for ELM

β =
⎡

⎢⎣
βT
1
...

βT
L

⎤

⎥⎦

L×n

, and Z =
⎡

⎢⎣
zT1
...

zTN

⎤

⎥⎦

N×n

(3)

where β means the output weight matrix, and Z means the
output matrix. H means the output matrix for hidden layer,
and the kth column for H indicates the output vector for the
kth hidden node concerning all of the inputs.

Nevertheless, Eq. (2) can not be fulfilled owing to L<<N
in most cases. The output weights are just calculated through
the Least Square solution β = H+Z using the Moore-
Penrose generalized inverse H+ of H [38, 39]. ELM algo-
rithm is described briefly in Fig. 1.

In light of Bartlett’s theory [40], the aim of ELM is tomin-
imize training errors and the norm of output weights. Then
an especial weight is also assigned for every sample to better
handle imbalanced dataset. Consequently, the classification
problem of weighted extreme learning machine (WELM) is
defined below.

min : L = 1

2
||β||2 + CW

1

2

N∑

j=1

ξ2j

s.t : h(x j )β = z j − ξ j

(4)

where C is penalty parameter, and ξ j = [ξ j1, ξ j2, . . . , ξ jn]T
is the training error vector of all the output nodes on the
training sample x j . As a diagonal matrix, W is associated
with every training sample and can be assigned below [41].

W1 : w j j = 1

#(z j )

W2 : w j j =
{

0.618
#(z j )

i f #(z j ) > avg
1

#(z j )
i f #(z j ) ≤ avg

(5)

where avg is the average of the samples number of all the
classes, and #(z j ) is the samples number of class z j . Based
on KKT theorem, the output weight of WELM is calculated
as

β =
{
HT

( I
C + WHHT

)−1
WZ when N < L( I

C + HTWH
)−1

HTW Z when N >> L
(6)
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3.2 Whale optimization algorithm (WOA)

WOA simulates hunting behaviors of humpback whales,
namely bubble-net feeding approach. There are mainly three
stages including searching for prey, encircling prey and
bubble-net attacking in WOA [24]. The mathematical model
is described as follows.

3.2.1 Searching for prey

In the exploration stage of searching for prey, whales seek
randomly according to respective position to performaglobal
search. This behavior is written as

−→
D = |−→F · −→

U rand − −→
U (t)| (7)

−→
U (t + 1) = −→

U rand − −→
A · −→

D (8)

where
−→
U rand is awhale position of random selection from the

present population,
−→
U is the present position for a whale, t

is the present iteration,
−→
D is the distance kept by the random

position and the present position, then the coefficient vectors−→
F and

−→
A are defined as

−→
F = 2 · −→r (9)
−→
A = 2−→a · −→r − −→a (10)

where −→r is a random vector in [0,1], −→a = 2− t ∗ (2/MN )

is decreasing linearly from 2 to 0, and MN is the maximum
iteration number.

3.2.2 Encircling prey

In the exploitation stage of encircling prey, the target prey is
just the present best solution, which offers guidance on other
solutions updating their positions. This behavior is expressed
as

−→
D = |−→F · −→

U best − −→
U (t)| (11)

−→
U (t + 1) = −→

U best − −→
A · −→

D (12)

where
−→
U best is the present best solution. If a better solu-

tion is acquired after every iteration,
−→
U best is also updated

accordingly.

3.2.3 Bubble-net attacking

Bubble-net attacking approach performs the entire exploita-
tion stage. In this stage, WOA uses a spiral-shaped path of
bubble nets to simulate attacking behaviors of humpback
whales, and this behavior is shown below.

−→
D′ = |−→U best − −→

U (t)| (13)

−→
U (t + 1) = −→

D′ · ebl · cos(2πl) + −→
U best (14)

where
−→
D′ is the distance kept by the prey and the whale, l is

a random number in [−1, 1], and b is a constant indicating
the logarithmic spiral shape.

