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Abstract
Glaucoma is an optic neuropathy, which leads to vision loss and is irreversible due to damage in the optic nerve head
mainly caused by increased intra-ocular pressure. Retinal fundus photography facilitates ophthalmologist in detection of
glaucoma but is subjective to human intervention and is time-consuming. Computational methods such as image processing
and machine learning classifiers can aid in computer-based glaucoma detection which helps in mass screening of glaucoma.
In this context, the proposed method develops an automated glaucoma detection system, in the following steps: (i) pre-
processing by segmenting the blood vessels using directional filter; (ii) segmenting the region of interest by using statistical
features; (iii) extracting the clinical and texture-based features; and (iv) developing ensemble of classifier models using
dynamic selection techniques. The proposed method is evaluated on two publically available datasets and 300 fundus images
collected from a hospital. The best results are obtained using ensemble of random forest usingMETA-DES dynamic ensemble
selection technique, and the average specificity, sensitivity and accuracy for glaucoma detection on hospital dataset are 100%,
respectively. For RIM-ONE dataset, the average specificity, sensitivity and accuracy for glaucoma detection are 100%, 93.85%
and 97.86%, respectively. For Drishti dataset, the average specificity, sensitivity and accuracy for glaucoma detection are 90%,
100% and 97%, respectively. The quantitative results and comparative study indicate the ability of the developed method,
and thus, it can be deployed in mass screening and also as a second opinion in decision making by the ophthalmologist for
glaucoma detection.
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1 Introduction

Glaucoma is a leading cause of irreversible blindness, and
the manifestation of glaucoma is unknown until it reaches
the advanced stage. Hence, periodic eye checkup is the sole
way of detecting the disease and preventing further blind-
ness. Glaucoma is defined as a progressive optic neuropathy
that damages the structural appearance of optic nerve head
also known as optic disk (OD). The major cause of glau-
coma is a decrease in outflow of the intra-ocular fluid called
as aqueous humor in the eye [1–3]. Glaucoma prevalence
is likely to increase by 112 million by 2040 worldwide [3].
Fundus photography of the optic nerve head is a non-invasive
way used by ophthalmologist for observing the changes such
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Fig. 1 Fundus image of a normal eye with annotation [4]

as cup-to-disk ratio (CDR) and loss in the neuro-retinal rim
(NRR) area which are caused due to glaucoma [3, 4]. The
area of optic cup (OC) to the area ofOD is known asCDR [1].
NRR area is the area present between OD and OC. The thin-
ning of NRR area is also observed as glaucoma advances [1].
Figure 1 shows the fundus image of a normal eye with parts
labeled. Manual assessment of the fundus images is subjec-
tive to inter- or intra-observer variations.Hence, development
of an automated detection system which processes the fun-
dus images for quantifying glaucoma is of great advantage
in mass screening and providing a second opinion for oph-
thalmologist during diagnosis.

2 Literature review

The recent methods described in the literature for develop-
ment of a glaucoma detection system can be divided into
segmentation- and non-segmentation-based methods.

Segmentation-based methods involve extraction of clin-
ical features such as CDR and NRR area. Dela et al. [5]
applied active contours andHough transform in the red chan-
nel to segment OD. The displacement of vessels in the OD is
estimated using chessboard metric to detect glaucoma. The
method obtained an accuracy of 92% for a hospital dataset of
67 images. Although the method developed a unique feature
such as displacement of vessel, it lacked themain clinical fea-
ture CDR. Ashish et al. [6] used adaptive threshold obtained
using intensity of pixels for segmentation ofODandOC. Fur-
ther, CDR and NRR features are calculated and the accuracy
obtained is 94% for a hospital dataset of 67 images. The seg-
mentation method is not designed to exclude artifact, which
in some images is segmented as a part of OD. Soorya et al.
[7] developed a method which tracks the bends in the vessel
present inside the OD in order to obtain the OC contours. The
OD contour is obtained using thresholding and point contour
joining. The method used CDR as a feature for glaucoma

