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Abstract
Clustering has been recognized as one of the most prominent functions in data mining. It aims to partition a given set
of elements into homogeneous groups without any given knowledge about the distribution of data and according to some
(dis)similarity criterion. In this paper, we propose a novel streaming algorithm, based on split technique that was introduced
to avoid retaining from the scratch and to ensure the incremental clustering aspect. It intends to cluster continuously arriving
chunks of data escorted with new mixed features within memory and time restrictions. Our proposed real-time clustering
method clusters mixed data streams using split technique in order to tackle the incremental object, attribute, and class learning
spaces at once. So, when necessary, the final distribution of the clusters has to be updated. By dint of split technique, changing
the final clusters’ distribution has led to a promising clustering model. Experiments performed on real mixed data sets show
that the proposal is efficient and outperforms the conventional k-prototypes method based on different evaluation measures.

Keywords K-prototypes · Mixed data stream · Incremental learning · Split · Merge · Dynamic clustering

1 Introduction

As being a subcategory of machine learning, the unsu-
pervised clustering algorithm has always been useful to
categorize unlabeled data instances such that according to
some particular metrics, similar elements are grouped in the
same cluster [1]. Furthermore, when objects are unlabeled
and the environment only provides inputs without desired
targets, clustering is one of the principal techniques applied
for mining data. It is arising from many fields and applied
successfully to various domains some of which are banking,
e-health, fraud detection, image segmentation and document
mining. Indeed, data clustering has been considered as a pri-
mary data mining method for knowledge discovery. On a
daily basis, large volumes of highly detailed data are contin-
uously forthcoming from sensors, devices,Web applications,
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and social media in view of data streams and its partitioning
into sets ofmeaningful sub-classes is required for propermin-
ing of intended data [2]. So, big data is not just big because it
is coming from a greater variety of sources than ever before.
It is also diverse data types and streaming data: sequences of
data elements from various sources which further need to be
analyzed and investigated. Over and above that, data stream
clustering concept is the streaming algorithm that aims to
cluster continuously arriving huge volumes of mixed data
within memory and time restrictions. On that account, the k-
prototypes algorithm is distinguished for its simplicity, speed
of convergence and scalability in the respect of clustering
mixed data types. Bearing these restrictions in mind, algo-
rithms for clustering data streams should ideally fulfill the
following requirements [3]:

• Provide timely results by performing fast and incremental
processing of data objects.

• Rapidly adapt to changing dynamics of the data, which
means algorithms should detect when new clusters may
appear, or others disappear.

• Scale to the number of objects and attributes that are
continuously arriving.

• Provide a model representation that is not only compact,
but that also does not grow with the number of objects
processed.
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So, these incoming data streams have to be learned as the
learning proceeds and without regenerating the initially con-
structed model, based on available input data, from scratch.
To do so, the most effective and well-known methods in
the context of static machine learning offer no alternative
to evolution and dynamic adaptation to integrate new data
or to restructure problems already partially learned. There-
fore, incremental learning turns into an interesting alternative
in which data becomes accessible in sequential order and is
used to update the most appropriate predictor for future data
at each stage, unlike the batch learning techniques that gen-
erate the best predictor by learning on the all training data
at once [4]. Thereby, additional information from new data
streams might be learned in an incremental way. That is to
say without having access to previously available data and
without requiring the retraining of the system on the old and
the new training data. Particularly, most of the clustering
algorithms presented in the literature are used for clustering
static databases.

Nowadays, research community has shifted focus to the
incremental databases for real-world applications and the
necessity of handling dynamically updated data points [5].
In incremental clustering method, the learning set is not
essentially available from the beginning. Actually, the data
streams are introduced as the learning takes place. Still, at
the arrival of a new data stream, the traditional clustering
methods need to regenerate their clusters from scratch. In
contrast, the incremental clustering only needs to cluster new
incoming data and then to update the current distribution of
clusters in such a way that it optimizes the clustering pro-
cess and decreases the time-consuming. Generally, the initial
number of clusters k is set by users or archives from knowl-
edge of research. However, a bad choice of k can lead to
a wrong distribution of observations. Thus, the incremental
level remains not only for observations but also for the most
appropriate cluster to the joined elements [6]. So the final
clusters’ distribution remains challenging in the context of
high-dimensional clustering algorithms.

Hence, in this paper, we are looking for developing a
scalable system that will not only learn their parameters
incrementally, but also change their structure. Into the bar-
gain, whenever it is necessary and a domain expert asks
to skip from k to k+1 clusters, it is achievable to proceed
using our developed SIK-prototypes method with applying
the split procedure. It is more flexible than an adaptive sys-
tem since it allows, in use, the addition of supplementary
clusters when necessary. More precisely, our study aims to
deal with incremental attribute, object and class learning
tasks where the learning environment is steadily changing
and the training samples become available one after another
over time. So, initial clustering and handling of incremen-
tal data points, attributes, and clusters are two important
steps of our proposed split incremental clustering approach

based on K-prototypes algorithm. This latter is an extension
of the primarily proposed IK-prototypes algorithm [18], an
increased version of the conventional k-prototypes method,
that is skillful in the incremental attribute learning context.
Indeed, the study proposed in this paper is capable of han-
dling a bulk of updates owing to the training samples, with
new added mixed attributes and with a necessity to the incre-
mental class learning space, which become available one
after another over time. In other words, our work addresses
the problem of mixed-type categorical and numerical data
in incremental unsupervised clustering learning. The goal is
building a framework that automatically handles the differ-
ences in numerical and categorical features in an emerging
data stream environment and groups them into similar clus-
ters while tackling the incremental object, attributes, and
class learning spaces. That is to deal with the shrink of
clusters and to update the final clusters’ distribution with-
out retraining from scratch using a proposed split method,
based on statistical and mathematical tools. Actually, the
main purpose of our proposed split procedure is to gener-
ate a new cluster to the actual clusters’ distribution without
retraining the whole model from scratch, when dealing with
continuously emerging mixed data streams. This would be
based on a domain expert as follows: whenever the expert
demands to move from k to k+1 clusters, we suggest to
apply the split procedure so that to maintain the incremen-
tal class learning level. Here, the expert role is to analyze
the final clusters’ distribution, their variances, densities and
shapes so as to eventually decide whenever it is better to split
the most appropriate cluster, based on two cluster evalua-
tion criteria: the Index of Dispersion and the Sum of Squared
Error.

