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Abstract
Finding a parking space is a difficult challenge that drivers face on a daily basis in urban neighborhoods around the world.
They often report that desirable spaces near to their destination are either unavailable or very expensive, extending further the
search time and congesting even more city centers. Intelligent parking solutions can integrally solve this ongoing problem
by better managing existing resources. They allow drivers to access real-time information on parking space availability,
collectedwith different detection techniques (crowdsourcing, parkingmeters, sensors). Some of these systems also encompass
opportunistic services, such as forecasting, needed to adapt to unforeseen dynamic situations. Hence, we presented, in this
paper, a methodology for predicting car park occupancy rates using four different machine learning algorithms. Each of these
methods is trained with four feature sets to exemplify how information quality impacts prediction accuracy. In addition to
achieving high accuracy, it is absolutely crucial to interpret model outputs and analyze each individual feature’s importance.
That’s why we developed an explanation model based on SHAP values. We implemented our proposal exploiting five months
of real-time parking data broadcast by Aarhus City Council. Results show that the best-obtained predictions are by far very
accurate with a coefficient of determination (R2) that achieves 0.988 and a mean absolute error that doesn’t exceed 2.021%,
while requiring a very low computing time that is only 5 s.
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T Time
D Day of week
w Weather
h Holiday
T Temperature
l Location
D Distance
E Event
AFE Average forecast error
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R2 Coefficient of determination
P Parking price
Pc Parking capacity
Ro Rate of vehicles occupying
Rl Rate of vehicles leaving
Po Previous observations
idA Area name
idP Parking identifier
POR Parking occupancy rate
SDFE Standard deviation forecast error
NAP Number of available places
SP Survival probability
Dt Duration time
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean square error
MNE Mean normalized error
RMSE Root mean square error
RRSE Root relative squared error
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1 Introduction

The world population is experiencing an acceleration of its
growth rate. It will reach around 8.5 billion in 2030, increase
to 9.7 billion in 2050 and 11.2 billion in 2100 [1]. Cities
today bring together half of humanity. Coupled with themas-
sive rural–urban migration, urban infrastructure and services
are pushed to their limits regarding environment, scalabil-
ity and security. Municipalities are looking for a sustainable
economy to improve energy efficiency, optimize natural
resources, effectively manage urban infrastructure and min-
imize carbon emission levels. They are therefore obliged to
capitalize on the fast progress of information and communi-
cation technologies and evolve toward a “smart city” [2].

This concept is defined as a city that performs prospec-
tively in its fundamental components like governance,mobil-
ity, environment, lifestyle, etc. It connects the IT, physical,
social and business infrastructures to leverage the city’s col-
lective intelligence [3]. Many cities in Asia, Europe and
North America have led their own smart city initiatives,
citing for example Yokohama Smart City, SmartSantander,
LIVE Singapore and CITYKEYS. These and other projects
were realized thanks to the emergence of the internet of
things (IoT). It allows easy access and interaction with a
wide variety of equipment including household appliances,
surveillance cameras, monitoring sensors, parking meters,
actuators, displays, vehicles and so on [4]. It generates, as a
result, a huge amount of varied data that can be useful in the
development of several applications like smart grids, mobile
healthcare, traffic management and wearable.

Intelligent transportation systems (ITS) [89], a poten-
tial application of IoT, remain a pressing need to manage
parking facilities as well as traffic and therefore avoid the
challenges caused by their mishandling. ITS improve travel
safety, increase transportation system effectiveness, reduce
traffic congestion, ensure daily mobility sustainability and
enhance drivers’ experiences. They cover a wider range of
technological solutions, the main ones being parking assis-
tance, guidance systems and information service.

Finding a parking space in large cities is a real strug-
gle that causes frustration, waste of money, air pollution
and greenhouse gas emissions. Cruising for parking con-
tributes to 30% of traffic on average [5] and to about 40%
in peak demand [6]. Drivers spend between 3.5 and 14 min
seeking for a curbside parking spot [5]. In a large city like
Chicago, the number of curbside parking spaces is more than
35 000, resulting in 172 million vehicle miles traveled per
year in search for parking [7]. This is equivalent to 8.37
million gallons of gasoline consumption and more than 129
000 tons of CO2 emissions. All these tricky problems have
arisen due to missing detailed information on available park-
ing spaces at a given time. This means that their resolution
simply requires collecting necessary data from the already

installed infrastructure (cameras, sensors, parking meters,
internauts, connected vehicles), processing obtained records
and communicating results to drivers. However, in order to
help drivers identify appropriate parking spots at the begin-
ning of their trip, availability prediction is the only practical
way. It effectively taps into real-time data to produce short-
or long-term forecasts anticipating available parking spaces.

1.1 Research questions

With our suggestion, we tried to tackle three questions:
Does each predictive method require exactly the same fea-
ture set to achieve the best accuracy? If not, how does these
attributes’ contribution to get the outcome variable depend
on the applied algorithm? What effect do their type (ensem-
ble versus individual) and principle (trees, neurons or lines)
have on the quality of the computed predictions? What ele-
ments render decisions made by a model more appropriate
than those taken by another one?

1.2 Proposed solution

To answer clearly and precisely these matters, the parking
occupancy rate is modeled depending on four different time-
series feature sets. Our objective is to assess how the nature,
number and precision of independent variables affect the per-
formance of machine learning models. It is forecasted by
four nonparametric algorithms belonging to two distinct cat-
egories in order to compare the efficiency of the ensemble
methods recognized for their broad range of applications ver-
sus single ones characterized by their diversity. Furthermore,
a simpler explanation model, based on SHAP values [90], is
implemented to interpret outputs from the best-performing
model, reveal the predominant features and clarify their
individual contribution. This is possible because it allows
investigating the decision-making process of Artificial intel-
ligence algorithms.

1.3 Research contributions

Our major contribution is to parse the impact that the quality
of insights, obtained from the features, has on the quality
of predictions. We examined whether there is a depen-
dency between the model type employed and the number
of explanatory variables. We also tested if an excess of
attributes can reduce the method’s capabilities. We were the
first construing results generated by a model-based parking
occupancy prediction framework using SHAP values, to our
best knowledge.We sought to assimilate the innerworking of
these algorithms perceived as black boxes difficult to explain.
We focused on determining which factors most influence a
parking lot’s occupancy relative to its peers.
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1.4 Outline

The reminder of this document is structured as follows:
Sect. 2 summarizes many intelligent parking proposals pub-
lished in the literature; Sect. 3 defines our overall system
framework and lists its various components; Sect. 4 for-
malizes the problem, decrypts our prediction mechanism
architecture and concisely presents the developed machine
learning methods; Sect. 5 introduces the real database used,
describes the occupancy trend of its car parks and ana-
lyzes the calculated error metrics values; Sect. 6 explains the
permutation feature importance measurement and assesses
explanatory variables’ predictive power; Sect. 7 reviews in
depth SHAP approach and outlines a comprehensive fea-
tures interpretation; Sect. 8 briefly recaps our findings and
discusses possible improvements.

2 Related works

Intelligent parking systems benefit fully from the technolog-
ical development and therefore offer a variety of real-time
parking space availability information. Parking solutions
proposed in the literature can be categorized into two main
types: “sensor-based” and “crowdsourcing-based” systems.

Most research works put forward intelligent parking plat-
forms based on different types of sensor networks. The
authors of [8] detected parking space occupancy using convo-
lutional neural networks to directly process real-time pictures
filmed by a Raspberry Pi camera. Adopting the same prin-
ciple, the paper [9] developed a decentralized and efficient
system for visual parking lot occupancy detectionwhere each
smart camera can simultaneously monitor up to fifty parking
spaces. PGS is a parking guidance system based on wireless
sensor network which guides a driver to an available park-
ing lot [10]. Its architecture contains a Parking information
server, T-Sensor nodes (magnetic sensor), T-Sink nodes and
a TBS. The authors of [11] conceived a mobile sensing unit
that is an ultrasonic sensor mounted on the passenger side of
a car to measure the distance from the vehicle to the nearest
roadside obstacle. They estimate roadside parking occupancy
by a supervised learning algorithm which analyzes the struc-
ture of the sonar trace. A smart parking solution that makes
use of a protected wireless network and sensor communi-
cation is proposed by Yan et al. [12]. It is designed as a
continuous-time Markov chain, precisely as a birth–death
stochastic process. It broadcasts new business promotions to
all vehicles passing by the parking site through wireless net-
works. An integrated smart parking system is introduced in
[13]. It brings multiple parking service providers together
under a unified platform using blockchain technology. In
[14], two different ways to manage availability information

in parking facilities are evaluated: posting a warning on vari-
able message sign panel to indicate that there are no free
spaces when occupancy percentages are above 90% or 95%
and zoning that places vehicle detection systems at interme-
diary points around the facility to separate it into internal
zones.