detection and obtained an average accuracy of 97% for 225
images, whichwere collected from a local hospital. Although
themethod achieved a good accuracy, theOC contours can be
detected only in images having high vessel contrast. Pardha
et al. [8] performed OD segmentation using region-based
active contour and OC segmentation using clustering. The
method is tested on 59 images obtained from a hospital. The
method obtained an average dice coefficient of 97% and 87%
for OD and OC, respectively. The method does not report
glaucoma detection accuracy. Kasu et al. [9] segmented OD
and OC using fuzzy-C-mean (FCM) and Otsu thresholding
method. CDR and energy-based wavelet features were fur-
ther estimated for glaucomadetection.Theobtained accuracy
for glaucoma detection is 97% using artificial neural network
(ANN). Although the method achieved good detection result
on 86 images obtained from a hospital, it needs to evaluate
its OD and OC segmentation algorithm for clinical imple-
mentation. Soltani et al. [10] used canny edge detection for
obtaining OD and OC contours. A fuzzy engine is devel-
oped which considers CDR along with patient’s health data
for classifying the fundus images as normal or glaucoma.
The obtained classification accuracy is 96%. Chia et al. [11]
developed a fully convolutional network in order to obtain
the OD and OC contours. Along with the CDR feature, the
patients’ health data was considered for glaucoma detection.
Themethod is implemented on a hospital dataset of 2554 fun-
dus images. The accuracy of correct classification is 91%.
The main limitation of this method is the need of a large
dataset for training the model and resizing the image in order
to reduce the computation time. Julian et al. [12] segmented
OD and OC by developing a framework based on convolu-
tion neural network (CNN). The output of the filters is trained
using a soft max logistic model and is subjected to convex
hull and graph cut. For final segmentation, CDR is estimated
for glaucoma detection. The method achieved a dice coef-
ficient of 97% and 87% for OD and OC, respectively. The
method is evaluated on Drishti dataset which is publically
available for research. Nevertheless, the segmentation results
achieved are good, and the optimization of parameters is an
issue for reducing computation complexity. Perdoma et al.
[13] developed a three-step CNN model. In the first step,
CNN with 15 layers is developed for OD and OC segmenta-
tion. In the second step, CNN with 12 layers is designed for
extracting morphometric features from the segmented OD
and OC. In the third step, CNN is trained for classifying the
fundus images based on the features extracted. The method
obtained a classification accuracy of 89% on Drishti dataset.
Sevastopolsky et al. [14] developed OD and OC segmenta-
tion method based on U-Net. U-Net consists of contracting
and expansive path. The CNN architecture is used to build
the contracting path, and the image information is merged in
expansive path. The dice coefficient for OD and OC is 94%
and 85%, respectively. The segmented OD and OC are used
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to compute CDR. The glaucoma detection accuracy is not
reported. Thakur et al. [15] developed a hybrid model con-
sisting of adaptive FCM and level set for segmenting OD and
OC. The accuracy of OD and OC segmentation for Drishti
dataset is 93% and 92%, respectively. The main limitation
of this method is over- and under-segmentation for low-
contrast fundus images. Accuracy of glaucoma detection is
not reported. Cheng et al. [16] used super-pixel-based classi-
fication of OD and OC. The OD boundary is initialized using
features based on histogram and statistics. For OC bound-
ary, the local information is used along with histogram and
statistics. The area under curve achieved for glaucoma detec-
tion is 0.80 on 650 images collected on a hospital dataset.
Civit et al. [53] selected U-Net as a segmentation network
and developed functions that implement generalized U-Net
which is adapted to execution of tensor processing unit for
service based on cloud. Tulsani et al. [54] segmented OD and
OC using customU-Net++ architecture whichminimizes the
loss of context and image local information by employing the
encoder, decoder, and skip connection. The study shows that
U-Net is effective for the process of segmentation even for
a small data. For glaucoma detection, the method achieved
an accuracy of 94% and 91% for Drishti and RIM dataset,
respectively. When using a U-Net model, for extraction of
feature and restoration it executes repeated convolution func-
tions and thus requires several trainable factors.

Non-segmentation-based methods involve extraction and
classification of features based on how spatially the color
or intensity of the pixels is distributed in the image. Singh
et al. [17] localized OD using bit plane analysis and extracted
wavelet features. Evolutionary attributes and principal com-
ponent analysis (PCA) are used as feature selection methods.
The obtained accuracy is 94% using support vector machine
(SVM) classifier for 63 images collected from a local hospi-
tal. The accuracy can be further improved by adding clinical
features. Maheshwari et al. [18] extracted features such as
Kapoor, Reyni, fractal dimension and Yager. Least square
SVM is used for classifying the extracted features. The accu-
racy obtained is 95% for a hospital dataset of 488 images.
Kevin et al. [19] developed a glaucoma detectionmodel using
higher-order cumulant (HOS) features. Linear discriminant
analysis is used as a feature reduction method. These fea-
tures are used to train naïve Bayes (NB) and SVM classifier
for classification. The method was tested on 272 images col-
lected from a hospital and achieved an accuracy of 92%. The
detection accuracy can be further improved by using clinical
features such as CDR. Rajendra et al. [20] extracted features
such as kurtosis, Kapoor entropies, energy, mean, Reyni,
Shannon and variance from theGabor transform coefficients.
These features are ranked using t-test. Themethod obtained a
classification accuracy of 93% on 510 images collected from
a hospital. Haleem et al. [21] developed an image feature
model, which uses vascular convergence to locate OD. The

localized OD is used to extract Gaussian, wavelet, gradient
and Gabor features. These features are used to train the SVM
classifier. Themethod obtained an accuracy of 94%on aRIM
dataset,which is a publically available dataset. The redundant
features are reduced since they are extracted from OD. Dua
et al. [22] trained Lib SVM, sequential minimal optimiza-
tion classifier with wavelet-based features. SVM achieved a
higher accuracy of 93% on 63 images collected from a hos-
pital. The method needs to be tested on a large dataset for
clinical implementation. Raghavendra et al. [23] proposed an
18-layer CNNmodel which maps the pixels in a hierarchical
form to classify the fundus images. The model is trained on
a hospital dataset of 1426 images and achieved an accuracy
of 98%. Although the method achieved a good classification
accuracy, the method cannot be generalized on small number
of images, as it requires a large number of images for training.
Gour et al. [24] proposed a glaucoma detection model which
uses histogram-based gradient features and gradient informa-
tion scale for capturing the shape features. A total of 1448
features are extracted, and the prominent features are selected
using PCA. The method obtained an accuracy of 79% on
Drishti dataset. The accuracy can be further improved by
using clinical features. Akram et al. [25] localized OD in the
red channel by using Laplacian of Gaussian filter. The vascu-
lar density information is considered, and multivariate with
m-mediods is used for classification. An accuracy of 91%
is obtained for 462 images. Mookiah et al. [26] proposed a
model which uses random transform and histogram equaliza-
tion as a pre-processing method. Discrete wavelet transform
andHOS features are extracted and used to train SVM classi-
fier. The method obtained an accuracy of 95% on 60 images.
Themethod developed a glaucoma risk index, which aided in
good classification accuracy. However, the method needs to
be tested on a large dataset for clinical implementation. Raja
et al. [27] developed a hybrid swarm optimizingmethod. The
features are extracted from hyper-analytic wavelet transfor-
mation to preserve the phase information. Classification is
performed using SVM classifier with radial basic function.
A group search optimizerwith ranging and area scanning fea-
ture is embedded in the particle swarm framework for better
detection. The method obtained an accuracy of 95% on RIM
dataset.