We have tested our proposed Split Incremental
K-prototypes algorithm on a suite of benchmarks, among
both simulated and real data sets. This ended upwith promis-
ing and quite encouraging results. Comparisons have been
made with the batch method of similar nature. The quality of
the solutions offered by each method is rated in terms of run
time value and similarity between and within clusters mea-
sures. The acquired outcomes emphasize the performance of
our proposal in terms of less memory and time consump-
tion, as being a continual attribute, object and class learning
approach. The rest of the paper is organized as follows: lit-
erature reviews and related works are introduced in Sect. 2.
In Sect. 3, the conventional k-prototypes algorithm is illus-
trated.We devote Sect. 4 to present and to detail our proposal.
Section 5 displays the experimental simulations and results
on number of real mixed data sets. Finally, we conclude this
paper in Sect. 6.
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2 Retaled works

All long this Sect. 2, several related works would be illus-
trated with details. Starting from themore general topic (data
stream clustering methods) to the specific one (incremental
clustering techniques for handling mixed data) and passing
by number of split and merge algorithms into the bargain.

2.1 Data stream clusteringmethods

This subsection discusses previous works on data stream
clustering problems and highlights the most pertinent par-
titioning stream algorithms proposed in the literature to
deal with this problem. In [10], the CluStream method has
been proposed to generate approximate clusters in any user-
specified length of history from the current moment. Its
main purpose was to divide the clustering process into an
online component which periodically stores detailed sum-
mary statistics and an offline component which uses only this
summary statistics [11]. The final clusters are determined
by using a modification of a k-means algorithm. In [12],
a seeding procedure for the k-means algorithm that gives
good practical results is proposed: the StreamKM++. It is
a two-phase (online–offline) algorithm, which maintains a
short outline of the input data based on the merge and reduce
technique. The merge step is performed via a data struc-
ture, named the bucket set (buffer), whereas the reduce step
is performed by a notably different summary data structure
that is suitable for high-dimensional data: the coreset-tree
[11]. When a new data point arrives, it is stored in the first
bucket. If the first bucket is full, all of its data are moved
to the second bucket. If the second bucket is full, the two
buckets are merged resulting in 2m data points, which are
then reduced to m data points, by the construction of a core-
set tree, as previously detailed. The resulting m data points
are stored in the third bucket, unless it is also full, and then
again a new merge and reduce step is needed [12]. In [13],
the High-dimensional Projected Stream clustering method
(HPStream) was introduced where its focal objective was
to put forward the concept of projected clustering to data
streams. This algorithm is a projected clustering for high-
dimensional streaming data with higher clustering quality
compared to CluStream [10]. Overall, most of these existing
algorithms (e.g. CluStream [10], StreamKM++ [12]) parti-
tion the clustering process in two phases: (a) online, the data
will be summarized; (b) offline, the final clusters will be gen-
erated. Nevertheless, these mentioned data stream clustering
methods are not able to handlemixed data sets of both numer-
ical and categorical attributes at the same deal. Also, they do
only tackle the incremental object learning space. Therefore,
here is a requirement to promote the unsupervised clustering
algorithms with a new method, capable of learning contin-

uously joined mixed data streams in an incremental manner
and with handling all object, attribute and class spaces.

2.2 Split andmerge algorithms

A large area of research in clustering looks toward one way
of improving the clustering process such that the clusters
are not dependent from the initial identification of cluster
representation. In other words, changing the final clusters’
distribution may lead to a promising clustering model. In
this issue, most of clustering algorithms become ineffective
when provided with unsuitable parameters or applied with
data sets, composed of clusters with different shapes, sizes
and densities [14]. There are versions of adaptive clustering
algorithms that allow the regeneration of all the clustering
procedure from scratch to response to the change of data pat-
terns which is a time-consuming task [15]. In addition, those
techniques result in producing large difference in terms of the
size, the shape and the clusters’ density. So, when necessary,
the final distribution of the clusters has to be updated. Into the
bargain, the split technique was introduced in clustering to
avoid retaining from the scratch and to ensure the incremen-
tal clustering aspect. The real challenge here is to choose the
appropriate cluster that should be split. In fact, the following
several approaches have been used for the selection of the
cluster to split [16]:

• Complete partition of the clusters which results in a com-
plete binary tree.

• Split the cluster owing the highest size (number of ele-
ments).

• Split the cluster owing the highest variance.
• According to the clusters’ shapes.

However, the first split criteria completely ignores the issue
of the clusters’ quality. The second one has the advantage
of yielding a balanced tree, where the leaves have approx-
imately the same size. The variance and the shape of the
clusters are the most sophisticated criteria since they are
based on a meaningful statistical property of a cluster. This
is the reason why highest variance criteria is the most com-
monly used criterion for cluster selection [16].

On the other hand, the merge technique was introduced
in clustering to avoid the retraining from the scratch. Indeed,
merging techniques, that consists in joining the most likely
elements of two sets of data together, has become more and
more relevant since data generated at real time have increased
which makes the retraining of the result from the scratch
difficult and a time-consuming task [17]. Particularly, after
providing a new set of clusters on a new portion of data
collected over a defined time period, the merge technique
provides the possibility to update the existing clustering solu-
tion by the new added ones. As a result, some clusters will
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be updated by merging them with ones from the newly con-
structed clusters.