Crowdsourcing is a model that consists to solve, in a dis-
tributedmanner, a complicated problemby involving a crowd
of indefinite size [15]. This practice proved its ability to
help drivers find appropriate parking spaces through several
successful experiences. ParkJam [16] is an Android appli-
cation exploiting publicly accessible geographical data and
car park availability information collected through crowd-
sourcing. PocketParker is a crowdsourcing system using
smartphones to predict parking lot availability [17]. It detects
arrivals and departures by leveraging existing activity recog-
nition algorithms. UW-ParkAssist application [18] combines
data collected passively using vector-based locationmapping
on users’ phones with crowdsourced information actively
supplied by users related to their observed density of park-
ing. It offers real-time information about parking availability
in UW-Parkside’s campus lots. CroPark is a user-engaged
crowdsourcing parkingmonitoring system that builds a park-
ing occupancy map [19]. It employs ultrasonic sensors to
measure the distance from the vehicle to roadside and uses
a supervised learning algorithm to estimate the number of
available parking spaces. PickNPark application gathers and
delivers real-time information about a number of car parks
in crowded urban areas [20]. It is supplemented by a car park
estimation model which provides a good approximation in
terms of parking search time. CrowdPark [21] enables users
to loosely reserve parking spots. It achieves parking reser-
vation by crowdsourcing information about when parking
resources will be available.

However, such collected real-time data is not practical
enough as the target places may be occupied just before the
drivers arrive. Consequently, they compete for the desired
space and, out of obligation, behave violently by verbally
arguing or parking in a forbidden space. With the aim to
fill this gap, various articles model parking space occupancy
by different approaches like Markov chain variants, regres-
sionmethods andmachine learning techniques (Table 1). The
authors of [22] employed a discrete Markov chain model
to demystify the future state of a parking lot, by the time
a vehicle is expected to reach it. Similarly, the writers of
[23] described the stochastic occupancy change of a park-
ing facility by employing a continuous-time Markov queue.
Such methods, however, can only be efficient for car parks
equipped with access control. They also generate long-term
forecasts with a high variance and are therefore reinforced
by othermethods. A hybrid approach combining agent-based
with dynamic time varying Markov chain in [24] and with
Markov chain Monte Carlo in [25] is proposed. In [26], a
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Table 1 Intelligent parking solution for availability prediction

Reference Algorithms Data type Inputs Output Database Spatiotemporal
analysis

Performance
metrics

Performance
achieved

Zheng et al.
[35]

Regression tree Historic t and d POR San
Francisco

No MSE 0.000

Support vector Po Melbourne MAE 0.013

Neural network t, d and Po R2 0.986

Vlahogianni
et al. [36]

Neural network Historic t POR Santander No MAE 0.004

RMSE 0.006

Weibull
distribution

SP MAPE 0.412

RRSE 59.250

Li et al. [37] LSTM network Historic t, w, T, h and
Po

NAP Beijing No RMSE 5.42

Latest
data

Errousso
et al. [38]

Stacking with 2
levels

Historic t, d and idA NAP Melbourne No RMSE 21.656

Actuarial method SP MAE 2.166

R2 0.879

Stolfi et al.
[39]

Polynomial fitting Historic t, d and idP POR Birmingham No MSE –

Fourier series

K-Means

KM-Polynomials

Shift & Phase

Time Series

Camero
et al. [40]

Recurrent Neural
Network

Historic d and idP POR Birmingham No MAE 0.067

Céderic
et al. [41]

Bagging
regressor

Historic t, d and idP POR Birmingham No RMSE 0.001

Random forest MAE 0.000

Adaboost
regressor

R2 0.999

Gradient boosting

Chirichigno
et al. [42]

Linear
Regression

Historic t, d and idP POR Tandil No MSE 0.027

Regression Trees Google
Maps

MAE 0.123

Gradient Boost G. Street
View

R2 0.577

Caicedo
et al. [43]

Calibrated
discrete choice
model

Historic – NAP Barcelona No AFE 0.12

Real time SDFE 0.24

Rajabioun
et al. [44]

Probabilistic
model

Historic t, d, l, Pc, Rl,
Ro…

NAP San
Francisco

No MNE 0.012

Real time

Rajabioun
et al. [45]

Vector
autoregressive
model

Historic t and idP NAP San
Francisco

Yes MAPE 0.14
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Table 1 (continued)

Reference Algorithms Data type Inputs Output Database Spatiotemporal
analysis

Performance
metrics

Performance
achieved

Shao et al.
[46]

LSTM model Historic t, idA and Po POR Melbourne Yes MAE 0.018

Temporal
clustering

RMSE 0.022

Nonlinear least
square

t, d and POR DT MAPE 0.035

RRSE 1.524

Chen et al.
[47]

ARIMA Historic t, d, E, D and
P

POR San
Francisco

Yes MAPE 0.357

Linear regression

Support vector

Neural network

K-means

short-term prediction of parking space availability is sug-
gested and relied on the wavelet neural network and the
largest Lyapunov exponents method. The subsequent occu-
pancies of parking spaces are forecasted, in [27], by the naïve
Bayes, C5.0 decision tree, random forest and regression anal-
ysis founded on the spatial–temporal features extracted from
parking data.

Some researchers seek, besides predicting parking avail-
ability, to reduce both the number of required models and
training examples by studying the database’s characteristics.
The high temporal autocorrelation of the on-street parking
dynamics is analyzed in [28] and non-Euclidean spatial auto-
correlation among parking lots in [29]. For the first paper,
recurring patterns in the collected data are exploited bymeans
of clustering and training set reduction techniques. For the
second one, global spatial dependencies between parking
lots are captured by a contextual graph convolution block
and a soft clustering graph convolution and incorporated by
a recurrent neural network. Richter et al. [30] presented a
back-end-based approach to learn historical models of park-
ing availability per street by utilizing five spatiotemporal
clustering strategies. Their goal is to significantly lower the
space needed to store these models and it is shared with the
authors of [31] who proposed a 2-step approach to predict
parking space availability. In the first step, the raw parking
data are smoothed by SVR in combination with a specifically
defined technique to tune parameters. In the second, a mul-
tidimensional SVR model is trained on top of this smoothed
trend curve.

Unlike previous research, ParkPGH is a smart parking
application designed to supplement the predicted number
of available parking spaces at a particular time by a binary
dependent variable denoting whether the garage is full or
not [32]. The authors in [33] investigated the extension of
estimating parking information from areas equipped with

sensors to areas that are missing them. They built a park-
ing demand profile, which reflects the time of the day where
parking occurs and its duration for a given area, by using
complementary city data. Rong et al. [34] estimated the real-
time parking availability throughout a city by proposing a
deep-learning-based approach, called Du-Parking, that relies
on the historical parking availability data and a variety of
datasets (meteorology, events, map mobility trace data and
navigation data).

According to the literature surveyed, there remain unex-
plored research topics in relation to parking availability
prediction. There are onlyworks dedicated to searching for or
proposing very exact algorithms. Moreover, the interaction
between a machine learning model’s response and a feature
combination is rarely approached. In this study, we experi-
mented with several sets of inputs to find the optimal one for
eachmodel.We demonstrated that there is no optimal feature
subset that works for every method.We aimed to build a gen-
eral idea about how much input information is required by
each model type to get the best performance. We deciphered,
for the first time in this context, why certain predictions are
made using Shapley additive explanationmethod. It provides
an overview of possible improvements to a model as it clus-
ters the data points depending on the feature importance.

3 Our system architecture

To predict parking occupancy, we adopted the intelligent
parking system framework detailed in Fig. 1. It includes
diverse data components and combines various information
providers. As such, it aims to guarantee higher data preci-
sion, continual updating and diversified types of records. It
comprises four layers: data collection, communication, mid-
dleware and user layer.
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Fig. 1 Smart parking architecture

The first layer gathers information on parking occupancy
using two different manners. It detects vehicle absence or
presence thanks to several types of sensors installed at each
parking space (magnetic, ultrasonic, infrared and acoustic)
or cameras monitoring the entire car park. It determines the
number of occupied spaces by means of access control bar-
riers or parking meters. If a parking lot isn’t equipped with
these stationary sensors, it is possible to make use of mobile
sensors as smart drivers, connected vehicles, smartphones
and urban authorities. After parking or before moving off,
drivers answer a question about parking availability based on
their observations and with a manual entry on their device.
Smartphones communicate to the server users’ geographi-
cal position with the help of their geolocation system. These
devices can also scan the road being traversed, identify vacant
spots and distinguish parking places from other zones. Con-
nected vehicles with all their numerous sensors allow to
ascertain when they are running or stationary, to pinpoint
unoccupied parking spaces and to recognize congested road
stretches. They aid in defining street status by consider-
ing a road close to the driver’s destination as occupied if
it is crossed at low speed without finding a place to park.
Urban authorities, in particular police forces and car park
supervisors, may adjust the real-time records in the database
according to their own data, e.g., patrol observations.

