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Abstract
The task of object detection and tracking is one of the most complex and challenging problems in artificial intelligence (AI)
systems that model perception. Object tracking has practical importance in AI applications like human–machine interaction,
robotics, autonomous driving and extended reality. The fundamental task of object tracking is to detect objects in one video
frame and maintain their identities or infer their trajectories across all subsequent frames. Real-world object tracking systems
typically operate in highly complex and dynamic environments, with constantly changing object appearance and scene
conditions, making it challenging to adequately characterize target objects with a single model. Traditional AI solutions
rely on modeling handcrafted features based on rigorous mathematical formulations. This process is a highly non-trivial
task and severely restricts end solutions to narrowly focused application settings. Today, deep learning techniques are the
most preferred approaches due to their high generalization ability and ease of implementation. This paper surveys the most
important deep learning-based appearance modeling techniques. We propose a unique taxonomy of approaches based on the
architectural elements and auxiliary strategies that are employed in deep learning models for robust appearance modeling. The
surveyed methodologies include data-centric techniques, compositional part modeling, similarity learning methods, memory
and attention mechanisms, as well as approaches that integrate differentiable models within deep learning architectures to
explicitly model spatial transformations. The fundamental principles, implementation details and application contexts, as well
as the main strengths and potential limitations of the approaches are highlighted.We also present common datasets, evaluation
metrics and performance results.

Keywords Visual tracking · Robust object detection · Generative modeling · Deformable part modeling (DPM) · Similarity
learning · Attention mechanism

1 Introduction

Visual object tracking, or simply object tracking, is the pro-
cess of maintaining an estimation of a specific object’s (or set
of objects’) position(s) in a video sequence. This is closely
related to the problem of video object detection [1], in which
the task is to localize target object(s) in each image frame of a
video sequence. However, with object tracking, an additional
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task is to predict a trajectory of the detected object(s). Inmany
cases, object detection is a sub-task of visual tracking. The
simplest case of visual tracking, single object tracking (SOT),
considers the problem of tracking a single object in a video
stream. The tracking task in most cases can be effectively
accomplished by simply detecting the target object in each
video frame [2]. Multiple object tracking (MOT) is a more
complex problem involving the tracking of many objects
simultaneously. Because of the complexity of MOT tasks,
additional algorithms are often utilized to enhance robust-
ness.

Important applications of object tracking include video
surveillance [3], sports broadcasts [4], civil security applica-
tions [5], human–machine interaction [6], augmented reality
[7], robotics and autonomous driving [8].

Visual appearance is the most important characteristic
of physical objects that enables—in both biological and
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machine cognition—the effective recognition of different
objects. Appearance modeling is aimed at encoding func-
tional representations of visual features of objects that
preserve their meaning under different viewing conditions.
This is considered the most important task of the visual
tracking problem [9,10]. The main task in robust appear-
ance modeling is to extract useful visual information from
training images that are invariant under different real-world
phenomena (e.g., varying illumination, scale changes, occlu-
sions and deformations). The learned visual representations
are then used to aid detection and tracking, thus making it
possible to accurately track objects regardless of variations
in object or scene appearance.

Object tracking settings are usually highly dynamic in
nature, with constantly changing object appearances and
environmental conditions. The typical tracking setting is
characterized by complicating factors such as object interac-
tions, camera motion, cluttered backgrounds, non-uniform
illumination, motion blur, changing object scales, occlu-
sions, varying view angles, nonlinear object deformations,
and changing scene conditions. Under these circumstances,
a target object model captured under particular conditions
may be incapable of representing the object in subsequent
frames when the viewing conditions change.

1.1 Related works

Given the practical importance of visual tracking, a large
number of surveys have been conducted on different aspects
of tracking. Most of these surveys are dedicated to either
classical machine learning approaches (e.g., [4,11–15]) or
deep learning-based tracking techniques (e.g., [16–20]),
while a few others (e.g., [21,22]) deal with both classical
and deep learning approaches. Many surveys treat visual
tracking techniques from the perspective of a given tax-
onomy defined according to various criteria [18–20,22].
For instance, Abbass et al. [16] classified tracking algo-
rithms into methods that employ generative or discriminative
models and techniques that utilize a combination of both
approaches. They then presented an elaborate discussion of
deep learning-based trackers under these broad methodolog-
ical themes. Li et al. [20] introduced a taxonomy on the basis
of network structure, function and training and presented
a detailed description of deep learning-based trackers from
the point of view of the proposed taxonomy. Similarly, in
[19] Xu et al. categorized trackers into three groups, namely,
deep network embedding-, description enhancement-, and
end-to-end-based trackers. They further presented a detailed
discussion onobject tracking architectures and trainingmeth-
ods for deep convolutional neural network (DCNN)- and
recurrent neural network (RNN)-based trackers. Fiaz et al.
[22] focused on techniques for tracking objects in noisy
images. They classified visual tracking methods into corre-

lation filter- and noncorrelation filter-based approaches and
provided an extensive treatment of the common techniques
in each of the categories based on the general architectures
and tracking procedures.