2.3 Incremental clustering techniques for handling
mixed data

In recent times, data mining community turned their focus
on incremental clustering of dynamically updated data points
that contains numerical as well as categorical attributes [7].
Accordingly, few are the literatures that highlight the incre-
mental clustering techniques, capable to handle mixed data
sets. The Clustering Algorithm based on the methods of
Variance and Entropy (CAVE) [8] calculates the similarity
measure for categorical attributes by entropy and numerical
attributes by variance andwhere the number of clusters is pre-
defined. At first, the dissimilarity of two objects is computed
and grouped into two different clusters and the dissimilar-
ity of remaining records is calculated and associated into the
appropriate clusters. Indeed, this current process is repeated
until the records are empty which reflects the incremental
aspect. Besides, the CAVE algorithm can stop processing at
any time and produces the output and it incrementally gets the
updated clusters whenever any new data pattern arrives at the
cluster. In [9], a Mixed Self-Organizing Incremental Neural
Network algorithm was proposed. Initially, the clusters are
applied to the neural network and, in every iteration, it will be
deleted if it does not win through the learning process. A new
distance measure has been proposed based on the frequen-
cies of two categorical features; instances are not clustered in
the similar cluster, if the dissimilarity measure of categorical
attributes is larger. Another incremental clustering algorithm
for mixed data sets is the Cluster-Feature-Based incremental
clustering method [7] that proposes a new distance measure
based on the weight-age which is automatically generated.
Using this algorithm, the incremental data objects are han-
dled in the following two phases (a) Firstly, the k-means
clustering algorithm is employed for initial clustering of the
static database; (b) Secondly, the designed distance measure
is used to generate the appropriate cluster for the incremen-
tal data points. Accordingly, their combination has proved to
be more efficient in covering both numerical and categorical
attributes. Nonetheless, all these cited methods do not deal
neither with incremental attribute learning, nor with incre-
mental class learning tasks. Expressing differently, the final
distribution of the clusters remains unchanged and the added
attributes, arriving with the joined data point are neglected.

3 Preliminaries

This section first presents the theoretical concepts of the k-
prototypes clustering algorithm, then presents the

Incremental-K-prototypes method (IK-prototypes) proposed
in [18], on which this work is based on.

3.1 Theoretical concepts of k-prototypes algorithm

In [19], the k-prototypes clustering algorithm integrates both
k-means [20] and k-modes [21] algorithms in order to deal
withmixed-type data. It iswidespread thanks to its simplicity,
adaptivity and speed of convergence.

Given a data set X={x1 . . . xn} of n data points containing
mr numeric attributes andmt categorical attributes, the focal
objective of the k-prototype algorithm is to group the data set
X into k different clusters while minimizing the following
cost function in Eq. (1):

J =
n∑

i=1

k∑

j=1

ui j d(xi − c j ), (1)

where ui j ∈ {0, 1} is an element of the partition matrixUn∗k ,
indicating the membership of data point i in cluster j ; c j ∈
C = {c1 . . . ck} is the center of the cluster j and d(xi − c j ) is
the dissimilarity measure defined in Eq. (2):

d(xi − c j ) =
mr∑

r=1

√
(xir − c jr )2 +

mt∑

t=1

δ(xit , c jt ), (2)

where xir and xit represent, respectively, the values of the
numeric attribute r and the categorical attribute t for a data
point i ; c jr represents the mean of the numeric attribute r
and cluster j , calculated using Eq. (3):

c jr =
∑|c j |

i=1 xir
|c j | (3)

where |c j | is the number of data points assigned to a clus-
ter j; c jt is the most common value (mode) for categorical
attributes t and cluster j , calculated using Eq. (4):

c jt = aht (4)

where f (aht ) � f (azt ), ∀z, 1 ≤ z ≤ mc having
azt ∈ {a1t . . . amc

t } is the categorical value z and mc is the
number of categories of categorical attribute t ; f (azt ) =|
xit = azt | pi j = 1 | is the frequency count of the attribute
value azt ; for categorical features, δ(p, q) = 0 when p=q and
δ(p, q) = 1 when p �= q.
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Algorithm 1 K-prototypes algorithm
1: Input: X: data set, k: number of clusters
2: Output: Cluster centers
3: Begin
4: Choose randomly k initial cluster centers from the data set X .
5: Attribute each data point in X to its nearest cluster center accord-

ing to Equation (2).
6: Update the cluster centers after each allocation using Equation (3)

and Equation (4).
7: If the updated cluster centers are identical to the previous ones

then terminate, otherwise, go back to step 5.
8: End.

3.2 Incremental k-prototypes method

The conventional k-prototypes algorithm is unable to deal
with incremental data sets, emerging as streaming data. Each
time a new chunk of data arrives, two procedures might
be appealed: either to retrain from the scratch that is to
build a new model and forget about the initial one which
is a time-consuming task, or just to ignore the old data and
only consider the new one which would lead to the waste of
knowledge. Into the bargain, a new incremental k-prototypes
method has been proposed in [18], namely IK-prototypes
so that to deal with both incremental object and attributes
spaces. In other words, once new instances become available
over time, particularly when these new input data streams
include in addition to the old set of features new ones,
the IK-prototypes algorithm is dedicated. Mainly, this novel
approach is an extension of the k-prototypes algorithm, that
is able to handle such dynamic object and attribute spaces,
namely the skillful incremental attribute learning task. As a
matter of fact, a primary model is built relying on the current
data available at first. Then, the learning process proceeds as
long as new instances escorted with new set of attributes, in
addition to the old ones, take place for the sake of building
a complementary model that incorporates knowledge from
the old extracted and the newly added data stream as well.
The main process of the IK-prototypes algorithm is detailed
as follows:

At the outset, assuming that we have learned on some pri-
marily accessible data using the k-prototypes algorithm, then
at the arrival of new instances escorted with new features as
streaming data, we suggest to keep in background a standard
k-prototypes algorithm which would, in this step, learn only
these incoming data. Subsequently, knowledge from both
initial and data stream models would be merged to further
acquire knowledge from the joined models and to achieve
the incremental attribute and object learning tasks. In details,
once an initial input data are available, we start with applying
the k-prototypes algorithm. The result here is k different clus-
ters as knowledge from the initialmodel inwhich each similar
instances are joined together in one cluster. Afterward, new

Algorithm 2 Incremental K-prototypes algorithm
1: Input: X : data set, k: number of clusters
2: Output: k Cluster centers
3: Begin
4: Select k initial prototypes (cluster centers) randomly from each

arriving data stream X .
5: Attribute each data point in X to its closest cluster center accord-

ing to Equation (2).
6: Update the cluster centers after each allocation using Equation (3)

and Equation (4).
7: If the updated cluster centers are identical to the previous ones

then terminate, otherwise, go back to step 5.
8: If a new data stream arrives with new attributes then go back to

step 5, Merge the resulting clusters from both models, otherwise,
terminate.