In communication layer, multiple communication proto-
cols can be deployed in order to maintain message exchange
between all system constituents: between sensors, from sen-
sors to gateway and from gateway to web server as well as
to database. All these entities interconnected or maintained
in connection constitute a computer network. Its typology,
as its topology, is chosen mainly according to the network
size (number of machines), the required data transfer speed
and its extent. Three computer network categories are per-
fectly adapted for this type of application, namely local area

network (for parking lots spread over a few meters to a kilo-
meter), a metropolitan area network (for car parks extended
over a dozenkilometers) and awide area network (for parking
spaces dispersed over large geographical distances). Several
physical configurations are considered to connect the net-
work’s different nodes, the relevant ones being the star, mesh,
tree, ring, point-to-point and circular topologies.

Middleware layer is responsible for processing collected
data of varied nature (coordinates, images, sentence, num-
ber, address, date…), filtering misleading detections and
deducting consequently the parking availability in certain
streets. It directs all the software intelligence embedded in
the described parking solution utilizing machine learning
algorithms, data mining models and powerful graphics tech-
niques. It streamlines all captured data into a single database
which is then hosted with the related servers.

The last layer concerns interaction with users and usage
of all services provided via a mobile application or website.
It displays online an interactive map showing the real-time
occupancy of a city’s parking spaces. It guides drivers to
designated spots from their current position by sketching out
the route to be taken or issuing voice instructions. It also lets
users reserve one or more spaces while taking into account
fees varying with location, time and parking duration. It pro-
poses promotions to incite drivers for greater involvement
depending on their participation rate in data collection.

4 Modeling parking availability

4.1 Methodology

Our real-time approach for forecasting parking space avail-
ability provides, as output, the occupancy rate calculated
simply by dividing the number of vehicles parked in a car
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Table 2 Correlation matrix

Parking
identifier

Year Month Day Day of
week

Weekday or
weekend

Time Occupancy
rate

Parking
identifier

1 0.007 0.000 1.970e–20 4.342e–20 – 1.024e–19 2.029e–20 0.94349

Year 0.007 1 1.843e–12 3.931e–18 2.731e–21 5.391e–07 −
1.043e–15

0.13284

Month 0.000 1.843e–12 1 −
2.626e–01

1.756e–02 1.261e–02 −
7.492e–03

0.61677

Day 1.970e–20 3.931e–18 −
2.626e–01

1 1.264e–02 − 2.856e–02 1.165e–02 − 0.51358

Day of week 4.342e–20 2.731e–21 1.756e–02 1.264e–02 1 7.915e–01 −
1.127e–03

0.78082

Weekday or
weekend

−
1.024e–19

5.391e–07 1.261e–02 −
2.856e–02

7.915e–01 1 5.903e–03 − 0.40515

Time 2.029e–20 −
1.043e–15

−
7.492e–03

1.165e–02 −
1.127e–03

5.903e–03 1 0.81201

Occupancy
rate

0.94349 0.13284 0.61677 − 0.51358 0.78082 − 0.40515 0.81201 1

park by its capacity. It considers, as explanatory variables
for the algorithms, four sets containing different attributes:

• X0 � {Parking identifier, year, month, day, day of week,
time}

• X1 � {Parking identifier, year, month, day, time}
• X2 � {Parking identifier, day of week, time}
• X3 � {Parking identifier, weekday or weekend, time}

Intuitively, these predictors represent the most influential
factors in parking usage. But to demonstrate their statistical
significance and to catch the pairwise degrees of relationship
between each independent variable and the dependent vari-
able, we elaborated the correlation matrix that refers to the
symmetric array of Pearson correlation coefficients (Table 2).
This coefficient is measured on a unitless scale and ranges
from −1 to + 1 through 0 [48]. A negative sign in front of
the coefficient means that the two variables vary inversely,
and this is the case for Day andWeekday or weekend. As the
coefficient is closer to 1 (in absolute value), the relationship
between the variables is stronger. The variables Parking iden-
tifier, Day of week and Time explain, respectively, 94.349%,
78.082% and 81.201% of the variance of the occupancy rate
variable.

Figure 2 depicts the computational architecture of our
parking availability prediction methodology, which com-
prises four components:

• Data preparation which eliminates noise altering collected
data, reduces their variability, divides the database into
two separate sets (four-fifths for training against one-
fifth for test) and partitions randomly the training set into

10 equally sized subsamples by means of k-fold cross-
validation;

• Models trainingwhich runs, for every algorithm to be built,
10 iterations of training and validation so that in each
iteration a different fold of the data is considered as the
validation set while the remaining 9 folds make up the
learning one;

• Model performance testingwhich generates predictions on
the test set and measures the predictive accuracy of each
machine learning algorithm by three error metrics that are
R2, MAE and RMSE;

• Model explanation which computes how much each pre-
dictor contributes, positively or negatively, to the target
variable by plotting four different graphs (local inter-
pretability, standard summary, summary and dependency
plots).

4.2 Developed algorithms

To forecast the availability of car parks, four machine
learning techniques are selected, namely multivariate adap-
tive regression splines (MARS), support vector regression
(SVR), artificial neural network (ANN) and extremely ran-
domized trees (ERT). These algorithms are chosen pri-
marily because they are judged as better in the literature
[35,38,41,47,52], their internal principles are largely dis-
similar, their parameters are significantly different and their
learning samples are noticeably distinct.

SVR is a nonlinear kernel-based regressionmethod which
locates a regression hyperplane with smallest structural risk
in a so-called high dimensional feature space [49,50]. Given
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Fig. 2 The framework of our proposed parking availability prediction system

a set of training data
{
(x1, y1), . . . ,

(
xp, yp

)}
, where xi ⊂

R
n , i � 1, . . . , p, denotes the input vector and yi ⊂ R,

i � 1, . . . , p, designates the corresponding target value, the
SVR estimating function takes the following form:

(1)

f (x) �
p∑

i�1

(
αi − α∗

i

) 〈φ (xi ) • φ (x)〉 + b

�
p∑

i�1

(
αi − α∗

i

)
k (xi , x) + b

where b ⊂ R is an offset, k(xi , x) is a kernel function
which represents the inner product 〈φ(xi ) • φ(x)〉, αi and
α∗
i are nonzero Lagrange multipliers. The most commonly

employed kernel function is the radial basis function (RBF)
defined, in [51], as:

k(xi , x) � exp
(
−γ ‖xi − x‖2

)
(2)

where γ is the width parameter of the RBF kernel function
and chosen thanks to heuristics.

ANN is a computational model inspired by the organi-
zation and functioning of biological neurons primary to the
parallel nature of the human brain [54,55]. Themulti-layered
perceptron,which is composed of one input layer, one ormul-
tiple hidden layers and one output layer, is its widely used
variant [56]. Each layer comprises several neurons and each

neuron i in a layer sends outgoing signals to every node j in
the next layer. Neuron j gets an effective signal S j resulting
from the weighted sum of all received signals [57].

S j �
p∑

i�0

w j i xi (3)

where x0 is the bias and w j0 is the bias weights. The output
y j of neuron j in the hidden layer is set by passing the signal
S j through an activation function that aims, furthermore to
introduce nonlinearity into the neural network, to bound the
value of the neuron so that the neural network is not paralyzed
by divergent neurons [58]. The rectified linear unit function
(Relu) is the most often utilized activation function and is
given by the formula below.

y j � f
(
S j

) � max
(
0, S j

)
. (4)

MARS is a nonparametric regression technique that Fried-
man developed in [59]. It models relationships implying
interactions with less variables and those being relatively
additive. It performs piecewise linear regressions for con-
structing basically flexible models [60]. Consequently, it
fits distinct linear regression slopes within separate feature
space intervals in order to estimate a model’s nonlinearity. It
operates a quick- but cost-consuming search process in iden-
tifyingwhich variables to employ and the upper limits of their
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intervals [61]. It further looks at the interactions between the
variables to take their degrees into account [62]. The equation
hereafter stands for the general MARS function.

f (x) � a0 +
M∑

m�1

am

Km∏

k�1

[
skm

(
xv(k,m) − tkm

)]
+ (5)

where a0 and am are parameters, M is the basis functions
number, Km is the nodes number, skm specifies the corre-
sponding step function sense by taking 1 for right and −1
for left, xv(k,m) is the dependent variable and tkm states the
nodes location.

MARS builds the optimal model in two steps. Firstly, sev-
eral basis functions are designed to overfit the data. Secondly,
they are selected in order of highest contribution bymeans of
the generalized cross-validation (GCV) criterion expressed
as follows [63]. It addresses missing value problems with
dummy variable capabilities.

LOF( fM ) � GCV(M) � 1

p

p∑

i�1

[yi − fM (xi )]2

[1 − C(M)/p]2
(6)

where C(M) is the cost-penalty measures of a model con-
taining M basis functions.