The above discussedmethods report good results for glau-
coma detection. But, there still exist some limitations such
as: (i) over- and under-segmentation which can cause a sig-
nificant difference in clinical features such as CDR; (ii)
there is a lack of methods which considers both the features
based on clinical evaluation (CDR and NRR) and features
based on texture (color and intensity) for classifying the
fundus images; and (iii) different classifiers make different
errors; hence, developing ensemble of classifiers needs to be
explored for glaucoma detection. The proposed methodol-
ogy aims to overcome these limitations. Hence, the main
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Fig. 2 Overall illustration of the proposed methodology

contributions of the proposed method are as follows: (i)
robust automated OD and OC segmentation methods; (ii)
feature extraction includes clinical evaluation and texture
arrangement; and (iii) robust classifier model by creating an
ensemble of classifiers using dynamic selection techniques.

3 Proposedmethod

The proposed method for glaucoma detection is evaluated
on three datasets. Here, in the datasets used, the term "anno-
tations" refers to the class (normal or glaucoma) and also
to the disk and cup boundary masks. (1) The images are
collected from Kasturba Medical College (KMC), Manipal,
Karnataka, India. The annotations for all the 300 (glau-
coma—205, normal—95) fundus images are given by the
ophthalmologist. The images are captured by using a Zeiss
FF450 plus fundus camera with a resolution of 2588 × 1958
pixels. The data collection has also been approved by the
KMC ethics committee. (2) Drishti [28] is an online dataset
which is publically available. The annotations for all the 101
(glaucoma—70, normal—31) fundus images have been pro-
vided. The fundus images have a resolution of 2896 × 1944
pixels. (3) RIM version 3 [29] is an online dataset which is
publically available. The annotations for all the 124 (glau-
coma—39, normal—85) fundus images have been provided.
The fundus images have a resolution of 1072 × 1424 pixels.

The proposed methodology for automated glaucoma
detection consists of the following steps: pre-processing, seg-
mentationmethods forODandOC, extraction of features and
classification. Figure 2 shows the flow design of the proposed
framework for detection of glaucoma.

3.1 Pre-processing

The segmentation is often hindered by the presence of blood
vessels. Hence, the blood vessels are detected and excluded

Fig. 3 Illustration of pre-processing method. a Input fundus image,
b Gaussian filtered image, c blood vessels detected and c blood vessel
excluded image

from the fundus image. In the RGB fundus image, the blood
vessels appear to be more evident in the green channel.
Hence, the green channel is selected based on the literature
[55]. The noise in the green channel is removed by applying
a 2D Gaussian smoothing kernel having σ = 4. This results
in a Gaussian filtered image. On a set of 20 images, the value
of standard deviation varies for all possible values. It is found
that σ = 4 gives more appropriate blood vessel detection. In
order to enhance the contrast of bloodvessel, a linear structur-
ing element with size 150 is considered for angle orientations
varying in steps of 45° from 0° to 360°. The responses are
summed up, and dilation and erosion operation is performed.
This response image is subtracted from the Gaussian filtered
image in order to enhance the irregularly distributed blood
vessels. The image is then subjected to Otsu thresholding. In-
painting is performed by using the Mumford–Shah method
[30]. This gives bloodvessel excluded fundus image. Figure 3
illustrates the blood vessel extraction and exclusion.

3.2 OD segmentation

The pre-processed image is used for segmentation of OD and
OC. The OD appears to be more prominent in the red chan-
nel of the RGB image [5, 6, 8, 9, 15]. The red channel is
considered, and statistical feature, namely absolute mean, is
computed from the red channel and is subtracted in an iter-
ative manner. The number of iterations considered is three.
The procedure is repeated for different iteration numbers,
and the best results are retained and reported. For the third
iterative image, Prewitt operator is used to compute the edges
having high intensity. A circle finder operation is performed
to determine all the possible circles. For this purpose, the
minimum radius of OD considered is 2.5 mm [31] which is
9.5 pixel in terms of pixel distance. The minimum radius is
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taken as 10, and the maximum radius is taken as twice the
minimum radius, i.e., 20. A circle is defined as (1)

(x − a)2 + (y − b)2 = r2, (1)

where r is the radius and the circle center is defined by a and
b. For r value in the range (10, 20), the optimal centers of the
circles are obtained by using (2) and (3):

a = x − r cos θ , (2)

b = y − r sin θ , (3)

where x and y are the edge coordinates defined by the
Prewitt operator, and the range of angle θ varies as[

2
rminimum

, 2
rmaximum

]
. This gives all the possible circles. The

circumference points are obtained by varying the angle in
steps of 45° from 0° to 360°. The mean of the circumference
points is subtracted with the iterative image. This further
reduces the background variability and enhances the OD
region. This image is then subjected to threshold operation.