WOA starts with a group of random solutions. |A|
determines whether WOA emphasizes the exploitation or
exploration ability.Whales update their positions byEq. (8) if
|A| ≥1, and the exploration capability is emphasized.Whales
update their positions relying on p by Eqs. (12) or (14) if
|A| <1, and the exploitation capability is emphasized. It
is assumed that there is 50% probability to move between
bubble-net attacking and encircling prey behavior. So this
behavior is formulated as

−→
U (t + 1) =

{−→
U best − −→

A · −→
D if p < 0.5−→

D′ · ebl · cos(2πl) + −→
U best if p ≥ 0.5

(15)

where p is a random number in [0, 1]. The flowchart ofWOA
is shown in Fig. 2.

4 Proposed SEN-DWFELMmodel

4.1 ReliefF algorithm

Recently, ReliefF algorithm is widely applied in feature opti-
mization [42, 43]. It selects randomly a sample xi , then
searches for k-nearest neighbor samples of xi from the same
class calledHj and thedifferent classes calledMj (e). The ini-
tial weights assigned for all the features are 0. These weights
are again calculated by the between-class and within-class
distances kept by the nearest neighbor samples. The formula
of adjusting the weights is expressed as

fv = fv −
k∑

j=1

diff(v, xi , Hj )

q · k

+
∑

e �=class(xi )

P(e)

1 − P(class(xi ))
·

k∑

j=1

diff
(
v, xi , Mj (e)

)

q · k
(16)

where P(e) is the ratio of samples in the eth class to the total
samples, P(class(xi )) is the ratio of samples in the same
class as xi to the total samples, diff(v, xi , Hj ) is the distance
between xi and Hj on the vth feature, diff(v, xi , Mj (e)) is
the distance between xi and Mj (e) on the vth feature, then
q and k are respectively the amount of the sampling and the
nearest neighbor samples.

ReliefF algorithm aims at repeating q times of the above
procedure. Finally, the weights of all the features are cal-
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Fig. 2 The flowchart of WOA

culated, and then feature optimization is completed by the
features with higher weights.

4.2 Doubly weighted fuzzy extreme learning
machine (DWFELM)

Feature weighted fuzzy membership and the weighted
scheme are introduced into ELM in this paper. Feature

weighted fuzzymembership is proposed for eliminating clas-
sification error from noises and outliers. In [15], all the
features are used for calculating fuzzy membership and are
regarded as having the same contribution to classification.
However, this method can assign high fuzzy membership for
noises and outliers to result in reducing classification per-
formance. Therefore, based on the feature set obtained by
ReliefF algorithm, the weighted distance between training
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sample and class center is developed for analyzing the impact
of feature importance to improve classification performance.

First, the samples center for every class is expressed as

dv
t = 1

Nt

Nt∑

j=1

xv
j t = 1, . . . , c (17)

where xv
j is the vth feature of the jth sample, c is the classes

number, Nt is the samples number for the tth class, and dv
t is

the samples center for the tth class. Featureweighted distance
f dt for the tth class from samples to center is expressed
below.

f dt =
√√√√

m∑

v=1

fv
(
xv
j − dv

t

)2
j = 1, . . . , Nt (18)

where fv is the weight of the vth feature, andm is the amount
of feature. Accordingly, feature weighted fuzzy membership
is presented below.

R : r j j = 1 − f dt
max( f dt ) + ε

(19)

where ε is very small and positive. As a diagonal matrix, R is
closely associatedwith every training sample. FromEqs. (18)
and (19), it can be found that featureweighted fuzzymember-
ship avoids being dominated by some uncorrelated or weakly
correlated features. In order to reduce the effect of noises and
outliers, the approach will exert a minimum fuzzy member-
ship over them.

On the other hand, the weighted scheme is designed for
enhancing the relative influence of minority class samples,
and it is presented as

W : w j j = #(c − z j + 1)

max(#z j )
(20)

where max(#z j ) is the maximum samples number for all the
classes, and #(c − z j + 1) is the samples number for class
c−z j +1. The samples number for class 1,2,. . .,c is arranged
in the order of rising.

In contrast,W -based weighted scheme has much stronger
influence on classification performance, and the reason is
explained below for binary classification problem.