ERT is a tree-based ensemble method that creates a set
of unpruned regression trees according to the classical top-
down procedure [64]. It splits nodes by choosing cut-points
fully at random rather than computing local optimal ones
and grows the trees with the whole learning sample instead
of a bootstrap replica [65]. It is parameterized regarding how
many trees to build, their depth, number of features picked
at random for every node and smallest sample size required
to divide a node [66]. The score in ERT is measured by the
relative variance reduction. For a sample S and a split s, it is
calculated by the formula (7).

Score(S, s) � var{y|S} − |Sl ||S| var{y|Sl} − |Sr ||S| var{y|Sr }
var{y|S}

(7)

where var{y|S} is the variance of the output y in the sam-
ple S, Sl and Sr represent the two subsets of cases from S
corresponding to the two outcomes of a split s.

It compensates the randomizationwith a forest of trees and
computes the average of the constituent tree outputs [67].

4.3 Hyperparameters of exploited algorithms

Table 3 summarizes themost relevant hyperparameters of the
four algorithms that should be tuned to comparatively ana-
lyze their performance. It outlines their respective meanings
and specifies the values used for the dataset implementation.

Model parameters are those parameters updated during the
data learning process, unlike hyperparameters that determine
model architecture, are defined before training [4].

Hyperparameters demonstrate their interest by improving
model performance, e.g., complexity or learning rate. Each
model is characterized by a large number of hyperparame-
ters but looking for the best combination leading to the best
performance can be tackled as a search problem.

The best parameters for the four algorithms described
above are obtained using the GridSearchCV library devel-
oped by Sklearn. This library is designed to identify the
optimal parameters for any type of machine learning algo-
rithm. It takes a dictionary of parameters to fine-tune and
finds the best-performing ones according to the evaluation
measure set at the computation time. Furthermore, in doing
so, it leverages the k-fold cross-validation technique that
divides a data set into K equal sets. Among these K sets,
each set is utilized once as test data and the other sets are
employed as training data. This approach determines the sin-
gle most effective hyperparameter combination considering
the K (K − 1) training sets and K test samples.

To enhance SVRmodel accuracy, several parameters need
to be tuned. Three major ones are: Kernel, C and Gamma.
The main role of the kernel is to transform a low dimensional
input space into a higher dimensional space, it is always set
to ’rbf’ kernel. The penalty parameter C, or regularization,
stands for the misclassification or error term. Gamma, the
kernel coefficient, defines towhat extent the calculation of the
plausible separation line is influenced. For RBF kernel, the
typical values of these parameters are ranging from 0.001 to
1000. The results of a tenfold cross-validation are illustrated
in the figure above.

Figure 3 clearly shows that the lowest value of MAE is
obtained with the combination of 100 and 1.0 for the param-
eters C and gamma, respectively: {‘C’: 100, ‘gamma’: 1}.

learning_rate, max_iter and hidden_layers_sizes are three
hyperparameters that determine ourMLPmodel convergence
speed. They are optimized utilizing GridSearchCVwith acti-
vation function set to “Relu” on account of its common
use, implementation simplicity and effectiveness in over-
coming limitations. Optimization will be run considering
two learning rates (constant and adaptive), three values for
max_iter (100, 200 and 400) and three different combinations
of hidden_layers_sizes ((120,), (150,) and (200,)). These con-
figurations are iterated with a tenfold cross-validation and
evaluated bymeans of themean absolute error score. Figure 4
represents all three plots for the three different values of the
hidden_layers_sizes parameter.

Visualized results indicate that the best parame-
ter combination leading to the best score consists of:
{‘hidden_layer_sizes’: (150,), ‘learning_rate’: ‘constant’,
‘max_iter’: 200}.
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Table 3 Hyperparameters of our
four machine learning techniques Algorithm Parameter Definition Value

SVR Kernel Kernel type to be utilized rbf

Gamma Kernel coefficient 1

Tol Tolerance for stopping criterion 1e-3

c Regularization parameter 100

ANN Hidden_layer_sizes Number of neurons in the hidden layer 150

Activation Activation function for the hidden layer Relu

Learning_rate Learning rate schedule for weight
updates

Constant

Max_iter Maximum number of iterations 200

Batch_size Size of minibatches for stochastic
optimizers

Auto

Solver Solver for weight optimization Adam

Alpha L2 penalty 0.0001

MARS Max_terms Maximum number of terms generated
by the forward pass

min(2n + m//10, 400)*

Max_degree Maximum degree of terms generated by
the forward pass

1

Penalty Smoothing parameter 5

Endspan Number of extreme data values for each
feature not eligible as knot locations

−1

thresh Parameter used when evaluating
stopping conditions for the forward
pass

0.001

ERT N_estimators Number of trees in the forest 50

Min_samples_leaf Minimum number of samples required
to be at a leaf node

1

Min_samples_split Minimum number of samples required
to split an internal node

2

N_jobs Number of jobs to run in parallel 1

Max_depth Maximum depth of the tree None

Criterion Function to measure the quality of a
split

Gini

Max_features The number of features to consider
when looking for the best split

5

*Where n is the number of features and m is the number of rows.

Fig. 3 Optimizing parameters of SVR

MARS as well has some parameters to tune, four of
which are relevant: max_terms, max_degree, penalty and
endspan. To avoid overfitting our model, only three of
them are employed. The best-performing combination of
the parameters is determined by exploiting once again the
GridSearchCV optimizer and testing several values, from 1
to 4 for max_degree as penalty and ranging from 5 to 150
for max_terms. The results of a tenfold cross-validation are
depicted in the following graphs (Fig. 5).

Recommended parameters for predicting parking avail-
ability with MARS are: {‘max_degree’: 1, ‘max_terms’: 4,
‘penalty’: 5}.

Themain parameters to adjustwhen applyingERTmethod
are n_estimators and max_features. The former is the num-
ber of trees in the forest. The larger the better, but also the
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Fig. 4 Optimizing parameters of ANN

longer it will take to compute. The latter is the size of the
feature random subsets to consider when splitting a node.
The smaller the size, the greater the variance reduction, but
also the greater the increase in bias. Good default empirical
values range from 1 to

√
n_ f eatures for max_features and

from 5 to 1000 for n_estimators. These values are generally
not optimal and can result in models that require signifi-
cant memory resources. The best parameter values would be
cross-validated with the help of GridSearchCV, the findings
of which are displayed in Fig. 6.

Given this graph, small values for max_features and
n_estimators do not fit best, validating our assumed hypoth-
esis: {‘max_features’: 5, ‘n_estimators’: 50}.

5 Implementation and results

The suggested framework is deployed with python 3 using
JupyterLab web-based interactive environment. It is evalu-
ated by leveraging historical parking information in the city
of Aarhus, Denmark.

This interpretive language is very cross-cutting, with mul-
tiple modules covering a wide range of domains. These
modules are Python programs that include functions to carry
out an extraordinary number of tasks. To implement the

selected machine learning algorithms, three libraries are
exploited:

• Scikit-learn: A state-of-the-art tool for artificial intelli-
gence problems incorporating large set of machine learn-
ing algorithms for supervised and unsupervised medium-
scale problems [91,92]. It employs a high-level generic
language with minimal dependencies. It features a clean,
uniformand streamlinedAPIwhile benefiting fromhelpful
online documentation. Here, predictive models developed
by SVM algorithm are implemented with the sklearn.svm
module for regression (SVR). The MLPRegressor class
implements a multi-layer perceptron (a type of artificial
neural network) algorithm that is trained using backprop-
agation. The sklearn.ensemble module which contains
ensemble-based learning methods addressing classifica-
tion, regression and anomaly detection is utilized to deploy
the ERT method. Sklearn’s “pyearth” library is employed
to roll out the MARS method. In addition, our mod-
els’ performance measurements are performed by the
sklearn.metrics module.

• Pandas: open-source data processing and analysis tool,
widely chosen for its power, flexibility, practicality and
especially for its speed [53].
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Fig. 5 Optimizing parameters of MARS

• SciPy: open-source library coded in Python principally
dedicated to scientific or technical computing [93]. It pro-
vides algorithms for optimization, integration, interpola-
tion, eigenvalue problems, algebraic equations, differential
equations…

Source code and datafile can be downloaded from https://
github.com/hanaeers/aarhus_parking.

5.1 Experimental dataset: Aarhus parking data
stream

The city of Aarhus supplied a data stream with parking data
for eight parking lots over a period of five months from
May 22, 2014, to November 4, 2014. These parking lots are
equipped with sensors and able to indicate the number of
vacant spaces [68]. Data features compriseGarage code, total
spaces, vehicle count, update time and stream time (Table 4).