To determine the threshold value, a decision tree classifier,
which uses Iterative Dichotomiser 3 (ID3) [32] algorithm, is
used. A set of 20 images obtained after the third iteration
of absolute mean computation and subtraction in an iterative
manner is considered from the RIM dataset. The images are
overlapped with their corresponding binary mask, and the
mean intensity values of the background and the region of
interest (OD) are obtained. These intensity values are given
for a decision tree with a single split which uses ID3 algo-
rithm. The ID3 gives a boundary value, which minimizes
the entropy over all the possible boundaries. This is used as a
threshold value, to obtain the binarymask of OD. The thresh-
old value obtained for the OD segmentation is not specific
to a particular dataset, and hence, it can be used for other
fundus dataset. An eccentricity threshold value of 0.6 helps
to eliminate any noisy pixels which are present in the binary
mask of OD. The threshold value for eccentricity is obtained
by examining different values on 20 images [33]. The final
resulting binary mask is the region of OD. Figure 4 explains
the segmentation of OD.

3.3 OC segmentation

For OC segmentation, the green channel is considered
because the OC appears to be more prominent in the green
channel [8, 9, 15]. In order to reduce background variation,
in the green channel successive computation and subtraction
of absolute mean are performed in an iterative manner. The
number of iterations considered is three, and the resulting
image shows the pixels having high intensity that belongs
to OD and OC regions. In order to retain only the pixels

Fig. 4 OD segmentation method. a Pre-processed image, b selected red
channel, c third iterative image of absolute mean computation, d cir-
cumference points (red color) obtained on third iterative image, emean
of circumference points subtracted with third iterative image, f binary
mask of OD after decision tree-based threshold and g ground truth (red
line) and segmented mask (blue line) of OD overlapped (color figure
online)

belonging to OC region, all the absolute means computed in
the three iterations are added and the result is subtracted with
the absolute mean of the last iteration. In order to sharpen the
edges belonging to OC region, the resulting image is sub-
jected to successive computation and subtraction of standard
deviation. This is done for two iterations. This gives a new
channel, with increasing contrast of pixels belonging to OC
region. The new channel is subjected to K-means clustering.
Clustering helps in grouping high-intensity pixels in a single
group. K-means clustering helps in quick convergence. Clus-
tering is performed as follows: (1) The number of k initial
centroids considered is 4. This is evaluated using silhouette
criteria [34] to avoid randomization in selecting the initial
number of clusters. In the silhouette method, the silhouette
coefficients of each point are computed. This measures the
similarity of a point to its own cluster when compared with
other clusters [34]. (2) The distances from each pixel P(x ,
y) to the centroid {C1, C2, C3, C4} are computed by
squared Euclidean distance d = (Pi − Cn)2, where n is the
cluster number and {i = 1, 2, 3 …N} in which N is the pixel
number. Pi is assigned to the clusterwith smaller distance. (3)
After assigning all the pixels, the centroids are recalculated.
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Fig. 5 OC segmentation method: a pre-processed image, b green chan-
nel, c three iterations of absolute mean computation, d adding all the
absolute mean and subtracting with third iterative image, e new chan-
nel formed after two iterations of standard deviation, f clustering-based
thresholding and g ground truth (red line) and segmented mask (blue
line) of OC overlapped (color figure online)

(4) Step 2 and step 3 are repeated until there is no change in
the centroid. (5) The cluster that has average pixel intensity
value greater than 3 is segmented as region belonging to OC.
Figure 5 explains the segmentation of OC.

3.4 Feature extraction

Using the segmented binary mask of OD and OC, clinical
features, namely CDR and NRR area, are obtained. From
the fundus image, features, namely: gray-level co-occurrence
matrix (GLCM)-based features, texture directionality fea-
ture extracted from N + 1 directional difference of Gaussian
filters, Gabor features, Hu-invariant moments and color fea-
tures, are extracted. Each of these features is explained in the
following.

3.4.1 CDR area

CDR is defined as given in (4).CDRvalue of 0.3 is considered
as normal. Using the binary image of segmented OD and

Fig. 6 NRR area and ISNT regions for a normal eye [8]

OC, the area of white pixels is estimated and the CDR ratio
is obtained. The CDR values will be used as a feature for
glaucoma classification.

CDR = Area of segmented OC

Area of segmented OD
. (4)

3.4.2 NRR area

The area present between OC and OD is the region of NRR.
The changes in the NRR area are estimated using the inferior
superior nasal and temporal (ISNT) rule. According to the
ISNT rule, the NRR area is in a decreasing order of thickness
around (I > S > N > T ) area. Figure 6 shows the ISNT
quadrants in NRR area for a normal eye. The NRR area ratio
defined in (5) is used to verify ISNT rule. A normal eye has
NRR area greater than 1, and for a glaucoma eye, the NRR
area is close to 1 or less than 1 [8, 9, 21].

NRR = sum of area in inferior and superior quadrant

sum of area in nasal and temporal quadrant
.

(5)

3.4.3 GLCM

GLCM defined by Harlick is the statistical approach which
helps in examining the image texture by considering the
spatial relationship of the pixels [35]. In order to achieve rota-
tion invariance, the 13 GLCM features [35] are calculated at
θ = (0, 45, 90, 135) [35, 45]. For better characterization
of the fundus image, the best four subwindows [45] defined
using the coordinates, 1: (0, 0) to (127, 127), 2: (128, 128) to
(255, 255), 3: (0, 128) to (255, 128) and 4: (0, 128) to (128,
255), are also used for calculating the GLCM features. This
results in 104 features.
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3.4.4 Invariant moments feature

Invariant moments help in describing the image texture fea-
tures and shape. They have a significant contribution in
image analysis and pattern recognition. Hu constructed seven
invariant moments by considering the second- and third-
order central moments according to the algebraic invariant
[36]. While constructing the seven Hu-invariant moments,
the central moment is used to eliminate the impact of image
translation. The normalized processing is used to remove
the influence of image scaling. The rotation invariance is
achieved by polynomial construction. Hence, to obtain trans-
lation, rotation and scaling invariants we extract the seven
Hu-invariant moments as defined by [36–38]. These seven
Hu-invariantmoments are used as features for glaucoma clas-
sification.