ΔW =
(
#majority

max(#z j )

)
−

(
#minority

max(#z j )

)

= #majority − #minority

max(#z j )

ΔW1 =
(

1

#minority

)
−

(
1

#majority

)

= #majority − #minority

#majority × #minority

where #majority and #minority denote respectively the
amount of majority class and minority class samples. Due to
#majority > 2 and #minority > 2, #majority×#minority >

max(#z j ). So ΔW > ΔW1 and W -based weighted scheme
is superior toW1-based weighted scheme.

ΔW2 =
(

1

#minority

)
−

(
0.618

#majority

)

= #majority − 0.618 × #minority

#majority × #minority

Due to #majority > 2 and #minority > 2, #majority ×
#minority−max(#z j ) > (#majority−0.618×#minority)−
(#majority − #minority). So ΔW > ΔW2 and W -based
weighted scheme is superior toW2-based weighted scheme.
Consequently, the classification problem of DWFELM is
expressed below.

LDWFELM = 1

2
||β||2 + CW

1

2

N∑

j=1

r j jξ
2
j

s.t : h(x j )β = z j − ξ j

(21)

Relative constraint conditions are deduced below on the
grounds of KKT theorem.

∂LDWFELM

∂β
= 0 → β =

N∑

j=1

α j h(x j )
T = HTα (22)

∂LDWFELM

∂ξ j
= 0 → α j = CWr j jξ j (23)

∂LDWFELM

∂α j
= 0 → h(x j )β − z j + ξ j = 0 (24)

If N < L , by substituting Eqs. (23) and (22) into (24), the
output weight of DWFELM is calculated as

β = HT
(
R−1

C
+ WHHT

)−1

WZ (25)

If N 	 L , by substituting Eqs. (23) and (24) into (22),
the output weight of DWFELM is calculated as

β =
(
I

C
+ HTW RH

)−1

HTW RZ (26)

4.3 ImprovedWhale optimization algorithm (IWOA)

WOA has the risk of poor convergence because of diverse
exploration and less exploitation [24]. In this paper, it is indis-
pensable for searching for a well improved WOA (IWOA).
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4.3.1 Population initialization based on quasi-opposition
learning strategy

WOA does not guarantee the diversity of initialization popu-
lation because it uses the approach of random initialization.
Opposition-based learning (OBL) adopts the notion of oppo-
site point [44], and then adds opposite search to random
search for accelerating search speed. In general, OBL con-
siders both initial solutions and opposite solutions to find the
best solution faster.

In initialization phase, IWOA generates an initial popula-
tion randomly, and every solutionUj ={u j,1, u j,2, . . . , u j,D}
is expressed as

u j,k = umin,k + rand(0, 1)(umax,k − umin,k)

j = 1, 2, . . . , PN k = 1, 2, . . . , D
(27)

where umin,k and umax,k are lower and upper bound for the
kth parameter, D is the amount of optimization parameters,
and PN is the size of population. Then the opposite solution
OUj = {ou j,1, ou j,2, . . . , ou j,D} of Uj is expressed as

ou j,k = umin,k + umax,k − u j,k (28)

with the research going on, Rahnamayan et al. [45] found a
newmethodcalledquasi-opposition-based learning (QOBL).
Comparedwith OBL, solutions of QOBL acquired are better.
The quasi-opposition solution QUj = {qu j,1, qu j,2, . . . ,

qu j,D} ofUj is the point between the opposite point and the
center of search space.

qu j,k =
{
rand(yk, ou j,k) u j,k ≤ yk
rand(ou j,k, yk) u j,k > yk

(29)

where yk = umin,k+umax,k
2 , rand(yk, ou j,k) stands for a ran-

dom number in [yk, ou j,k], and rand(ou j,k, yk) stands for
a random number in [ou j,k, yk]. Finally, the initial popu-
lation retains PN individuals having better solutions from
{Uj ∪ QUj }.