In total, the database contains 55 264 data points and is
available from [69]. Before developing the selected machine
learning models, we treated the data to restructure values,

Fig. 6 Optimizing parameters of ERT
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Table 4 Database attribute description

Attribute Description Type

1 Garage
code

The name and the geographical
position of a car park

String

2 Total
spaces

The total number of parking
spaces in a car park (its
maximum capacity)

Numerical

3 Vehicle
count

The number of spaces
occupied in a parking lot at a
given time

Numerical

4 Update
time

The time and date of the data
update carried out twice an
hour throughout the day

Datetime

5 Stream
time

The time and date of the
parking data release

Datetime

complete any missing ones and eliminate incoherent lines
that distort the findings. For this purpose, we conducted mul-
tiple corrective operations:

• Delete rows with negative numbers of occupied parking
spaces, remove useless columns (features) and aggregate
data per parking lot;

• Attribute a distinct integer number, between 1 and 8, to
every car park name;

• Get the day, month, year and time from the variable “Up-
date time”;

• Retrieve the day of week from the same variable and allo-
cate an integer from 1 (if Monday) to 7 (if Sunday) for
each day;

• Insert a column for a binary variable that indicates whether
the day of week is a weekday or a weekend;

• Calculate the percentage of spaces occupied by dividing
the number of vehicles parked in a parking lot by its capac-
ity and multiplying this ratio by 100;

• Set 100% as the upper limit for parking lot occupancy rates
that exceed this value;

• Replicate, if data is missing for a certain hour, the previous
hour’s value if not the previous week’s value (same day of
preceding week).

After data pre-processing and transformation, our
database contained 11 053 records relating to 8 car parks
covering 167 days. Figure 7 illustrates parking occupancy
distribution over the days of a month as a line plot. We can
clearly notice that the occupancy rate varies greatly during
the month, is quite similar for all the car parks and peaks
on days 3, 14 and 19. The first few days of the month are
characterized by a high occupancy of the parking spaces in
contrast to its end.

The bar chart (Fig. 8) shows themonthly occupancy distri-
butionof the 8parking lots inAarhus. The car park occupancy

Fig. 7 Daily distribution of parking occupancy

Fig. 8 Monthly availability of parking lot

differs from month to month. Parking lot 8 is more occupied
in month 11 than in month 5, its availability is high and at
least stationary. Parking lot 5 is less available in month 8
compared to the other months and its occupancy fluctuates
by a margin of 50%. Parking lots 1 and 6 are fully available
inmonths ofMay and June, therefore their unavailability rate
in this period is zero.

In general, the occupancy rate of parking lots is higher on
weekdays rather than weekends (Fig. 9). It is significantly
dissimilar from one parking lot to another, e.g., parking lot
2 is distinguished by a low occupancy rate while parking lot
5 has a high percentage. Parking lots 3, 4, 7 and 8 are filled
to within 25% on weekends.

The line chart (Fig. 10) hereunder presents the parking
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Fig. 9 Availability of car parks on weekends and weekdays

Fig. 10 Availability data after processing

lot occupancy rate by time of day. Occupancy of most park-
ing lots is subject to a major peak at 1 p.m. when demand
increases. The parking supply in car park 1 is typically stable
with an occupancy rate around 50%, except for a drop to 20%
between 5am and 8 pm. The variation in parking availabil-
ity over the day is practically significant for parking lot 5:
parking demand decreases slightly in the morning, increases
rapidly at noon and diminishes slowly in the evening. In con-
trast, the occupancy rate of parking lot 6 is less dispersed, i.e.,
it is almost constant.

5.2 Experimental results

To evaluate the efficiency of the developed models, the accu-
racy and precision of their predictions, three error metrics are
calculated: root mean square error (RMSE), mean absolute
error (MAE) and coefficient of determination (R2).

RMSE represents the residual variance square root. This
latter is calculated by averaging the squared deviations
between predicted values (̂y) and observed ones (y) [70].
It evaluates all ratings inexactness, either positive or nega-
tive [71]. The lower this metric’s values are, the better the
prediction model performs.

RMSE �
√√√√ 1

p

p∑

i�1

‖yi − ŷi‖. (8)

MAEmeasures the closeness of the prediction to the even-
tual outcomes [70]. It denotes the ratio of the error vector
yi − ỹi one norm to the number of samples p (9) [72]. The
deviations between the model and the observations increase
with the values of this metric.

MAE � 1

p

p∑

i�1

|yi − ŷi |. (9)

R2 quantifies the proportion of variance explained by a
model [73]. It examines the goodness of the technique’s fit
by its ability to predict the response variable [74]. This coef-
ficient is between 0 and 1 and increases with the regression
adequacy to the model. A good fit is indicated by an R2 close
to 1. Conversely, an R2 close to 0 reflects a poor fit, but does
not imply that no relationship can be established between the
variables.

R2 � 1 −
∑p

i�1 (yi − ŷi )2
∑p

i�1

(
yi − yi

)2 (10)

where yi is mean values.
By analyzing the values of these indicators (Table 5), it

is clear that MARS is the least performing model with a R2

less than or equal to 0.061, a MAE greater than or equal to
30.31 and a RMSE larger than or equal to 1203.624 for all
four input sets. ERT provides the best results with a R2 that
exceeds 0.98, a MAE that reaches 2.021 and a RMSE that
attains 15.756. ANN and SVR come in second rank by a R2

of 0.55, a MAE of 13.49 and a RMSE of 571.49.
From R2, ERT based on feature set X0 is the most exact

method scoring a coefficient of 0.988, followed by ANN
relying on feature set X3 and SVR founded on feature set
X2 with performance decreases of 43.927% and 45.242%,
respectively. Considering RMSE, ERT using input set X0
performs best and surpasses ANN employing input set X3
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Table 5 Metrics values
measuring model performance Regressors Input set Error metrics

RMSE MAE R2

ANN X0 870.294 24.632 0.321

X1 929.604 24.174 0.275

X2 584.377 17.257 0.544

X3 571.493 16.489 0.554

SVR X0 770.569 19.407 0.399

X1 616.470 18.110 0.519

X2 587.663 14.488 0.541

X3 619.345 13.495 0.517

ERT X0 15.756 2.021 0.988

X1 22.815 2.323 0.982

X2 518.579 14.164 0.595

X3 519.657 14.580 0.594

MARS X0 1203.624 30.310 0.061

X1 1206.898 30.419 0.058

X2 1249.953 31.166 0.025

X3 1246.830 31.085 0.027

by about 3527% and SVR utilizing input set X2 by around
3629%. In terms of MAE, ERT with explanatory variable set
X0 is the most precise algorithm that is 567% better than
SVR with explanatory variable set X3 and 715% better than
ANN with explanatory variable set X3.

Predictions are more accurate if the model is developed
with feature set X0 containing more details apart from SVR
which generalizes better on unseen data with feature set X2
and ANN which gets the best performance with feature set
X3. For input sets X2 and X3, the three models (ERT, SVR
and ANN) give more or less the same accuracy of forecasts
with a R2 that varies from 0.517 to 0.595 (fluctuation band of
27.876%), a MAE that ranges from 13.495 to 17.257 (varia-
tionmargin of 13.109%) and aRMSE that goes from518.579
to 619.345 (percentage difference of 19.431%).

Concretely, ERT with all four data sets outperforms the
other regressors with any input set. Figure 11 graphically
depicts predictions made by ERT versus observed values.
The expected curve is a straight line through the origin frame.
Using feature sets X0 and X1, ERT yields very interesting
outcomes with a R2 near to 1 (≈ 0.99) and a MAE not
more than 2.33%. Its efficiency increases with the accuracy,
number and information quality brought by the independent
variables, unlike ANNwhich require as little data as possible
to achieve its best performance. SVR is a special case that dif-
fers from the two previous ones by necessitating moderately
complete information to deliver its maximum performance.
The level of detail and accuracy of the information that the
independent variables provide does not have a direct effect

on models’ performance, which depends mainly on their ten-
dency tomodel oneparticular distribution rather than another.

The above results suggest that some algorithms perform
better than others based on the different metrics values
obtained. This means that the algorithmwith the best average
performance should outperform those with the worst. But to
what extent is this difference true and not just the conse-
quence of a statistical fluke? To test the significance of the
average score difference, a statistical analysis is carried out,
specifically the 5 × 2 cv paired Student’s t test.