9: End.

data objects with new features penetrate as the learning pro-
ceeds as well be a data stream. At this level, we move on to
the second phase of our proposed IK-prototypes method that
consists in applying the k-prototypes algorithm only on the
newly joined data stream. Hence, we aim to create k′ clusters
and then save the obtained results as a second knowledge
from the data stream model. Consequently, the proposed IK-
prototypes will pursue with integrating the acquired results
derived from both models in order to get a coherent model
based on the following merge algorithm:

In fact, to ensure an incremental attribute learning system,
the focal idea was to merge the knowledge coming from both
initial and data stream models in such a way that each two
similar clusters are combined together while guaranteeing
the go back to the initial number of clusters k because this
work deals only with incremental object and attribute learn-
ing tasks and not with incremental class learning. For the
sake of clarity, the similarity between clusters is based on
two main indexes:

1. The Davies–Bouldin Index [22] where the similarity
measure here is based on a comparison between the
distance between clusters and the size of the clusters
themselves (values closer to zero relate to a better parti-
tion of clusters). This index is calculated using Eq. (5):

DB = 1

k

k∑

i=1

max Ri j ; i �= j (5)

where Ri j is the similarity measure, calculated as follows
in Eq. (6)

Ri j = si + s j
di j

(6)

With si is the cluster i diameter and di j is the distance
between both cluster centers i and j .
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Algorithm 3 Merge algorithm
1: Input: clusters = {c1, c2, ..ck}
2: Output: clusters = clusters = {c′

i ..k}
3: Begin
4: For each cluster Ai in {c1, c2, ck} do
5: For each cluster Bj in {c4, c5, ck′ } do
6: DB ← computeDaviesBouldin Index(Ai , Bj )

7: CH ← computeCalinski Harabasz Index(Ai , Bj )

8: end For
9: end For
10: For each cluster Ai in {c1, c2, ck} do
11: For each cluster Bj in {c4, c5, ck′ } do
12: If DB(Ai , Bj ) = Max(DB) then
13: Cluster1 ← Ai
14: Cluster2 ← Bj
15: end If
16: If CH(Ai , Bj ) = Min(CH) then
17: Cluster3 ← Ai
18: Cluster4 ← Bj
19: end If
20: end For
21: end For
22: For i in [1..k] do
23: If (Cluster1=Cluster3) and (Cluster2=Cluster4) then
24: c

′
i ← Merge(Cluster1,Cluster2)

25: Delete (Cluster1)
26: Delete (Cluster2)
27: i=i+1
28: end If
29: SSE1 ← SSE(Merge(Cluster1,Cluster2))
30: SSE2 ← SSE(Merge(Cluster3,Cluster4))
31: If SSE1 < SSE2 then
32: c

′
i ← Merge(Cluster1,Cluster2)

33: Delete (Cluster1)
34: Delete (Cluster2)
35: Else
36: c

′
i ← Merge(Cluster3,Cluster4)

37: Delete (Cluster1)
38: Delete (Cluster2)
39: end If
40: end For
41: Return clusters = {c′

i ..k}
42: End.

2. The Calinski–Harabasz score [23]: it determines the
ratio of the sum of between-clusters dispersion and of
inter-cluster dispersion for all clusters where the disper-
sion here is definitely the sum of the squared distances
between each point to its nearest cluster center. A higher
value refers to a model with better defined clusters.
The Calinski–Harabasz score s is calculated as shown in
Eq. (7):

s = tr(Bk)

tr(Wk)
∗ nE − k

k − 1
(7)

where nE is the size of the set of data E; k is the number
of clusters; tr(Bk) is trace of the between group disper-
sion matrix; and tr(Wk) is the trace of the within-cluster
dispersion matrix.

defined by the subsequent Eqs. (8) and (9):

Bk =
k∑

q=1

∑

x∈Cq

(x − cq)(x − cq)
T (8)

Wk =
k∑

q=1

nq(Cq − cE )(Cq − cE )T (9)

knowing that nq is the number of points in cluster q and
cq and cE are, respectively, the centers of the cluster q
and of E .

Nevertheless, once in a while the highest Davies–Bouldin
index and the lowest Calinski–Harabasz score may not be
the best choices for the merge procedure if they result in dif-
ferent combination of clusters. In such a case, the algorithm
will carry on merging both clusters resulting from the two
calculated indexes and ends up with maintaining the cluster
with the lowest sum of squared error (SSE) [24]. This SSE
determines the dispersion of elements of a cluster in rela-
tion with their centroids, that is the sum-squared distances of
samples to their closest cluster center.

4 Split incremental k-prototypes clustering
method for mixed data streams

The proposed method toward handling mixed large-scale
data, aswell be emerging data streams, consists of an increase
and an enlargement method to the previously proposed
IK-prototypes method [18] through incremental attribute
learning (IAL) context. Here, we cannot forget to mention
that the proposed IK-prototypes [18] are, at first, an exten-
sion of theK-prototypes algorithm [19] that does not perform
well in such a streaming mixed data environment. Accord-
ingly, in this paper we are stepping from the K-prototypes
algorithm, passing through the IK-prototypes method until
reaching our new proposed Split Incremental K-prototypes
clustering algorithm (SIK-prototypes). The major novelty of
this latter remains in suggesting a split function that aims to
achieve the third incremental space: incremental class learn-
ing task.

4.1 Definition and approach presentation

In order to improve the k-prototypes algorithm and to append
the incremental object, attribute, and class learning tasks,
the split incremental k-prototypes clustering algorithm (SIK-
prototypes) is proposed in this paper. Our proposal is an
incremental mixed data stream clustering method based on
IK-prototypes [18] method, which well performs when new
input pattern appears in addition to the old set. It is a novel
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split approach, capable of handling such dynamic object,
attribute and class spaces. In other words, the conventional
k-prototypes method does not perform well in such con-
text. Consequently, it has been extended to an IK-prototypes
method [18], mentioned in Sect. 3.2, that basically deals with
mixed attribute and object learning tasks based on the merge
technique, detailed in Algorithm 3. In our work, we are sup-
plying the IK-prototypes algorithm with a recent and crucial
property: the ability to learn new mixed features in a stream-
ing data environment with fulfilling the incremental class
learning task using a split technique. This would be in refer-
ence to an expert domain that better decides whenever it is
necessary to adjust and change the final clusters’ distribution
according some metrics.