Other works treat object tracking methods based on their
constituent components (e.g., [15,21]) or the main sub-tasks
[12,14,17] in the tracking pipeline. Notably, [15,21] pre-
sented deep learning-based visual trackers based on their
key components and discussed extensively the application
of deep learning methods in each component. In [15], Luo et
al. classified MOT algorithms according to three different
criteria: initialization method, image processing approach
and output type. They then presented a generalized object
tracking pipeline and the essential components ofMOTmod-
els and, for each component, discussed the common issues
and implementation details. Sugirtha and Sridevi [23] focus
on the various stages of video object detection as well as
tracking. [21] focuses exclusively on tracking-by-detection
frameworks and the application of different deep learning
techniques in the various sub-tasks of tracking.

Several surveys [4,21,24–27] deal with tracking issues
in specific domains. These include animal tracking [25,28],
human tracking in specific contexts (e.g., in football games
[4,24]), football tracking [26], vehicle tracking [28,29],
pedestrian tracking [21,24], or both vehicle and pedestrian
tracking [27].

Datasets, evaluation metrics and extensive analysis of the
performance of different trackers are presented in [16–18,20,
22,24]. In addition to these surveys, the performance results
of many state-of-the-art trackers are presented in the reports
of annual object tracking competitions—notably, the Visual
Object Tracking (VOT) for SOT trackers [30–32], and the
Multiple Object Tracking (MOT) challenges [33].

Despite the importance of appearance modeling in visual
tracking, only a few surveys [11,12] are dedicated solely
to appearance modeling. However, even these surveys focus
exclusively on classical approaches to appearance modeling.
Till date, no single work has covered deep learning-based
approaches to appearance modeling in sufficient detail. We
propose this survey to address this gap.

1.2 Scope and outline of study

In view of the issues that have already been tackled by pre-
vious survey papers, we limit the scope of this review to
studying deep learning-based robust appearance modeling
techniques. We specifically focus on special deep neural net-
work topologies and auxiliary strategies that are employed
in conjunction with classical deep CNNs for invariant repre-
sentation of visual appearance features. The techniques are
aimed at improving the robustness of object tracking models
in general settings. In addition, we discuss common evalua-
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tion metrics and present quantitative performance results on
several state-of-the-art visual trackers.

The paper is structured as follows. Section 1 provides
a general background to the problem of object tracking,
and highlights the importance of appearance modeling in
visual tracking. It also explores related surveys of deep learn-
ing approaches to object tracking, and outlines the main
differences with the current work. Section 2 presents a gen-
eral framework of visual tracking and the various subtasks
involved in the tracking process. In Sects. 3 to 7, we conduct a
thorough survey of state-of-the-art deep learning approaches
for encoding robust appearance features for object detec-
tion and tracking tasks. Section 8 presents common datasets,
evaluation methods and performance results of the surveyed
approaches. In Sect. 9, we summarize and discus the major
issues of object detection and tracking algorithms. Section 10
explores potential developments and directions for future
research. Finally, in Sect. 11, we conclude by recapping the
main issues discussed in this work.

2 Appearancemodeling in tracking

In this section, we present a generic structure of object
tracker in the context of deep learning and summarize general
approaches to appearance modeling based on deep learning
techniques.

2.1 General framework of object trackingmodels

We present a generalized architecture of object tracking
models and briefly describe its components. We utilize the
conceptual framework for object tracking proposed byWang
et al in [10]. Per this framework, a tracker is essentially made
up of a number of distinct components, each performing
different functions: motion model, feature extractor, obser-
vation model, model updater, and ensemble post-processor
[10]. With some modifications, we represent this generic
architecture in the context of deep learning-based visual
tracking in Fig. 1.

The appearancemodel encodes invariant representation of
visual features, while the motion model estimates the loca-
tion of the target object in subsequent frames.As shown in the
diagram, the extracted features are used to build both appear-
ance and motion models, which together form the basis for
the observation model used to make predictions about target
locations. In a deep learning setting, the observation model
may be a neural network sub-model that aggregates the out-
puts of the appearance and motion models. An often critical
component of most online trackers is the model updater. It
performs periodic updates to allow temporal context of the
video sequence to be incorporated in the tracking process.

Theremay also be an ensemble post-processor [10] (which
we termed Auxiliary Module) for performing additional
functions such as fusing the predictions of several track-
lets in cases where multiple observations are made about the
same object(s) (see Fig. 1). In particular, the data association
and affinity computation [17] are common tasks that pro-
vide additional information that can be used to compensate
for detection errors, and helps to localize target instances or
to recover missing observations. Other post-processing tasks
may include the removal of false detections or interpolating
trajectories in case of discontinuities (e.g., due to occlusions)
[34,35].

2.2 Overview of common Deep Learning approaches
to appearancemodeling

Invariably, the first step of object tracking involves learn-
ing an appearance model for the objects to be tracked. This
requires extracting a compact set of invariant image features,
based on which the tracking can be performed. We present
themost common approaches to deep learning-based appear-
ance modeling in the following sub-sections.