This statistical hypothesis test, proposed by Dietterich
[97], consists in comparing twomodels (classifiers or regres-
sors). It relies on splitting the database in 2 (50% of the data
for training and 50% of the data for testing) five times. In
each of these five iterations, it fits two regressors R1 and
R2 to the training set and evaluates their performance on the
test one. Then, it alternates the training and test sets such
that the training dataset becomes the test dataset and vice
versa. Finally, it calculates anew each model’s performance,
resulting in two performance difference measures:

ACC (1) � ACC (1)
R1 − ACC (1)

R2 (11)

ACC (2) � ACC (2)
R1 − ACC (2)

R2. (12)

It ends by estimating the mean and variance of the two
differences:

ACC � ACC (1) + ACC (2)

2
(13)
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Fig. 11 Comparative plot between ERT predictions for each input set and real values

Table 6 Results of the paired t
test for X0 MARS SVR ANN ERT

p
value

t
statistic

p value t
statistic

p value t
statistic

p value t statistic

MARS 0.00000008 30.660 0.08093 2.182 0.0000052 229.853

SVR 0.788 −0.283 0.000003 −91.802

ANN 0.00055 −7.825

Table 7 Results of the paired t
test for X3 MARS SVR ANN ERT

p
value

t
statistic

p value t
statistic

p value t
statistic

p value t statistic

MARS 0.00000066 57.066 0.00003 14.246 0.0000097 107.537

SVR 0.804 −0.262 0.00008 −11.683

ANN 0.10955 −1.944

σ 2 �
(
ACC (1) − ACC

)2
+

(
ACC (2) − ACC

)2
. (14)

The t statistic is computed using the variances of the two
differences calculated for the five iterations.

t � ACC (1)
1

√
5

∑5
i�1 σ 2

i

(15)

where ACC (1)
1 is the ACC (1) obtained from the first iteration.

The t statistic is assumed to approximately follow a
t-distribution with 5 degrees of freedom, under the null
hypothesis postulating that the two models R1 and R2 have
equal performance. Given the t statistic, the p value can be
estimated and compared to a previously chosen significance
level, in our case α � 0.05. If the p value is less than α, the
null hypothesis is rejected and thus a significant difference
exists between the two models.

Our four algorithms are compared2by2with twoexplana-
tory variable sets X0 andX3. X1 andX2 are not used because
they are included in X0. The results are summarized in
Tables 6 and 7. The p values when comparing MARS with

any other algorithm are well below 0.05, which means that
any discernible difference between these algorithms is most
likely real. It is therefore possible to confirm that MARS
is the least efficient model among the four tested. In con-
trast, ANN and SVR trained with either X0 or X3 result in
a p value significantly greater than 0.05. Consequently, it
is impossible to reject the null hypothesis. It could just as
easily apply SVR or ANN, and the results would be simi-
lar. In addition, the difference between mean performance
of ERT and remaining algorithms is most likely significant
since the p values are less than 0.05. An obvious result is that
ERT effectively outperforms the rest of the three models. An
exception occurs if ERT is tested against ANN using feature
set X3, where the p value informs that for this variable set,
the two algorithms perform alike. This findingmay be related
to the algorithm stochastic nature, assessment methodology
or differences in numerical accuracy. In general, the average
performances computed with the three error metrics are con-
firmed by the statistical test executed. This shows that model
selection based onmean performance alonemay be sufficient
in some cases.
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Fig. 12 Training time for each machine learning algorithm

Figure 12 displays the training time of each regressor for
each feature set. At first glance, it is remarkable that these
times belong to an interval of great length whose upper limit
is 199.513 s and the lower limit is 0.449 s. ERT and MARS
are characterized by very low computation times that do not
exceed 5 s for the first algorithm and 1 s for the second one.
Training SVR employing any input set takes 104.901 s on
average with a standard deviation of 10.527 s, which is not
surprising considering that all four models consistently gen-
erate estimates of roughly identical quality. ANN’s training
durations are highly dispersed, for example using input set

X3 it needs about 200 s while with input set X1 it requires a
little more than 5 s.

5.3 Cross-validation impact on prediction accuracy

Before analyzing in detail how cross-validation impacts our
models’ efficiency, it was necessary to start by examining the
effect of fold number on their overfitting, consistency and
reliability. This procedure was applied to our database with
several numbers of folds, namely 3, 5, 7 and 10. Figure 13
presents the RMSEmetric derived from the four models with
the different cross-validations. For SVR,RMSEdecreases by
increasing the number of cross-validation folds. Therefore,
the best results in terms of prediction accuracy are obtained
with the tenfold cross-validation. In contrast, RMSE values
related to MARS models increase with the number of folds.
Accordingly, the best performance of MARS is achieved by
dividing the data into 3 equal folds. ANN is characterized by
a non-monotonic RMSE evolution. This indicator reaches
its maximum value when the number of folds equals 5 and
its minimum value when this number equals 7. As for ERT,
RMSE trenddepends on the set of explanatory variables used.
For X2 and X3, RMSE increases rapidly and becomes con-
stant from 7 folds. RMSE of ERT models based on X0 and
X1 first increases, then decreases and finally stabilizes. The
predictions made by ERT are more accurate if the models
with X0 and X1 are validated by tenfold cross-validation.
Yet, those built on X2 and X3 are evaluated by threefold
cross-validation. Typically, the worse performance of ERT

Fig. 13 RMSE results of the different cross-validation techniques
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models is much better or at least comparable to the best per-
formance of other algorithms. Roughly speaking, the tenfold
cross-validation for most models yielded best performance
with respect to the four k-fold cross-validations tested.

Table 8 is mainly intended to compare predictive perfor-
mance of trained models with and without cross-validation.
Its values indicate that the R2, MAE and RMSE indices
tended to improve for all four algorithms as the number of
folds in the cross-validation increased. A first observation
concerns predictions estimated by MARS, SVR and ANN,
which are almost identical for all four feature sets. Thus,
the three metrics’ values are very close in the four cases. It
seems therefore that cross-validation unifies these models’
performance for any combination of explanatory variables.
By contrast, ERT’s effectiveness differs widely from one fea-
ture set to another.

Considering the three performance indicators, the top
scoring model is X3-based ERT with an R2 of 0.852, a MAE
of 7.64 and an RMSE of 171.84. This finding highlights
a considerable improvement in this model’s performance,
which reaches an average of 56% thanks to the cross-
validation. In fact, ERTperformancewithX2 andX3 evolved
positively when they were cross-validated 3 or 5 times. How-
ever, theymaintained the same accuracy levelwhen evaluated
by tenfold or sevenfold cross-validation. Even worse, ERT’s
efficiency with X0 decreased remarkably, as this drop is at
least 100%. ERT using X0 and X1 without cross-validation
showed excellent performance but became less than aver-
age when the database was divided into any number of equal
parts. The most negatively influenced metric is RMSEwhich
rose from an average of 18.5 to an average of 800. Moreover,
the cross-validation did not bring anything toMARS efficacy
since the metrics values are not really changed. It was unable
to improve the prediction accuracy of this machine learning
method and therefore improve its ranking.

Similarly, sevenfold or tenfold cross-validation did not
impact significantly the results of ANN with X0, X2 and
X3. Instead, it minimized the error committed by this pre-
dictor based on X1: R2 increased by 28%, MAE decreased
by 23% and RMSE diminished by 24%. In contrast, ANN’s
prediction precision with any combination of explanatory
variables is remarkably reduced due to the threefold or five-
fold cross-validation. The scores obtained by SVR with X0
are slightly better thanks to the tenfold and sevenfold cross-
validation. Yet, these techniques together with the fivefold
cross-validation contributed to keeping the performance of
the other models. Further on, threefold cross-validation has
an opposite effect on all SVRmodels, a decrease in efficiency
of at least 31% on all error measures is noted.

All these results clearly underline that cross-validation is
able to improve as well as to degrade the predictive capacity
of machine learning algorithms. Its effect depends mainly on
several parameters: underlying model, regularization level,

number of nearest neighbors… Problems also arise if the
assumptions explicitly made by the cross-validation are vio-
lated:

• When the data are dependent, the training and validation
samples are no longer necessarily independent, which can
induce a rather strong bias for the risk estimation of a
learning rule;

• When the time series is non-stationary, simple cross-
validation does not guarantee a reliable prediction of the
“future” from the “past”;

• When estimator selection is performed from an expo-
nential collection [95], the principle of unbiased risk
estimation no longer works.

Overall, algorithm training times and efficiency are
closely related and vary proportionally, i.e., a model is more
accurate if its training time is longer. ERT is superior in
terms of accuracy and computing time compared to other
machine learning techniques. To understand why it is the
best-performing algorithm and how each feature affects its
outputs, counterfactual and contrastive explanations are gen-
erated by implementing SHAP method.

5.4 Prediction benchmark

Each prediction work mainly targets to obtain values as close
as possible to reality. Thus, we compared our best predictions
with those presented in [75]. In that paper, smart parking
is modeled with multiagent system using long short-term
memory neural network. It is evaluated based on the same
sequential real data provided online by Aarhus City Council.
Its authors have adopted a prediction accuracy metric equiv-
alent to our R2. After 400 iterations, this indicator converges
to its maximum and achieves 0.97%.

ERT with feature set X0 reaches a R2 of 0.988, imply-
ing that our model improves prediction accuracy by about
1.821%. Even better, ERT is a simple algorithm that doesn’t
require reinforcement by any other method to excel. In con-
trast, the approach proposed in [75] is considerably complex
because it incorporates an advanced deep learningmodel into
an artificial intelligence system.As a result, ERT is faster than
the other papermodel and needs a very low computation cost.