3.4.5 Gabor features

In a 2D plane, the impulse response of a Gabor function [39]
is given as (6)

f (x , y) = 1

2πσxσy
exp

(
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

))
exp(2π jμx),

(6)

where μ = Gabor functions radial frequency and σx and σy

= Gaussian envelop along x- and y-axis, respectively. Filter
banks f pq(x , y) are created by rotating (orientation) and
dilating (scale) using Eq. (6). Each of the Gabor filters will
have a real part and an imaginary part, which is stored in
masks of sizes M × M . M is usually preferred to be an odd
number, in order to have a symmetric region. Scale is denoted
as p = 1 . . . S and orientations q = 1 . . . L . In the proposed
method, S = 8 scales (p = 1, 2, 3, 4, 5, 6, 7, 8), L =
8 orientations (L = 1, 2, 3, 4, 5, 6, 7, 8) and M = 27
are considered. For a given ROI, I (x , y) the filtered image
f pq(x , y) is obtained using filter banks f pq(x , y) to each
segmented window of the ROI as shown in (7):

Ipq(x , y) =
{[

f pq(x , y)real × I (x , y)
]2

+[
f pq(x , y)imaginary × I (x , y)

]2}1/2, (7)

where * denotes the 2D convolution operation.
The Gabor features Gabor Featurespq are obtained as

average output of Ipq (x , y), i.e., S×L (8× 8= 64), for each
segmented window. Out of this, three features, namely (i)
maximum of Gabor features (Gmax), (ii) minimum of Gabor
features (Gmin) and (iii) the range {Gmax − (Gmin)}, are used
to represent the texture features, since they are rotation invari-
ant.

3.4.6 Texture directionality feature extracted from N + 1
directional difference of Gaussian filters

The Tamura directionality equation is used to compute the
texture directionality [41]. Unlike the existing Tamura direc-
tionality feature which uses the Prewitt operator for edge
detection, the proposed method uses difference of Gaus-
sian for edge detection. The use of difference of Gaussian
produces a sharpened image with edges having increased
contrast when compared with the Prewitt operator.

Directional filters are used as a prominent descriptor of
texture in image analysis, and they are used to smooth the
images and retain the edge information [40]. The impulse
response of a directional filter is given by (8):

hθi (x , y) = G1(x , y) − G2(x , y), (8)

where Gk(x , y) is a Gaussian filter given by (9):

Gk(x , y) = Ck exp

{
− xl

2

2σ 2
x

− yl
2

2σ 2
y

}
, (9)

where Ck = normalized constant, and the values of (xı , yı )
are related to (x , y) by a rotational amplitude θi as (10) and
(11):

x ι = x cos θi + y sin θi , (10)

yι = y cos θi − x sin θi . (11)

The parameters σxk and σyk values are chosen such that
the second filter is directional and the first filter is isotropic or
less directional. In order to capture a better enhancement of
directional patterns in fundus images, a difference of Gaus-
sian is chosen. The rotation parameter θ decides the number
of directional filters N. θ varies in steps of π

N , i.e., 12° from
0 to π . N = 15 gives a step size of 12°. It is observed that a
step size less than 12° resulted in increased processing time,
without significant changes in the response image. A step
size greater than 12° results in incorrect values. The output
of filter bank is expressed as N + 1 filter images Ii . Since θ

varies between 0 and π , with a step size of 12°, there are 16
directional Gaussian filters. In order to synthesize the final
image (F), a maximization is performed for each pixel as
given in (12):

F(x , y) = max
θi

{Ii (x , y)}. (12)

The outputs after applying the difference ofGaussian filter
are�H and�V , which are further used in Tamura direction-
ality equation given in (15).
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Edge of a pixel is a vector, and it has a magnitude (�G)

given in (13) and direction (θ) given in (14):

�G = |�H | + |�V |
2

, (13)

where (|�H |) and (|�V |) indicate the horizontal and vertical
change in direction, respectively.

θ = tan−ı |�H |
|�V | + π

2
. (14)

The histogram for directionality, i.e., HD, is obtained by
quantizing θ (0 ≤ θ < π) and taking the count of pixels
having a magnitude greater than a particular threshold. If the
histogram has n peaks, then wi is the window of bins from
previous valley to the next valley. ϕi is the angular position
of a peak in wi. At angular position ϕ, let HD(ϕ) be the bin
height and the texture directionality D using the sharpness
of HD [41] is calculated as given in (15):

D = 1 − r × n ×
n∑

i=1

∑
wi∈ϕ

(ϕ − ϕi )
2 × HD(ϕ). (15)

3.4.7 Color features

The change in color is significant in pattern analysis. Three
color models, namely RGB, CIEL × a × b and HSV color
spaces, are used to identify the color information present
within an image as they maintain a color difference ratio.
For choosing a color model, there are no pre-requisite crite-
ria. Hence, the color features are extracted from RGB, CIEL
× a × b and HSV color spaces. From the three color mod-
els, for each color channel corresponding to nine channels,
six statistical features, namely skewness, variance, standard
deviation, average, entropy and energy, are extracted. This
leads to computation of 6 × 9 = 54 color features.

3.5 Classification

The features extracted are used by the classifier for predicting
the glaucomatous versus normal class. Different classifiers
may produce different errors; to overcome this, we can cre-
ate an ensemble of classifiers to give accurate decision. The
proposed method overcomes these errors by creating an
ensemble of classifiers using dynamic selection techniques
[43]. Dynamic selection methods can either be an ensem-
ble of competent classifiers termed as dynamic ensemble
selection (DES) or one classifier termed as dynamic clas-
sifier selection (DCS) [42, 44].