4.3.2 The dynamic weight and nonlinear control parameter

The balance of the exploitation and exploration ability in
WOA mostly lies on the coefficient A. The search range is
extended for finding better solution if |A| ≥1, which deter-
mines the exploration capability of WOA. The search range
is narrowed for carrying out more careful search if |A| <1,
which determines the exploitation capability of WOA. By
observing Eq. (10), it can be found that control parameter
−→a affects

−→
A directly. However, −→a decreases from 2 to 0

linearly during the course of iterations, which can not fully
reflect the entire search process. Therefore, in this paper, non-
linear control parameter is proposed to improve convergence

performance of WOA, and it is formulated as

−→a = 1 + cos

(
π × t

MN

)
(30)

Figure 3 shows the changing trend of−→a with the increase
of the iteration number. It can be seen that nonlinear control
parameter −→a in the early stage is larger than original con-
trol parameter. It begins by the wide search range provided
with high exploration ability. Moreover, nonlinear control
parameter −→a in the later stage is smaller than original con-
trol parameter, which makes the search range getting smaller
provided with high exploitation ability. In this way, IWOA
may keep an effective balance between the exploration and
exploitation ability.

FromEq. (15), it can be seen that in the later local exploita-
tion stage WOA can stay near the optima and not find the
optima well. Inspired by particle swarm optimization (PSO)
[46], the dynamic weight is proposed to perform a fine search
near the optima, and it is formulated as

S =
(
1 − t

MN

)μ

(31)

where μ >0, and μ is a constant coefficient used to adjust
the decay extent of the dynamic weight. Correspondingly,
mathematical expressions are updated below.

−→
U (t + 1) = S · −→

U best − −→
A · −→

D (32)
−→
U (t + 1) = −→

D′ · ebl · cos(2πl) + S · −→U best (33)

From Eqs. (32) and (33), it can be seen that in the later
stage the optima is more and more attractive to the whales.
The dynamic weight is getting smaller and smaller so that
the whales can find the optima more accurately, which can
effectively improve optimization accuracy of WOA.

4.4 Selective ensemble

In this paper, selective ensemble based on binary version
of IWOA is used for handling imbalanced dataset. All the
base DWFELMs are expressed as binary strings by using a
binary encoding form (α1, α2, . . . , αi , . . . , αk), where k is
the amount of base classifiers, αi = 1 means the ith base
classifier is selected, and αi = 0 means the ith base classifier
is discarded.Motivated bydiscrete PSO [47], binary IWOA is
presented for selective ensemble of base classifier. In binary
IWOA, the solution is transformed below.

sigmoid(u j,k) = 1

1 + exp(−u j,k)
(34)

u′
j,k =

{
1 if rand(0, 1) < sigmoid(u j,k)

0 otherwise
(35)
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Fig. 3 The changing trend of
control parameter

where u′
j,k is the discretization solution. Then the integra-

tion by majority voting is adopted for the selected base
DWFELMs.

Furthermore, the fitness of selective ensemble is formu-
lated as

fitness = 1

s

s∑

j=1

ℵ(ẑ j , z j ),ℵ(ẑ j , z j ) =
{
1 if ẑ j = z j
0 if ẑ j �= z j

(36)

where ẑ j is the target predicted concerning the jth testing
sample, z j is the target expected concerning the jth testing
sample, and s is testing samples number. The ensemble per-
formance is proportional to the fitness. The pseudo-code of
IWOA is described in Fig. 4.

5 Experiments

5.1 Experimental datasets and experimental setting

To confirm the effectiveness of the proposedmodel, a number
of comparative experiments are conducted on various gene
expression data fromGEMS repository [48]. The description
of these datasets is listed in detail in Table 1.

The variation of these datasets attributes is quantitatively
from 2000 to 12533, which are normalized into [0, 1]. The
variation of these datasets classes is quantitatively from 2 to

11. The imbalance ratio (IR) is defined as

Multi-class : I R = max(#z j )

min(#z j )

Binary class : I R = #majority

#minority

(37)

All the datasets are randomly divided into training–testing
set. Based on a series of experiments, the results of classifica-
tion performance are evaluated by the average of individually
repeated 10 runs.

Experimental comparison of various approaches aremade
for evaluating the performance of SEN-DWFELM. All the
experiments are test by using MATLAB platform and win-
dows 10OSwith 8GB of RAM. For an impartial comparison
purpose, population size, the maximum iteration number
and searching ranges for hidden nodes L, penalty param-
eter C are set the same for all the approaches. Set 40
for population size and 100 for the maximum iteration.
Among comparative approaches, a grid search of hidden
nodes L on {100, 110, . . . , 990, 1000} and penalty parameter
C on {2−18, 2−16, . . . , 248, 250} is conducted, and G(x) =

1
1+exp(−(a·x+b)) is used as activation function.