6 Feature importance

Machine learning models involve numerous complex mod-
els known as “black box” ones, for which understanding
how they combine explanatory variables to make predictions
is exceedingly challenging. Deep learning models such as
artificial neural networks and ensemble models like random
forests, gradient boosting learners or stacking algorithms
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constitute examples of highly talented black box models.
These methods are known for their remarkably accurate out-
put in a wide variety of fields ranging from urban planning to
computer vision. Hence, the greatest task facing researchers
is to interpret the way in which predictors influence predic-
tions, notably with conventional statistical methods.

The following paragraphs outline an alternative approach
to interpreting black boxmodels, labeled Permutation feature
importance [96]. This is a robust tool for detecting features in
a data set that have predictive power, no matter which model
is chosen. It relies on randomly changing each column’s (pre-
dictor variable) values, one column at a time. It then evaluates
the model. That is, it first calculates the baseline error rate,
next computes the same indicator by neutralizing each pre-
dictor variable in turn and finally forms the ratio between
the two values. These returned scores represent the change
in performance of a trained model, after permutation.

This technique refers to a decrease in model score given
a single attribute value is randomly shuffled. It consists in
indicating to what extent the model depends on the feature
by breaking its relationship with the target. It is implemented
through the permutation_importance() function of Scikit
library which takes as input a fitting model, a data set and a
scoring function. In our case, ERT without cross-validation
is used as fitting model and the three error metrics as scoring
function. Not using cross-validation can be explained by our
intention to highlight the algorithm’s intrinsic principle with-
out any other technique intervention. The results are plotted
in the graphs below.

By inspecting the three graphs, it is easily seen that the
three data-generating predictors (Garage code, Month and
Hour) have relatively large values for all three scores, mean-
ing that they have significant predictive power in our model.
On the other hand, the other predictors show relatively low
or zero scores, implying that they are not as relevant to model
decisionmaking.Garage code is the explanatory variable that
provides the most valuable information for predicting park-
ing occupancy. It helps to increase R2 value by 1.6, decrease
MAE value by 30 and reduce RMSE value by 2000. Month
and Hour also appear to be important predictors as they
improve R2 score bymore than 0.5, MAE score by at least 14
and RMSE score by no less than 600. The importance of the
Day and Day of the Week features is relatively small given
that randomly shuffling their values only degradesmodel per-
formance by 0.2 in R2, 5 in MAE and 250 in RMSE. Year
does not attribute to the model’s decision process and there-
fore has no role in estimating predictions. This little or no
impact on ratings prompts consideration of feature selection
to remove these irrelevant or redundant predictors in future
analyses, thus saving time and resources without sacrificing
accuracy (Fig. 14).

Permutation feature importance results can also be visual-
ized by means of a detailed boxplot that presents the average

feature importance and the corresponding standard devia-
tions. The graph’s X-axis indicates the importance score
(RMSE, MAE or R2) and the Y-axis illustrates as many box-
plots as features sorted by importance. The top variable being
the most important, and the bottom being the least impor-
tant. Each boxplot displays the importance values (minimum,
maximum, median, first quartile and third quartile), although
they are not clearly visible due to small deviations.

The three plots in Fig. 15 assert that Garage code strongly
contributed to improving all three scores, an enhancement
of 2089 with a standard deviation of 23 for RMSE score, a
decrease of 31 with a standard deviation of 0.25 for MAE
score and an increase of 1.6 with a standard deviation of
0.02 for R2 score. Second place belongs to Month feature
whose contribution is estimated to be an improvement of
837 with a standard deviation of 16 for RMSE, a diminution
of 13 with a standard deviation of 0.18 for MAE and an aug-
mentation of 0.65 for R2 with a standard deviation of 0.013.
For the third influencing parameter, Hour, its contribution is
moderate with a decrease in RMSE values by 569 (± 8.5),
a reduction in MAE values by 12.7 (± 0.13) and a small
increase in R2 values by 0.44 (± 0.007).

As a conclusion, ERT’s outstanding performance based
on X0 and X1 is mainly due to modeling parking occupancy
by the three most important explanatory variables, namely
Garage code, Month and Hour. ERT’s prediction accuracy
with X0 slightly exceeds that of ERT’s predictions with X1
owing to Day of Week’s contribution which belongs to X0
and not to X1.

7 Model prediction interpretation

Shapley additive explanations (SHAP) is an approach that
unifies methods like LIME [76 77] and DeepLIFT [78 79]
under the class of additive feature attribution methods [80
81]. It describes the performanceof amachine learningmodel
based on game theory and local explanations [82]. It dis-
tributes the total gain or payoff among players, depending
on the relative importance of their contributions to the final
outcome [83 84].

It approximates an original model f with input variables
x � (x1, · · · , xm), where m is the number of independent
variables, by an explanation model g with simplified input
x

′
expressed as:

f (x) � g
(
x

′) � φ0 +
p∑

i�1

φi x
′
i . (16)

φ0 represents the constant value when all inputs are tog-
gled off. Inputs x

′
and x are related through a mapping

function, x � hx
(
x

′)
. Equation 16 admits a single unique
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Fig. 14 Permutation feature importance results

solution (Eq. 17) that satisfies three axioms: local accuracy,
consistency and missingness [85]. The first property implies
that the sum of individual feature attributions must be equal
to the original model prediction, i.e., the explanation model
should match the original model. The second one states that
changing a larger impact featurewill not diminish that input’s
attribution and the last one guarantees that no importance is
accorded to the missing features in the original input.

φi ( f , x) �
∑

z′⊆x ′

∣∣∣z
′ ∣∣∣!

(
p −

∣∣∣z
′ ∣∣∣ − 1

)
!

p!

[
fx

(
z

′) − fx
(
z

′ \i
)]

(17)

where
∣∣∣z

′ ∣∣∣ is the number of nonzero entries in z
′
, φi is the

Shapely values and f
(
hx

(
z

′))
≈ g

(
z

′)
is ensured by local

methods when x
′ ≈ z

′
.

In [85], Lundberg and Lee suggested SHAP values, which
is a standardizedmeasure of feature importance, as a solution

to Eq. 17, where fx
(
z

′) � f
(
hx

(
z

′))
� E[ f (z)|zS] and S

is the set of nonzero indices in z
′
.

TreeSHAP is a variant of SHAP proposed in [86] and ded-
icated to tree-based machine learning models. And since it is
the case of ERT, we applied it in our study. SHAP values are
estimated thanks to the Shap Python library and represented
graphically bymeans of four plots: variable importance, sum-
mary, dependency and individual force.

In variable importance plot, features are vertically sorted
by their average impact on model output, allowing for a
global interpretability and clarifying the whole structure of
the model. Based on Figs. 16, 17, 18 and 19, the most
important feature for predicting parking availability with an
average impact greater than 20% is Garage code followed
by Hour in second position and Month in third rank, and
this is for the four sets of independent variables. Year is the
least powerful indicator with a mean absolute SHAP value of
almost zero. Day andDay ofweek havemore or less the same
importance, varying the absolute parking occupancy rate on
average by 2.5% and slightly exceeding Weekend variable
which improves predictions by about 2.2%. Except for Day
feature, whose average impact differs from ERT model with
X0 toERTwithX1, the other variables retain the same impor-
tance.
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Fig. 15 Mean feature importance and related standard deviations

Fig. 16 Variable importance plot of ERT with X0

Fig. 17 Variable importance plot of ERT with X1

A summary plot combines feature importancewith feature
effects. It orders independent variables based on their impor-
tance to propel the model’s predictive capability [82]. Every

Fig. 18 Variable importance plot of ERT with X2

Fig. 19 Variable importance plot of ERT with X3

dot represents the SHAP value of an input variable and an
instance [87]. The color maps the value of the features, from
low to high. ERT with X0 and ERT with X1 models ignored
Year input, i.e., it has no effect on their outputs. Figures 20
and 21 reveal that the closer is the year-end, the higher is the
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Fig. 20 SHAP summary plot of ERT with X0

Fig. 21 SHAP summary plot of ERT with X1

Fig. 22 SHAP summary plot of ERT with X2

Fig. 23 SHAP summary plot of ERT with X3

SHAP values of these months, and the greater is their posi-
tive impact on the predicted parking occupancy rate. Parking
lot identifier has no clear behavior regarding its values, high
positive SHAP values correspond to parking lots with high
identifiers and low negative ones correspond to parking lots
with low identifiers but medium values refer to both parking
lots with high and low identifiers. The early hours of the day
negatively impact the model’s output and cause low predic-
tions contrary to the last hours which lead to high forecasts.
The last-days of the week are typified by a decrease in the
parking occupancy rate, the beginning and the middle of the

week are characterized by an increase in this rate (Fig. 22). In
other words, parking lots are less busy on weekends than on
weekdays as predicted by the model (Fig. 23). The influence
ofDay variable (days of themonth) is not evident enough, the
only conclusion to be drawn is that low values (its beginning)
are associated with negative impacts on parking availability
forecasts.