In the proposed method instead of selecting one single
classifier for all the dataset, dynamic selection is preferred,

because it dynamically selects the most suitable classifier
from a pool of classifiers for every test data. This makes the
classification more flexible and efficient since each test data
has a different pattern.Hence, dynamic selection ismore suit-
able for handling imbalanced data and finding patterns from
biomedical images. Dynamic selection-based classification
also reduces the risk of overfitting and generalization.

The main consideration related to dynamic selection clas-
sifier is the hyperparameters. The hyperparameters should be
chosen appropriately, as this plays a crucial role in improving
classification accuracy.

For classification, two models are created: The first clas-
sification model is created by a homogeneous ensemble of
random forest classifiers and the second classification model
is created by an ensemble of heterogeneous classifiers. In
the first classification model, a pool of 100 classifiers are
considered which are a homogeneous ensemble of random
forest classifiers. Random forest classifiers are considered
since they are more diverse by the use of random samples
and help in better predictive performance [46, 47]. In order
to train a random forest to be used as pool of classifiers, by
experimenting on different values, the maximum depth of
the tree is set to 5, so that it can estimate probabilities. In the
second classification model, the system generates a pool of
heterogeneous classifiers built by bagging and is composed
of different classification models, namely: perceptron, Gaus-
sian naïve Bayes, k-NN, Gaussian SVM and decision trees.
The diversity is achieved due to the intrinsic properties of
each classifier [42, 48]. For these two classification mod-
els, four dynamic selection techniques such as overall local
accuracy (OLA), multiple classifier behavior (MCB), meta-
learning for dynamic ensemble classification (META-DES)
and dynamic ensemble selection performance (DES-P) [42,
48, 49] are applied for the selection of the classifiers.

The OLA and MCB techniques belong to DCS method.
The META-DES and DES-P techniques belong to DES
method [42, 48, 49]. For application of the dynamic selec-
tion techniques, the region of competence is determined as
the set of nearest neighbors of the test sample in the training
samples [42, 48–50]. The appropriate size of neighborhood
is decided by experimenting on one dataset by considering
several dynamic selection techniques, and the best value is
reported [42, 48–50]. Hence, the proposed method uses five
nearest neighbors of the test sample from the training set to
precisely define the region of competence for the test sample.

In OLA, for each base classifier, the level of competence
is computed as its accuracy of classification obtained in its
region of competence and the classifier having the highest
level of competence is selected in order to classify the test
sample.

In MCB, the behavior knowledge space is used to fil-
ter and preselect from the region of competence. Then, the
competence of the base classifier in the resulting region of
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competence is computed as its accuracy of classification. A
single classifier is used for classification of the test sample,
if its competence level is higher than all the base classifiers
present in the pool. Otherwise, majority voting is used for
determining the class of the test sample.

In META-DES, for each of the base classifiers five sets of
meta-features are extracted, namely neighbor classification,
posterior probability, overall local accuracy, output pro-
file classification and classifiers confidence [49]. The major
advantage of meta-leaning is that meta-features encode dif-
ferent multiple criteria which helps in estimating the level of
competence of the base classifier. The meta-classifier is used
to predict whether the base classifier is competent enough to
classify the input test sample. A multilayer perceptron con-
sisting of ten hidden neurons is used as a meta-classifier. The
meta-classifier is trained by the meta-feature vector in the
training phase. The training of the meta-classifier is stopped
if there is no improvement in the performance for five consec-
utive epochs. The base classifiers considered as competent
by the meta-classifier are considered, and their outputs are
aggregated by majority voting to estimate the class of test
sample. In order to handle tie-breaking, the class with high-
est posteriori probability is chosen as the class of test sample.

In DES-P, the competence of the base classifiers is esti-
mated by the difference between the base classifier accuracy
obtained in the region of competence and the performance
of the random classifier. The random classifier is the classi-
fication model which randomly chooses the class with same
probabilities. The base classifiers that have obtained a higher
level of competence are chosen, and their outputs are aggre-
gated by majority voting to estimate the class of test sample.
A more detailed explanation of these selection techniques
is found in [42, 48–50]. The two classification models are
tested on 171 feature sets obtained from KMC, RIM and
Drishti databases.

4 Results

A set of 70 percent is used in training and 30 percent is used
for testing the classification models. The results reported are
the average performance values of the classifier for three
iterations. The average performance values of the classifier
models are reported using the classification metrics: sensi-
tivity, specificity and accuracy [17–27]. The definitions of
these classification metrics are given in Eqs. (16–18).

Sensitivity: SE = TP

(FN + TP)
, (16)

Specificity: SP = TN

(FP + TN)
, (17)

Table 1 Performance parameters obtained using ensemble of random
forest on KMC dataset

Dynamic selection methods SP (%) SE (%) ACC (%)

OLA 96.15 96.87 96.66

MCB 100 98.43 98.88

META-DES 100 100 100

DES-P 100 100 100

Bold values signifies Good result

Table 2 Performance parameters obtained using ensemble of heteroge-
neous classifiers on KMC dataset

Dynamic selection methods SP (%) SE (%) ACC (%)

OLA 88.46 96.87 94.44

MCB 85 95.31 92.22

META-DES 92 100 98

DES-P 92.30 100 97.77

Bold values signifies Good result

Accuracy: ACC = TN + TP

(FN + FP + TN + TP)
, (18)

where TP = true positive, TN = true negative, FP = false
positive and FN = false negative. For classifiers, TP indi-
cates that the classifier predicts correctly that the image is
glaucoma. TN indicates that the classifier predicts correctly
that the image is normal. FP indicates that the classifier pre-
diction states that the image is normal but its correct label
is glaucoma. FN indicates that the classifier prediction states
that the image is glaucoma but its correct label is normal.