5.2 Measuremetrics

Accuracy is the overall classification accuracy, which means
the proportion of the correctly classified samples to all the
samples. G-mean means the geometric mean of the pro-
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Fig. 4 The pseudo-code of
IWOA

Table 1 Description of these datasets

Datasets #Atts #Train #Test #Class IR

Leukemia2 11225 38 34 3 1.4

Colon 2000 40 22 2 1.82

SRBCT 2308 43 40 4 2.64

DLBCL 5469 43 34 2 3.05

Leukemia1 5327 38 34 3 4.22

11_Tumors 12533 120 54 11 4.5

portion of the correct classification of all the classes. The
higher G-mean is, the better classification performance of

every class is. F-measure is commonly used for evaluating
class imbalanced problems, and F-score is the average of F-
measure in all the classes. Based on above analysis, these
measure metrics are expressed as follows.

Accuracy =
∑c

j=1 TP j∑c
j=1 TP j + FN j

(38)

SP j = TP j

TP j + FP j
(39)

SR j = TP j

TP j + FN j
(40)
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Table 2 Parameters setting Datasets ELM WELM1 WELM2 WELM DWFELM SEN-DWFELM
L (C,L) (C,L) (C,L) (C,L) (C,L)

Leukemia2 500 (22,590) (232,880) (232,910) (228,800) (230,200)

Colon 980 (2−2,650) (20,990) (236,750) (2−2,520) (224,700)

SRBCT 600 (214,550) (210,900) (2−2,930) (240,890) (214,800)

DLBCL 650 (20,920) (22,940) (222,790) (224,930) (230,870)

Leukemia1 940 (210,950) (218,870) (212,560) (214,780) (210,700)

11_Tumors 940 (22,980) (22,950) (2−2,960) (226,890) (226,790)

G-mean =
(∏c

j=1
SR j

) 1
c

(41)

F-measure j = 2SR j × SP j

SR j + SPj
(42)

F-score =
∑c

j=1 F-measure j

c
(43)

where TP j is the number of the jth class samples correctly
classified as the jth class samples, FN j is the number of the
jth class samples wrongly classified as other class samples,
FP j is the number of other class samples wrongly classified
as the jth class samples, SP j is precision ratio of the jth class
samples, and SR j is recall ratio of the jth class samples.
Obviously, G-mean makes a more impartial comparison in
that G-mean is 0 if classification accuracy of a certain class
is 0 [49].

5.3 Comparison with variants of SEN-DWFELM

To evaluate classification performance of SEN-DWFELM,
it is respectively compared with ELM, learning algorithm
applying W1- weighted scheme (WELM1), learning algo-
rithm applying W2-weighted scheme (WELM2) in this
experiment. Meanwhile, SEN-DWFELM is also compared
with its variants, namely learning algorithm applying W-
weighted scheme (WELM) and DWFELM built to discuss
the importance of different sections in SEN-DWFELM.

The detailed results of parameters setting for com-
parative algorithms are shown in Table 2, then the best
parameters with regard to C and L are specified for cor-
respinding datasets. The detailed results of G-mean, F-score,
Accuracy and training time for comparative algorithms
are shown in Table 3, then the best results are indicated
in bold. From Table 3, it can be observed that SEN-
DWFELMobtains betterG-mean andF-score comparedwith
other approaches. On Leukemia2, Colon, SRBCT, DLBCL,
Leukemia1 and 11_Tumors datasets, compared with ELM,
G-mean is improved by about 8.67%, 8.52%, 4.54%, 7.55%,
7.97% and 8.49%, then F-score is improved by about 8.45%,
7.63%, 4.32%, 7.28%, 7.20% and 8.10%. The reason is
because ELM ignores minority class samples due to the

premise that the size of every class is relatively balanced.
Compared with WELM1, WELM2 and WELM, G-mean
obtained by SEN-DWFELM is improved by about 5.45%,
5.09% and 4.34% on average on all the datasets, then F-score
obtained by SEN-DWFELM is improved by about 5.61%,
5.65% and 4.82% on average on all the datasets. The rea-
son is because DWFELM is proposed by amending WELM
in the study. In DWFELM, feature weighted fuzzy mem-
bership is presented to eliminate classification error from
noise samples and improve generalization performance of
ELM. Meanwhile, the weighted scheme is also presented to
strengthen the impact of minority class samples on classi-
fication. Furthermore, DWFELM-based selective ensemble
algorithm is proposed to improve classification performance
and the stability of single DWFELM.