This novel incremental class learning algorithm takes
place when continuously adding features with newly added
instances as data streams is a question. Furthermore, the
IK-prototypes [18] are an adaptive incremental learning algo-
rithm, which will learn its parameters incrementally as time
proceeds but whose structure is initialized at the beginning
of the learning procedure and remains unchanged during
the training step. Conversely to our new proposed SIK-
prototypes which is a scalable system that will not only learn
its parameters incrementally, but also change its structure. In
fact, its innovation is depicted in the split function.

The main idea is to split one cluster into two clusters
for the purpose of gaining a well-defined model with bet-
ter separation between clusters and more similarity within
clusters. As a matter of fact, at anytime and all long the
clustering task, new instances escorted with new incoming
features might emerge continuously as data streams. One
may appeal to retrain themodel from the scratch at the arrival
of these new data or just ignore the old data and only con-
sider the new ones. Nevertheless, both of these procedures
are not the best choices when dealing with these emerging
data streams for the following reasons: the former would be
time- and memory-consuming task since a relearning from
the scratch will take place each time new mixed data stream
comes out, the latter would result in losing old knowledge
from initial model. Thus, our proposal is more flexible than
the IK-prototypes since it allows, in use, the addition of sup-
plementary clusters when necessary and without retraining
from scratch and without forgetting initial/ old data, as they
become obsolete.

The focal concept behind our proposed SIK-prototypes
method, established in four steps, is shown in Fig. 1.

At the outset, we start by applying the conventional k-
prototypes algorithm on the initially available input data. The
result here is k different clusters such as similar instances
are grouped together in one cluster. Afterward, new data
objects with new mixed features penetrate as time proceeds.
At this level, we move on to the second step of our pro-
posed SIK-prototypes method that consists in applying the

k-prototypes algorithm only on the newly joined mixed data
stream. Hence, we aim to create k′ clusters using the same k-
prototypes algorithm and then save the obtained results as a
second knowledge from the data streammodel. Accordingly,
a second model have just been created once learning the new
data stream. Overall, we have gained knowledge from both
models that would be merged according to some similarity
measures using the merge process (see Sect. 3.2) and results
in the initial number k of clusters because at this step, we
have not yet dealing with incremental class learning task.
The process could end up at this level with a coherent clus-
tering result and while ensuring both incremental object and
attribute learning tasks. So, the merge procedure is applied
before starting the split function.

Thereafter, whenever the expert demands to move from k
to k+1 clusters, we suggest to apply the split procedure so
that tomaintain the third incremental level, namely incremen-
tal class learning task. This is with the objective to change
the last clusters’ distribution in order to gain a more consis-
tent model. Besides, data streams are continuously emerging
with new numeric and categorical features over time and
while the learning process. Consequently, similarity within
clusters may decrease and it would be better to elevate the
number of clusters so that to ensure a promising cluster-
ing result. Here comes the role of an expert domain, who
will resolve such problem with applying our proposed split
procedure as shown in Fig. 1. At this step, our proposed SIK-
prototypes is supposed to apply the split function that intends
to divide one chosen cluster into two. As a result, the number
of clusters increases to k+1 clusters. Here is our proposed
SIK-prototypes algorithm:

Algorithm 4 Split Incremental K-prototypes algorithm
1: Input: X : data set, k: number of clusters
2: Output: k+1 Cluster centers
3: Begin
4: Choose randomly k initial prototypes from each arriving data X
5: Attribute each data point in X to its nearest cluster center accord-

ing to Equation (2).
6: Update the cluster centers after each allocation using Equation

(3) and Equation (4).
7: If the updated cluster centers are identical to the previous ones

then terminate, otherwise, go back to step 5.
8: If a new data stream arrives with new attributes then go back

to step 5, Merge the resulting clusters from initial and data stream
models, otherwise, terminate.

9: If the expert asks to go from k to k+1 clusters then, Split the
clusters resulting from merge procedure, otherwise, terminate.

10: End.

First, the input data set is randomly divided into m chunks
of data, namely data streams. Then, each chunk is processed
independently in the learning phase using the conventional
k-prototypes method. The resulting k cluster centers are
extracted from each chunk and the number of clusters is pre-
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Fig. 1 The proposed Split
Incremental K-prototypes
through IAL context

defined. Thereafter, the merge procedure processes the set
of gained clusters from both initial and data stream mod-
els in order to generate the final cluster centers. This step
allows to ensure the IAL task, which represents the focal
objective of the firstly proposed IK-prototypes [18] method.
Consequently, we first gained knowledge from the merge
procedure, namely k cluster centers resulting from all acces-
sible data at that time. The learning process could end up at
this level with a coherent clustering result. In the following,
we aim to fulfill the final incremental level: the incremental
class learning step. To do so, whenever it is necessary and
the expert asks to move from k to k+1 clusters, the split pro-
cedure takes place on the resulting knowledge of the merge
process. Notably, we have to choose the most appropriate
cluster to split according to some specific criteria. One may
ask here: how can we split the integrated results derived from
bothmodels in order to get a coherentmodel?We are going to
deeply explain the split process in the next subsection which
represents the fourth step of our proposal.

4.2 Split procedure

The main novelty in this proposed SIK-prototypes method
is the development of a split procedure that effectively per-
forms the class-incremental learning task in a streaming data
context. Accordingly, it avoids retraining from scratch when
learning continuously emerging mixed data streams. This
is accomplished instead of regenerating all the clustering
procedure from scratch to response to the change of data pat-
terns, which is a time- and memory-consuming task. More
precisely, if the final clusters’ distribution is composed of
clusters with different densities, shapes and sizes, it is bet-
ter to be changed. In our proposal, this problem is solved
based on our proposed split function. Indeed, to ensure an
incremental class learning system, we have proposed to split
the most appropriate cluster from knowledge, coming from
both initial anddata streammodels aftermerge, using the split

algorithm.More to the point, once a new data stream emerges
with more added mixed features, it is possible through our
proposed SIK-prototypes, to learn it without retraining from
the scratch and without forgetting the old data which have
been already learnt.

How is that performed? Firstly, we have suggested to
merge clusters resulting from both initial and data stream
models such that every couple of similar clusters are com-
bined together and with ensuring to return to the initial
number of clusters k.Afterward, a split procedure takes place.
Its purpose remains in changing thefinal clusters’ distribution
whenever needed, with reference to an expert, since data gen-
erated at real-time has increased. This makes the retraining
of the clustering result from the scratch difficult and a time-
consuming task. Hence, in such situations it is necessary to
split a chosen cluster in two in order to accomplish the incre-
mental class learning task. Whenever the expert demands to
move from k to k+1 clusters, we suggest to apply the split
procedure so that to maintain the incremental class learning
level. Here, the expert role is to analyze the final distribution
of clusters, their variances, densities and shapes to eventu-
ally decide whenever it is better to split the most appropriate
cluster.