The training set for KMC, RIM and Drishti consists of
143, 27 and 49 numbers of glaucoma samples, respectively.
The test set for KMC, RIM and Drishti consists of 62, 12 and
21 numbers of glaucoma samples, respectively. The training
set for KMC, RIM and Drishti consists of 66, 59 and 22
numbers of normal samples, respectively. The test set for
KMC, RM and Drishti consists of 29, 26 and 9 numbers of
normal samples, respectively.

Results of classification for KMC dataset
Table 1 gives the results of classification using homoge-

neous ensemble of random forest using dynamic selection
methods for KMC dataset. Table 2 gives the results of classi-
fication using the heterogeneous ensemble of classifiers using
dynamic selection methods for KMC dataset.

Figure 7 illustrates the best receiver operating characteris-
tics (ROC) curve for the best result obtained by ensemble of
random forest using META-DES and DES-P dynamic selec-
tion method for KMC dataset.
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Fig. 7 ROC curve obtained for KMC dataset with ensemble of random forest using a META-DES and b DES-P dynamic selection method

Table 3 Performance parameters obtained using ensemble of random
forest on RIM dataset

Dynamic selection methods SP (%) SE (%) ACC (%)

OLA 100 92.85 97.36

MCB 96 91.66 95

META-DES 100 92.85 97.86

DES-P 100 85.77 92.10

Bold values signifies Good result

Table 4 Performance parameters obtained using ensemble of heteroge-
neous classifiers on RIM dataset

Dynamic selection methods SP (%) SE (%) ACC (%)

OLA 100 60.12 84

MCB 100 64.28 86.84

META-DES 100 60.22 84

DES-P 100 80.22 92

Bold values signifies Good result

Results of classification for RIM dataset
Table 3 gives the results of classification using homoge-

neous ensemble of random forest using dynamic selection
methods for RIM dataset. Table 4 gives the results of classi-
fication using the heterogeneous ensemble of classifiers using
dynamic selection methods for RIM dataset.

Figure 8 illustrates the ROC curve for the best result
obtained by ensemble of random forest using META-DES
and OLA dynamic selection method for RIM dataset.

Results of classification for Drishti dataset
Table 5 gives the results of classification using homoge-

neous ensemble of random forest using dynamic selection
methods forDrishti dataset. Table 6 gives the results of classi-
fication using the heterogeneous ensemble of classifiers using
dynamic selection methods for Drishti dataset.

Figure 9 illustrates the ROC curve for the best result
obtained by ensemble of random forest using META-DES
and DES-P dynamic selection method for Drishti dataset.

From Tables 1, 2, 3, 4, 5 and 6, it can be observed that
the two classification models developed with four dynamic
selection techniques produced good classification results.
Figure 10 illustrates the best performance frequency of the
dynamic selection methods for the two classification mod-
els. As shown in Fig. 10, the classifier model that is found to
be more optimal for classification of normal and glaucoma
class is ensemble of random forest with META-DES. This
is because of the fact that META-DES uses several informa-
tion sources (meta-features) while performing the dynamic
selection scheme. Therefore, META-DES performs better
classification among all the other dynamic selectionmethods.
A stratified k-fold cross-validation is performed with k = 10
for the best result obtained withMETA-DES technique using
ensemble of random forest. The obtained average accuracy
for k = 10-fold cross-validation for KMC, Drishti and RIM
dataset is 93%, 90% and 91%, respectively. The area under
the curve (AUC) gives degree of separability between the
normal and glaucoma classes. A good classification model
will have an AUC near to 1, which means the measure of
separability is good. The AUC for the best results obtained
withMETA-DES using ensemble of random forest for KMC,
Drishti and RIM dataset is 0.99, 0.99 and 0.94, respectively.
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Fig. 8 ROC curve obtained for RIM dataset with ensemble of random forest using a META-DES and b OLA dynamic selection method

Table 5 Performance parameters obtained using ensemble of random
forest on Drishti dataset

Dynamic selection methods SP (%) SE (%) ACC (%)

OLA 100 95.23 97

MCB 90 95.23 93.54

META-DES 90 100 97

DES-P 90 95.23 94

Bold values signifies Good result

Generalization ability of the two classifier models
The generalization ability of the two classifier models is

measured by concatenating the three datasets (KMC, RIM-
ONE and Drishti) in order to create a single dataset. Tables 7
and 8 present the results of classification using ensemble
of random forest and ensemble of heterogeneous classifiers
using DCS and DES methods, respectively.

4.1 Comparative analysis

A comparative analysis for glaucoma detection with the
existing methods which considers RIM and Drishti dataset
is given in Tables 9 and 10, respectively. The best results
reported for the proposedmethod for RIMandDrishti dataset
belong to ensemble of random forest using META-DES
dynamic ensemble selection technique. Most of the meth-
ods reported in Tables 9 and 10 extracted spatial information
of pixels based on intensity or texture. Including clinical
features based onOD can further improve the detection accu-
racy. Also, under- and over-segmentation can greatly affect
the clinical features. Extracting both domain (clinical) and

Table 6 Performance parameters obtained using ensemble of heteroge-
neous classifiers on Drishti dataset

Dynamic selection methods SP (%) SE (%) ACC (%)

OLA 93.33 94.41 94.11

MCB 90 100 97

META-DES 82 100 94

DES-P 80 100 90.32

Bold values signifies Good result

features based on textural arrangement of pixels may give
promising outcome rather than considering a single set. CNN
models are useful methods in computer vision for solving
problems such as image segmentation and classification. This
comes with a disadvantage such as large training data, since
training a CNN with only 50 images will not ensure that the
model will capture all the variability present in the retinal
fundus image. Also, to reduce the complexity of CNN com-
putation the optimizationof networkparameters is an issue.A
single classifiermodel focuses to generalize the complete test
data with that particular classifier model. By using ensemble
of classifier with dynamic ensemble selection approaches,
flexibility is achieved by dynamically redistributing multiple
set of classifiers for each test sample.