By observingTable 3, it can be found that SEN-DWFELM
improves Accuracy remarkably on all the datasets. Accu-
racy is improved by about 6.70%, 5.25%, 5.24%, 4.28%
and 3.31% on average compared with ELM, WELM1,
WELM2, WELM and DWFELM. The standard deviation
(SD) obtained by SEN-DWFELM is also much smaller
than other comparative algorithms. It illustrates that SEN-
DWFELM can maintain classification accuracy of majority
class samples and improve classification accuracy of minor-
ity class samples. In short, generalization performance of
SEN-DWFELM is superior to other competitors. Table 3
also shows training time obtained by measuring the average
of 10 runs for different approach, which is used for evalu-
ating the computation cost of comparative algorithms. From
Table 3, it can be seen that SEN-DWFELM consumes more
training time by learning multiple classifiers compared with
other variants. It is acceptable because the proposed SEN-
DWFELM is based on WELM with faster learning speed.

In order to analyze thoroughly the performance, F-
measure of different approach for all the datasets is shown in
Fig. 5, whose x-axis indicates the abbreviation for every class
name to observe the results more distinctly. From the results,
it can be observed that F-measure of BL class obtained by
SEN-DWFELM on SRBCT dataset is worse than some other
approaches. The reason is because F-measure of a certain
class is on increase at the expense of a sharp decline in F-
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Fig. 5 F-measure of every class on all the datasets by using different approaches

Fig. 6 Comparison of performance results

measures of other classes. From Fig. 5, it can be concluded
that SEN-DWFELM can actually strengthen classification
performance of minority class samples, and SEN-DWFELM
is suitable for not only binary classification but also multi-
class classification problems.

5.4 Comparison with other ensemble learning
methods

SEN-DWFELM is also compared with other ensemble algo-
rithms, namely V-ELM [13], DF-D-ELM, D-D-ELM [14],
AdaBoost [11], Boosting [12] and WOA-based selective
ensemble algorithm of DWFELM (WEN-DWFELM). Per-
formance results in terms of G-mean, Accuracy, F-score and

SD are shown in Fig. 6. From Fig. 6, it can be observed
that performance results acquired by SEN-DWFELM out-
performs other comparative ensemble algorithms. Based on
the dissimilarity measure, classification performance of DF-
D-ELM and D-D-ELM is superior to V-ELM, and then
classification performance of above approaches is also com-
paratively low. Especially on Colon and 11_Tumors dataset
affected by complex data distribution, G-mean is signifi-
cantly in decline. The reason is because D-D-ELM, V-ELM,
and DF-D-ELM are all based on ELM algorithm in no con-
sideration of weighted schemes. Therefore, these algorithms
neglect minority class samples and then lead to the decline of
G-mean. InAdaBoost, the importance of samples is indicated
by the weight distributed for every training sample. When
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Fig. 7 The best and average
fitness obtained by
WEN-DWFELM and
SEN-DWFELM for run #1 on
Leukemia1 dataset

samples are misclassified, the weights distributed for them
are larger. On the contrary, the weights distributed for sam-
ples correctly classified are smaller. In Boosting, the weight
distributed for every training sample from different class
is updated apart in the light of classification performance
of the former classifiers. Based on the weights distributed,
classification performance of AdaBoost and Boosting is
superior to D-D-ELM, V-ELM and DF-D-ELM. Compared
to above comparative approaches, WEN-DWFELM per-
forms better in terms of G-mean, Accuracy and F-score. It
indicates the superiority of meta-heuristics algorithms based
selective ensemble of classifiers. In all the circumstances,
SEN-DWFELM obtains the best G-mean, Accuracy and F-
score. The reason is because samples number of every class,
feature weighted fuzzy membership and IWOA-based selec-
tive ensemble of classifiers are all taken into consideration for
enhancing generalization performance of SEN-DWFELM.
As shown in Fig. 6, dispersion degree of SEN-DWFELM in
terms of G-mean, Accuracy and F-score is relatively lower,
which illustrates the stability and robustness of the pro-
posed model. From the analyses, it can be concluded that
SEN-DWFELM is suitable for both imbalanced dataset and
relatively balanced dataset.