In other words, the focal objective of our proposed split
procedure is the generation of a new cluster to the actual clus-
ters’ distribution without retraining from scratch. Aiming to
showcase the split algorithm, the main challenge remains in
selecting the most suitable cluster to be split from the present
distribution. In the literature, there are multiple criteria that
can be the base of a split procedure. The variance, the density
and the shape of the clusters are the most sophisticated crite-
ria since they are based on a meaningful statistical property
of a cluster. Between those, we have opted for the most sig-
nificant ones in our unsupervised clustering context in terms
of dispersion of elements between and within clusters. They
are presented as follows:
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• Sum of Squared Error (SSE): the SSE value is the clus-
ter inertia that computes the sum of squared distances
of samples to their closest cluster center. By the same
token, it is used as an evaluation criteria for clustering
algorithms where the more it is closer to zero, the more
clusters are well defined and its calculation is as follows
in Eq. (10):

SSEx∈C =
n∑

i=1

m∑

j=1

(xk j − c j ) (10)

where c j is the center of the cluster j.
• Index of Dispersion (ID): as indicated by its name, the
it quantifies either if data objects are close to their clus-
ter center or if they are broadly dispersed [25]. ID is also
knownasvariance tomeanvalue, a commonused index in
statistics and probability theory, that calculates the square
of the standard deviation σ divided by the mean of the
observation μ. Accordingly, a high ID value indicates
that data points are spread out over a wider range of val-
ues. Hence, we are looking for a lowest ID score. It is
calculated using Eq. (11):

I Dx∈C = σ 2

μ
(11)

where the standard deviation σ is calculated in Eq. (12):

σ =
√

1

N

∑n

i=1
(x j − μ)2 (12)

Specifically, in our study the split process is based on three
consecutive steps as shown in Fig. 2, organized as follows:

1. Calculate the SSE and the ID of each present cluster.
2. Select the cluster with the highest SSE and ID scores at

the same deal.
3. Split the selected cluster using the k-prototypes algo-

rithm.

However, the highest SSE and ID scores may result in dif-
ferent combination of clusters. It means that one cluster may
not have the maximum SSE and ID values at once. In this
case, our proposed split algorithm is supposed to carry on
with comparing the size of the highest SSE score cluster and
the highest ID score one. Consequently, the chosen cluster to
be split is the one with the highest size.

Fig. 2 Workflow of the split procedure

Algorithm 5 Split algorithm
1: Input: clusters = {c1, c2, c3}
2: Output: clusters = {c′

1, c
′
2, c

′
3, c

′
4}

3: Begin
4: c

′
= c

5: For each cluster c
′
i in {c′

1, c
′
2, c

′
3} do

6: SSE ← computeSSE(c
′
i )

7: I D ← computeI D(c
′
i )

8: end For
9: For ( j=1, j <= k) do
10: If SSE(cli ) = Max( SSE(c

′
1), SSE(c

′
2), SSE(c

′
3) ) then

11: I ndiceS S E ← j
12: end If
13: If I D(cli ) = Max( ID(c

′
1), ID(c

′
2), ID(c

′
3) ) then

14: I ndiceI D ← j
15: end If
16: end For
17: If (I ndiceS S E = I ndiceI D) then Split (clI nd i ceS S E )
18: Else IF (cl.Size(clI nd i ceS S E ) > cl.Size(clI nd i ceI D )) then

Split (clI nd i ceS S E )
19: Else
20: Split (clI nd i ceI D )
21: end If
22: Return clusters = {c′

1, c
′
2, c

′
3, c

′
4}

23: End.

Now, that the split algorithm has been presented as shown
in Algorithm 5, we move on to clarify some functions which
have been used there.

• Compute (cluster):

– Input: cluster i .
– Output: SSE and ID scores of corresponding cluster.

Notably, the function Compute (cluster) is the fundamen-
tal and the key function of the split procedure since it has
a major impact on the choice of the cluster to be split.
In fact, it computes the SSE and the ID scores of each
cluster. Suitably, it determines the cluster corresponding
to the highest SSE and ID values, which further will be
split.

• Max (SSE / ID):

– Input: clusters of calculated indexes.
– Output: highest cluster index.
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The function Max (SSE/ID) is used in our proposed
split algorithm to search appropriately into the clusters’
SSE and ID calculated values. Accurately, it retrieves the
largest SSE and ID scores.

• Split (cluster):

– Input: cluster i.
– Output: two sub-clusters i′ and j′.
After defining the most suitable cluster to be split, we
pursue with applying the function Split (cluster) that con-
sists in running the simple k-prototypes algorithm with
number of clusters k=2.

• cl.size(cluster):

– Input: cluster i .
– Output: size of the corresponding cluster.

This function returns the size of a given cluster, means
its number of elements.

• I ndiceSSE , I ndiceI D are two variables in which we
save, respectively, the highest SSE and ID scores.

5 Simulation experiment and analysis

In this section, several experiments are carried out to compare
SIK-prototypes with firstly proposed IK-prototypes [18] as
well as with conventional k-prototypesmethod. Indeed, there
does not exist prior work for comparison that tackles the
triplet incremental object, attribute and class learning spaces
when dealingwithmixed data streams using the k-prototypes
algorithm.

5.1 Simulation environment

We have implemented our proposed Split Incremental K-
prototypes algorithmusing python3.7 language and executed
on an Intel i5 processor (2.5 GHz) with 4 GB memory run-
ning on windows 7 operating system. In order to evaluate the
effectiveness and the potency of our algorithm, we used the
proposed SIK-prototypes algorithm and additionally the con-
ventional k-prototypes algorithm to cluster the following six
real-world mixed data sets: Credit Approval, Abalone and
Chess (King-Rook vs. King) data sets derived from U.C.I
repository [26], German Credit and sf-police-incidents data
sets imported from openML [27] and finally Used Cars data
set derived from Kaggle.1 Table 1 illustrates a summary
details of the used real mixed data sets.