5 Conclusion

A framework for computer-based automated detection of
glaucoma is developed. As a pre-processing approach, the
blood vessels are detected and segmented for accurately
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Fig. 9 ROC curve obtained for Drishti dataset with ensemble of random forest using a META-DES and b DES-P dynamic selection method

Fig. 10 Best performance frequency of the dynamic selection methods

determining the region of interest. The use of statistical fea-
tures for segmentation enhances the OD and OC region,
thereby reducing the background variation. The threshold
for OD segmentation is obtained using the decision tree clas-
sifier. This has increased the accuracy of OD segmentation,
even for imageswhere theOD is surrounded by exudates. The
determined threshold value for segmentation is not specific
to a particular dataset and results in efficient segmentation.
Feature extraction includes both clinical and image texture
features. For classification, two robust ensemble of classifier
models using dynamic selection approaches is developed.
The classifier having more competence level (DCS or DES)
is considered for detecting the class of test sample.

The proposed framework is developed on three glaucoma
datasets. The performance of proposed framework is illus-
trated by the evaluation parameters. The best results are
obtained using ensemble of random forest using META-
DES dynamic ensemble selection technique. The average
specificity, sensitivity and accuracy for glaucoma detection

Table 7 Generalization ability of the classifier using ensemble of ran-
dom forest classifiers with dynamic selection methods

Dynamic selection methods SP (%) SE (%) ACC (%)

OLA 95.22 96.84 96.2

MCB 92.06 96.88 95

META-DES 95.23 97 96.77

DES-P 92.06 96 94.3

Bold values signifies Good result

Table 8 Generalization ability of the classifier using ensemble of het-
erogeneous classifiers with dynamic selection methods

Dynamic selection methods SP (%) SE (%) ACC (%)

OLA 87.77 92.63 87

MCB 83.01 88.42 82.27

META-DES 85.12 93 90

DES-P 87.3 89.47 89

Bold values signifies Good result

using ensemble of random forest using META-DES on hos-
pital dataset are 100%, respectively. For RIM-ONE dataset,
the average specificity, sensitivity and accuracy for glau-
coma detection are 100%, 93.85% and 97.86%, respectively.
For Drishti dataset, the average specificity, sensitivity and
accuracy for glaucoma detection are 90%, 100% and 97%,
respectively.

The main reason for META-DES performing better in
comparison with other dynamic selection methods is the
meta-classifier uses meta-features in order to determine the
capability of the classifiers used in creating the ensemble.
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Table 9 Comparative analysis for glaucoma classification for RIM dataset

References Method SP
(%)

SE (%) ACC
(%)

[21] Regional image feature model with SVM classifier – – 94

[27] Hybrid method that uses swarm algorithm with SVM – – 95

[12] Entropy sampling and CNN architecture 95 92 94

[13] Morphometric features for multistage CNN model – – 89.4

Proposed Clinical, color and texture-based features with ensemble of classifier models using dynamic
selection methods

100 93.85 97.86

Table 10 Comparative analysis for glaucoma classification for Drishti dataset

References Method SP (%) SE (%) ACC
(%)

AUC

[51] Eight-layer CNN with overfeat and VGG-S architecture – – – 0.763

[12] Entropy sampling and CNN architecture 95.60 92.30 94.10 –

[24] Texture and shape features using SVM linear kernel – – 79.2 0.86

[13] Morphometric features for multistage CNN model 89.4 89.5 88.9 0.82

[52] Statistical ACM with structure priori – – 89.01 –

Proposed Clinical, color and texture-based features with ensemble of classifier models using
dynamic selection methods

90 100 97 0.99

A typical single classifier strategy focuses on using one
classifier to generalize the full test dataset. While using a
general ensemble of classifiers without dynamic selection
methods, several classifiers are used, and the suitable classi-
fier is chosen for classifying the entire test data. In dynamic
ensemble models, flexibility is provided by dynamically
redistributing a collection of multiple classifiers to each test
data. Based on its performance in the competence region, the
test sample picks the suitable ensemble of classifiers. This
strategy accomplishes two goals: (i) It aids in the redistri-
bution of the ensemble of classifiers for each test sample,
preventing a whole test set from being over-generalized to a
single classifier. (ii) The ensemble of classifiers is assigned to
each test sample based on their performance in the neighbor-
hood. This can aid in the selection of a suitable ensemble of
classifiers for the test data. As a result, the dynamic ensemble
selection algorithms can improve the performance of classi-
fiers.

The comparative analysis indicate that the developed
method performs better when compared with methods
reported in the literature for respective datasets. Hence, the
method can be deployed as a second opinion during glau-
coma screening and in mass glaucoma detection.

The proposed classification method can be further imple-
mented by using different prominent feature selection meth-
ods. Also, for comprehensive glaucoma analysis, automated
glaucoma detection algorithms can be developed by using

optical coherence tomography images. Several clinical fea-
tures can also be explored for grading different stages of
glaucoma.
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