Adependence plot is a scatter plot that shows the effect of a
single feature on the predictions made by a machine learning
model. It traces a feature’s value relative to its SHAP value
across many samples. Each point is a single prediction in the
data set. The color corresponds to a second variable that can
have an interaction effect with the feature that has been plot-
ted [88]. The following figures display the marginal effect of
Garage code feature on the expected outcome of ERT mod-
els as well as its interaction with Month, Day of week and
Weekend variables. The first attribute is picked since it is
the most important in line with the above and we needed to
further highlight the spread and variation of its SHAP val-
ues. The second features are selected automatically as they
interact the most with the chosen variable. The impact of
Garage code is highly nonlinear, non-monotonic and very
complex for all four curves, demonstrating that examining a
single parameter, whether it is positive or negative, is often
not conclusive. Its Shap values are dispersed in a significant
way and vary from one parking lot to another, i.e., it strongly
influences predictions performed for some instances and not
for others. In ERT models with X0 and with X1, its impact
on the predicted output is positive for car park 5, both pos-
itive and negative for parking lots 1 and 6, and negative for
the rest. When Garage code is equal to 6, SHAP values for
May, June and July range from -20% to 20% and increase
up to 55% for August, September, October and November
(Figs. 24 and 25). Despite some noise, SHAP values of the
parking lot identified by 2 are less than −20% for the last
five months and under 0% for the first two ones. Disregard-
ing graphics coloring, the variation amplitude of the SHAP
values is clearly lower in ERT models with X2 and X3 than
with X0 and X1. Furthermore, their nature has not changed
unless for parking lot number 6 where it has become purely
positive (Figs. 26 and 27). Globally, there is no explicit rela-
tionship between the SHAP values of Garage code and the
values of the covariates but their interaction is always impor-
tant.

A force plot illustrates how the features in the model
contribute to pushing its output from the base value (mean
prediction) to the actual outcome, thus providing a local inter-
pretability [88]. Features marked in red force the prediction
upward, while those in blue force the prediction downward.
The graphs above explain the prediction for the first example
of the testing dataset. Its base value is equal to 1%, whereas
the prediction is equal to 0.65% for ERTmodels with X0 and
X1, since their performance is practically identical, 0.98%
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Fig. 24 SHAP dependence plot of ERT with X0

Fig. 25 SHAP dependence plot of ERT with X1

Fig. 26 SHAP dependence plot of ERT with X2

for ERT with X1 and 0.99% for ERT with X0. The observed
value for that instance is equal to 0.63%. Garage code and
Hour are the features with the biggest impact as the visual
size indicates the magnitude of the feature’s effect. They
resulted in a decrease in predictions and this is also the case
forMonth and Day variables. Unlike general rule established
from Figs. 16 and 17, Day attribute’s impact reduced when
calculating the ERT model’s prediction based on X0 than on

Fig. 27 SHAP dependence plot of ERT with X3

Fig. 28 SHAP force plot of ERT with X0

Fig. 29 SHAP force plot of ERT with X1

Fig. 30 SHAP force plot of ERT with X2

X1.Day ofweekweakly affects ERTmodelswithX0 andX2,
it drives predictions toward higher values for the first model
and lower values for the second one. The positive contribu-
tion of Weekend binary feature is very small to zero, which
means that the predictions made by ERT model based on X3
are not influenced at all by this variable’ values (Figs. 28, 29,
30 and 31).

Fig. 31 SHAP force plot of ERT with X3

123



Progress in Artificial Intelligence (2022) 11:367–396 391

Fig. 32 Global force plot of ERT with X0

Fig. 33 Global force plot of ERT with X1

Above force plots are for individual observations only,
if all observations plots are combined and sorted by out-
put value, an interactive plot is derived, called global force
plot. This graph shows SHAP value make-up for the entire
dataset. The X-axis of this graph represents all observations
in the dataset sorted by similarity, by output value, by original
sample ordering or by each feature value. The Y-axis is sim-
ply an individual force graph for that observation showing by
default its output value. This chart provides a quick summary
of record position, output value and relevant parameters that
push the prediction up (in red) or down (in blue).

Figures 32, 33, 34 and 35 represent a feature’s responsi-
bility for changing model output while sorting the samples
by output value. At a high level, the diagram indicates that
the model placed a lot of emphasis on Garage code, which
is consistent with each parking lot being characterized by

its location-dependent attendance level, accounting for wide
variation in car park occupancy rates. Hovering over the area
highlighted in red, it is apparent that most observations push-
ing predicted values upward are for records with 5 and 6 as
Garage code values. By contrast, data vectors with values
below 8 for Hour tend to generally decrease predicted val-
ues, which is expected because parking lots are not very busy
in night time unless they are residential parking lots. Other
variables’ values do not follow a given trend, thus not under-
standing their influence on the models’ outputs. Let A, B, C
and D be four randomly selected records from our database,
with:

A = (Garagecode � 7, Month � 9, Day � 5)t

B = (Garagecode � 1, Month � 7, Day � 27, Hour � 14)t

C = (Garagecode � 1, Day � 29, Hour � 15)t

D = (Garagecode � 5, Day � 1, Hour � 0)t
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Fig. 34 Global force plot of ERT with X2

Fig. 35 Global force plot of ERT with X3

In the first two vectors, the variable Day drives predictions
upward, while in the last two ones it drives them downward,
even though their values are almost successive.

Another interesting plotting function from SHAP library
permits an easy and global interpretation of feature contribu-
tion in vertically stacked 2D matrices. These are associated
with a bar chart on the right displaying the feature impor-
tance in descending order and a curve on top depicting the
prediction output for all instances. Each 2Dmatrix is a hot to
cold color scheme indicating positive (red pixels) or negative
(blue pixels) contribution for each feature.

To note that for explanation purpose, only 1000 data points
were captured in the heatmap plot as there is a homogeneity
in the overall dataset (Figs. 36, 37, 38 and 39).

The four graphs below emphasize the strong contribution
of Garage code and two other features (Hour and Month).

Garage code variable improves prediction for more than 200
observations, resulting in a contribution greater than 20%
with SHAP values of over 40. In second place comes the
contribution (10%–18%) of Hour feature with SHAP values
ranging between 20 and 30. A small contribution of Month
attribute not exceeding 8% follows in third rankwith a SHAP
value just below 20. The rest of the features’ contribution is
not relevant as SHAP values are close to 0.

In addition, above the maps, model output for each
instance is plotted. These curves reveal that output value
variation is more or less identical for the four feature sets:
parking occupancy rates are high for the first few instances,
decrease afterward and return to increase slightly again from
the 800th instance. The heatmaps also exhibit that high pre-
dictions (high values in f (x)) are coupled with high SHAP
values of the variable Garage code. This again confirms the
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Fig. 36 Heatmap of ERT with X0

Fig. 37 Heatmap of ERT with X1

Fig. 38 Heatmap of ERT with X2

strong correlation between this feature and parking occu-
pancy rate.

In short, Garage code has the greatest influence on park-
ing availability prediction and strongly interacts withMonth,
Day of week and Weekend features. Its SHAP values do not
evolve in line with a marked trend, this may be because it is

Fig. 39 Heatmap of ERT with X3

a categorical variable and its values do not have a numerical
meaning. Thus, this predominant feature is the most corre-
lated variable with the parking occupancy rate, which may
explain ERT’s performance. Hour and Month notably influ-
ence predictions produced by the concernedmodels and their
correlation coefficient is close to 1, improving further their
precision.

8 Conclusion

In this paper, we suggested a model-based practical frame-
work for predicting parking occupancy rate to help drivers
quickly find where to park. We particularly interested in the
way input variables influence the accuracy of predictions.
We used, for this purpose, four feature combinations. We
compared the ability of four different machine learning algo-
rithms in modeling our target from these features. We got
as results that ERT built on X0, the least computationally
intensive algorithm compared to ANN and SVR, is the most
efficientmethod.We then tried to understandwhy it performs
best and analyze how each variable contributes to its outputs
by applying SHAP values.We discovered, through visualiza-
tions, important nonlinear andnon-monotonous relationships
between independent variables that heavily affect predic-
tions.

As a constraining factor, in order to maximize the exact-
ness of predictions, it would be preferable to shorten predic-
tion time to less than 10 min instead of one hour. Promising
improvements may also involve supplementing historical
data with real-time information and events calendar. Given
that an event in the vicinity will inevitably increase park-
ing demand compared to usual. Having a general idea about
parking availability is necessary but not sufficient to elimi-
nate problems associated with searching for vacant spaces. It
can be complemented by more precise information such as
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the probability of a place be left vacant until the driver arrival
and the coordinates or identifiers of available spaces.
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