• German Credit (GC): intends to classify German peo-
ple according to their credits. People could be arranged
as owing good or bad credit risks.

1 https://www.kaggle.com/austinreese/craigslist-carstrucks-data.

• Credit Approval (CA): concerns credit card applica-
tions in which all attribute names and values have been
changed to meaningless symbols in order to protect the
confidentiality of the data.

• Chess (KRK): is a chess end-game data set for white
king and rook against black king. It was generated by
Michael Bain and Arthur van Hoff at the Turing Institute,
Glasgow, UK.

• sf-police-incidents (SFPI): is about incident reports
from the San Francisco police department between Jan-
uary 2003 and May 2018.

• Abalone (Ab): is a real mixed data set which concerns
the prediction of the age of abalone from physical mea-
surements.

• Used Cars (UC): is a data set which includes every used
vehicle entry within the United States on Craigslist, the
world’s largest collection of used vehicles for sale.

Taking as an example the GC data set, composed of 690
instances and 15 attributes. To start with, we introduce an
input data composed of 400 objects and 10 attributes. Then,
a data stream came to join the learning process with 290
instances and 15 attributes (10 old attributes and 5 newmixed
ones). Conceptually, our proposed SIK-prototypes method
keeps learning these new added samples. In fact, it is sup-
posed to apply the conventional k-prototypes algorithm only
on this recently joined data stream, escorted with new mixed
features. Then, knowledge from both models will be merged
until reaching the initial number of clusters so that to achieve
both incremental object and attributes learning tasks. Finally,
if the expert demands, the split procedure will be applied in
order to establish the incremental class learning task. Indeed,
according to the mentioned criteria in Sect. 4.2, one chosen
cluster will be split in two clusters such that each similar
points will be joined together in one cluster. Therefore, more
coherent clustering results are made up.

5.2 Performance evaluation criteria

While assessing the performance of an unsupervised clus-
tering algorithm is not as trivial as counting the accuracy,
the precision and the recall of a supervised classification
algorithm, several metrics were disposed to be used in this
context [28]. Thus, we evaluate the efficiency of our proposal
using indices that estimate the cluster cohesion (within or
intra-variance) and the cluster separation (between or inter-
variance) and combine them to compute a qualitymeasure, in
which the combination is performed by a division (ratio-type
indices) or a sum (summation-type indices). More precisely,
we have chosen to examine our final clustering model based
on indices that are responsible to estimate the effectiveness
of our proposal in an unsupervised clustering context where
data streams are forthcoming with unlabeled data objects.
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Table 1 Summary details of
used real mixed data sets

Data set Number of object Number of attributes Acronym

Used cars 150 3 numeric, 3 categorical UC

Credit approval 690 5 numeric, 10 categorical CA

German credit 1000 7 numeric, 13 categorical GC

Abalone 4177 7 numeric, 1 categorical Ab

Chess 28056 2 numeric, 4 categorical KRK

sf-police-incidents 538638 4 numeric, 3 categorical SFPI

Also, we have attributed an up or down arrow to each abbre-
viation in which the down arrow denotes that a lower value of
that index reflects a better partition between clusters and/or
the lower index is better.

1. The Sum of Squared Error (SSE ↓): it gives a feedback
about the inter-cluster and the intra-cluster similar-
ity while measuring the squared errors between each
instance and its closest cluster center. It is defined by
Eq. (10).

2. The Davies–Bouldin Index (DB↓): it calculates the aver-
age similarity between clusters. Conceptually, a lower
DB value relates to a model with better defined clusters.
DB is calculated using Eq. (5)

3. The run time (RT ↓): Starting from the beginning of the
learning procedure, the run time is the time required to
achieve the final clustering result: objects are distributed
between k clusters.

In fact, while the SSE measure highlights the better distri-
bution between clusters with calculating both similarities
between and within clusters, the DB comes to emphasize
and accentuate the SSE results. This is explained by the fact
that the DB also computes the average similarity between
clusters. Accordingly, these two evaluation measures are
mutually complementary to asses the quality of the final clus-
tering result. On the other hand, the run time is essential to
estimate the time needed to incrementally learn these stream-
ing data.

5.3 Results analysis and discussion

In this subsection, we go forward to detail our experimental
results and further discuss and analyze them. So, we compare
the performance of the proposed SIK-prototypesmethod ver-
sus the conventional k-prototypes method and also versus
the earlier proposed IK-prototypes method in [18]. Actu-
ally, in the present literature, there does not exist proposed
methods to compare with that tackle the triplet incremental
object, attribute and class learning spaces at the same deal.
In greater detail, our proposed SIK-prototypes algorithm is

able to deal with continuously emerging mixed data streams
incrementally without retraining from the scratch and by
accomplishing the incremental attribute and instance tasks.
Furthermore, whenever it is necessary and the expert asks
to skip from k to k+1 clusters (as detailed in Sect. 4.2), it is
achievable to proceed using the SIK-prototypes method with
applying the split procedure. The advantage of our proposal
is the ability to learn incrementally new mixed features with
assuring the incremental attributes, object and class learning
tasks without retraining all the model from the scratch and
without forgetting the old data. Contrary to the conventional
k-prototypes method that requires to retrain from the scratch
once new chunks of data become accessible over time, with
new added attributes than the old set ones. As a consequence,
this latter necessitates to firstly stop the program, then to fuse
the initial input data and the new emerging data stream with
its new added attributes and finally to retrain from scratch
with re-applying the k-prototypes algorithm with number
k + 1 of clusters. Therefore, it is crucial and essential to pro-
vide the memory and time restrictions to do so because the
conventional k-prototypes method needs the complete input
data being loaded into the memory. Thus, it highly requires
memory space and time-consuming. We used the real mixed
data sets (illustrated in Sect. 5.1) in this experiment and
applied the SIK-prototypes, the IK-prototypes [18] and the
conventional k-prototypes methods on them. The results are
reported in Table 2

5.3.1 Run-time results analysis

Table 2 exhibits the results of comparison between the
conventional k-prototypes, the IK-prototypes and the SIK-
prototypes algorithms based on the previously mentioned
evaluation criteria. From above, the run-time experiment
results mainly shows the duration rounds from the begin-
ning of the learning process until reaching the final clustering
results. Looking at Table 2, we can observe the progression
of our proposed SIK-prototypes in terms of time process-
ing compared to the conventional k-prototypes and to the
IK-prototypes algorithms since the time required for its exe-
cution is almost less by half than the time needed for the
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Table 2 The SSE, DB index
and run time (in seconds) values
of Conventional K-prototypes
vs. Incremental K-prototypes vs.
Split Incremental K-prototypes
methods per data set