To catch on the variation procedure of IWOA and WOA,
Fig. 7 shows the evolution of the best and average fitness
obtained by WEN-DWFELM and SEN-DWFELM for run
#1 on Leukemia1 dataset. From this figure, it can be seen that
the best fitness has no fluctuates during the evolution and the
best fitness for SEN-DWFELM is larger than that for WEN-
DWFELM. The average fitness has significant variation from
iteration 1 to 100. The average fitness for SEN-DWFELM is

Fig. 8 The confusion matrix obtained by SEN-DWFELM on DLBCL
dataset

close to the best fitness, and the average fitness for WEN-
DWFELM is smaller than that for SEN-DWFELM. This
phenomenon illustrates that the proposed IWOA can sig-
nificantly improve the convergence rate and the quality of
solution compared to WOA. The confusion matrix obtained
by SEN-DWFELM on DLBCL dataset is shown in Fig. 8,
where DLBCL denotes diffuse large B-cell lymphoma, and
FL denotes follicular lymphoma. As observed from Fig. 8,
SEN-DWFELM can classify 75 samples correctly in all 77
samples, where 1 DLBCL sample is misclassified as FL and
1 FL sample is misclassified as DLBCL. From the above
results, it can be concluded that SEN-DWFELM can effec-
tively improve diagnostic performance of tumor.
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Table 4 Results of the paired t-test

Comparisons p value

SEN-DWFELM versus ELM 0.0000160

SEN-DWFELM versus WELM1 0.0000055

SEN-DWFELM versus WELM2 0.0000048

SEN-DWFELM versus WELM 0.0000022

SEN-DWFELM versus DWFELM 0.0000530

SEN-DWFELM versus V-ELM 0.0000019

SEN-DWFELM versus D-D-ELM 0.0000049

SEN-DWFELM versus DF-D-ELM 0.0001300

SEN-DWFELM versus AdaBoost 0.0000710

SEN-DWFELM versus Boosting 0.0009600

SEN-DWFELM versus WEN-DWFELM 0.0000200

To further compare the performance, the paired t-test as
the statistical testingmethod is utilized to study the difference
among these comparative algorithms. Generally, the thresh-
old is set as 0.05, and that the p value is less than 0.05 means
the two methods are remarkably different. Then the p value
results based on classification accuracy are shown in Table 4.
As shown in Table 4, SEN-DWFELM exists evident differ-
ence with other comparative algorithms. Meanwhile, it can
be seen that SEN-DWFELM is effective in coping with gene
expression data.

6 Conclusions

Tumor classification is a complex task, which is closely
related to the properties of multi-class imbalance, high noise
and high-dimensional small samples of gene expression data.
An effective SEN-DWFELM model is proposed for tumor
classification using gene expression data in this paper. Fea-
ture weighted fuzzy membership is presented to eliminate
classification error from noise samples, and then it reduces
the dimensionality of sample by removing features with
smaller weights to improve training efficiency. The weighted
scheme is also designed to strengthen the relative impact of
minority class samples and lessen the bias against perfor-
mance from imbalanced dataset. Furthermore,meta-heuristic
method based selective ensemble concept is developed for
making classification performance more robust. The exper-
iments are conducted on gene expression data of binary
class and multi-class. Compared with its variants and con-
ventional ensemble methods, experimental results prove that
SEN-DWFELM significantly outperforms other competitors
in terms of G-mean, Accuracy and F-score. In future, the pro-
posed SEN-DWFELM model may help in practical medical
diagnosis, and neural network in combination with machine

learning techniques can be applied to achieve better classifi-
cation performance.
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