Data sets Conventional k-prototypes Incremental K-prototypes SIK-prototypes
SSE DB RT SSE DB RT SSE DB RT

UC 2.673 2.437 1.621 1.981 2.032 1.131 1.750 1.834 0.970

CA 4.620 3.006 10.127 4.498 2.541 5.237 3.959 2.716 6.777

GC 2.902 2.860 20.765 2.477 2.701 11.248 1.887 2.450 12.595

Ab 2.611 0.818 60.034 1.980 0.791 13.061 2.232 0.745 41.912

KRK 3.281 2.982 450.119 3.022 2.646 2.672 3.020 2.300 327.010

SFPI 4.560 3.640 15728.130 3.514 2.534 10807 3.620 2.561 9954.520

k-prototypes execution. The offset here is proportional to
the size of the data set. Likewise, the IK-prototypes outper-
forms the conventional k-prototypes in terms of time needed
for its implementation. We mention as an example, the GC
data set where the time needed for the k-prototypes, the IK-
prototypes and the SIK-prototypes are respectively 20.765s,
11.248s and 12.595s. Besides, for the CA data set, the SIK-
prototypes method needs time execution 6.777s. However,
the conventional k-prototypes and the IK-prototypesmethods
end up their learning process through 10.127s and 5.237s.
What is important to mention here is that the firstly pro-
posed IK-prototypes deals only with attribute and object
learning tasks. While our proposed SIK-prototypes tackles
the triplet incremental attribute, object and class learning
tasks at the same deal based on the proposed split function.
Hence, we can admit that the run time criterion emphasizes
our proposal’s scalability and speed of convergence. Add
it to that, as this is a continual learning approach, we can
observe the progression on the performancemeasures as well
as memory consumption through time of our new proposed
SIK-prototypes.

5.3.2 Sum of squared error and Davies–Bouldin index
results analysis

Actively, we highly prioritize engaging our research to
show how it capes with the weaknesses of the conven-
tional k-prototypes clustering algorithm as well as with the
IK-prototypes method. Therefore, we detailed the experi-
mental results of the SSE and DB index criteria for all
used data sets in Table 2. More to the point, we are look-
ing for the lowest SSE and DB index scores, which lead
to better defined models. For better clarification, we cite
for instance the UC data set where the SSE values move
from 2.673 to 1.981 to 1.750 and the DB values go from
2.437 to 2.530 to 1.834 using respectively the conventional
k-prototypes, the IK-prototypes method and our proposed
SIK-prototypes method. Subsequently, let us acknowledge
that the SSE and DB index values also enhance our proposed
SIK-prototypes effectiveness and capability of handling the
three dimensional incremental spaces. As well, the different

Fig. 3 The SSE results of Conventional K-prototypes vs. IK-prototypes
vs. SIK-prototypes per data set

ranged results of correspondingly SIK-prototypes and IK-
prototypes are explained by the fact that they do not tackle
the same deal. Thus, we can not prioritize one instead of
another since the IK-prototypes tackles only the incremen-
tal instance and feature spaces. Whereas our new proposed
SIK-prototypes tackles the incremental instance and feature
and class spaces at once.

From the results exposed in this Table 2, we can notice
that the SIK-prototypes outperforms the conventional k-
prototypes method in terms of stability of clusters while
providing the lowest SSE values for all used data sets. Fig-
ure3, that is reproduced fromTable 2, underlines the fact that
our proposed SIK-prototypes outperforms the conventional
k-prototypes as well as the IK-prototypes with establishing
a model with better defined clusters. In fact, it the gained
lowest SSE scores, knowing that the lower SSE value is, the
maximum coherence within clusters and the minimum sim-
ilarity between clusters are.

Moreover, the DB index results, detailed in Table 2, con-
firm that our proposed SIK-prototypes method outperforms
the conventional k-prototypes method since it gained the
smallest DB index scores and further highlight our proposal’s
relevance in incremental attribute, object and class learn-
ing contexts. Likewise, as depicted in Fig. 4, SIK-prototypes
approach represents the most appropriate feature, object, and
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Fig. 4 The DB index results of conventional K-prototypes vs. IK-
prototypes vs. SIK-prototypes per data set

class learning approach in terms of defining a more coher-
ent model with higher similarity within clusters while owing
the smallest DB index values. As well, this latter relates to a
model with better separation between the clusters and with
more similarity within clusters.

All in all, our proposed Split Incremental k-prototypes
method emits clusters which respect better basics of clus-
tering with regard to the dispersion of objects between and
within clusters than the conventional k-prototypes clustering
algorithm and sometimes than the IK-prototypes method.
Besides, the measured evaluation criteria accentuate the
efficiency and the performance of the new proposed SIK-
prototypes method when applied to mixed large scale data
compared to conventional k-prototypes method. In fact, SIK-
prototypes needs less run time as well as less memory
consumption to get final results because it is a continual and
incremental learning approach. Means that SIK-prototypes
does not exhibit to store the whole input data from the begin-
ning of the learning process. Also, according to the SSE
and DB index results, SIK-prototypes leads to a model with
increased similarity within clusters in such dynamic object,
attribute and class learning space. In the same way, our pro-
posal exceeds the k-prototypes algorithm with generating a
better partition of clusters where elements of the same cluster
are the most similar and elements from two different clusters
are as dissimilar as possible.

6 Conclusion

In this paper,we have developed a new incremental clustering
method for large-scale mixed data, arriving continuously as
data streams, using the k-prototypes algorithm based on the
split technique. Our proposal provides a simple, transparent
and efficient environment to ensure the dynamic incremen-
tal object, mixed attribute and class learning spaces at the

same deal. The experiment results confirm that our method
is scalable and able to upgrade the efficiency of existing k-
prototypesmethodswhen dealingwithmixed streaming data.

Encouraged by such promising results, we leave for future
work to tackle the decremental class learning task and further
to define when it is necessary to do so. Another direction for
future work is to extend the application of the presented SIK-
prototypes method to the medicine and healthcare fields.
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