2.2.1 Classification-based deep CNN trackers

The simplest deep learning-based tracking approaches uti-
lize deep convolutional neural networks as binary classifiers,
where the main tracking task consists in distinguishing
between the target object and background in each video
frame. In general, feature extraction takes place in the initial
CNN layers, while the classification process is performed in
the last layers of the CNNmodel (e.g., [36–39]), but can also
be performed in a separate machine learning model ( e.g.,
in [40,41]). Support vector machines (SVMs) are particu-
larly popular in this regard [40–43]. The described trackers
are essentially end-to-end deep networks that directly pre-
dict the presence of target objects in the video frames under
consideration. Some works [44] propose training CNN clas-
sifiers online to perform tracking. However, since the amount
of training data that can be obtained online for training is
naturally small, online training approaches are subject to
severe overfitting. To overcome this limitation, approaches
[36,41,45] have been proposed to train CNN models offline
with external images or videos. Typically, to extract useful
features, many approaches utilize off-the-shelf deep CNN
models that have been pre-trained on large-scale datasets.
Because of the domain shift problem [46], it is often neces-
sary to fine-tune models using data from the target domain.
In [45], Wang et al., for instance, performed offline train-
ing on large-scale image datasets and then fine-tuned online.
[41] utilized pretrained CNN models and performed online
learning using SVM.
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Fig. 1 General structure and workflow of object tracking algorithms

The main advantage of classification-based tracking
approaches is the simplicity of the problem formulation and
the ability to work seamlessly with large-scale datasets using
pre-trained image classificationmodels.However, because of
this simplicity, it is often limited to SOT task or less chal-
lenging MOT scenarios.

2.2.2 Correlation filter-based trackers

Correlation filter (CF) [47] approaches have been widely
used in deep learning-based tracking [48–53]. Correla-
tion filter kernels utilize appearance features extracted by
CNN models to perform cross-correlation to associate and
locate target objects. The technique translates complex time-
domain operations to simple, element-wisemultiplications in
theFourier domain.Becauseof this simplicity, computational
efficiency and high performance, correlation filters-based
methods have becomeone of the most popular approaches
for matching and locating target objects.

2.2.3 Tracking-by-detection approaches

Currently, the overwhelmingmajority of deep learning-based
tracking algorithms are based on the so-called tracking-
by-detection approaches. They perform tracking in two
stages—detection and association. This involves first local-
izing target objects with object detectors in the initial frame
and then finding correspondences among the initial detec-
tions and future detections in each subsequent frame. Such
a decoupled formulation of the tracking problem allows to
effectively tackle each of the two tasks—object detection
and temporal association–separately through different robust
appearance modeling techniques. A detailed scheme of this

framework is shown in Fig. 2. We describe the important
tasks below.

(a) Detection. The first step in tracking is usually to initialize
the detector with a bounding box that describes the current
location of the target. This can be accomplished manually
or automatically [15]. For automatic initialization, bounding
box proposals for probable target locations are generated by
pre-trained object detectors. Many approaches utilize stan-
dard CNN-based object detectors such as Faster R-CNN
(e.g., in [54]), SSD (e.g., in [55]) and YOLO (e.g., in [56]).
Since two-stage detection frameworks such as [54] are gen-
erally more robust than their one-stage counterparts [57]
like SSD [55] and YOLO [56], they are more commonly
used in applications where robust performance is critical and
computational efficiency is not a major concern. Two-stage
detectors (shown in the diagram in Fig. 2) compute region
proposals and align the encompassed features in the first
stage and then predict their categories in the second stage.
In contrast, one-stage detectors classify features in the first
stage straightaway.While standard object detection pipelines
are commonly used for the detection task, many recent
approaches [56] have proposed to augment these detectors
with additional robust appearance models or utilize custom
detection models (e.g. [58–60] for robust object detection).
Automatic target initialization requires that arbitrary targets
in the initial frame be accurately detected and, in the case
of MOT, appropriately assigned identifiers. However, owing
to problems associated with complexity of real-world track-
ing settings, detections may be poor for arbitrary objects.
To alleviate this problem, many approaches utilize advanced
appearance modeling techniques to enhance the detection
accuracy and robustness. This allows to more effectively
detect the target objects at the initialization stage, as well as
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Fig. 2 A generalized tracking-by-detection-based appearance model-
ing framework for robust visual tracking. It incorporates a two-stage
detection scheme and data association sub-models as the main compo-
nents. Data association primarily involves re-identification and affinity

matching. As depicted here, different techniques are utilized to encode
robust features for detection and for extracting invariant features from
the detected bounding boxes for re-identification

perform re-identification (Re-ID) and re-detections in subse-
quent frames regardless of appearance variations.

(b) Re-identification. For each of the generated bound-
ing boxes, visual features are extracted for use by a re-
identification sub-network. In general, the regions within the
detector bounding boxes are taken as positive training sam-
ples,while regions outside the boundingboxes are considered
as negative training data. Thus, for each object, there usually
exists only one positive target sample and potentially infi-
nite negative ones. To solve this sample imbalance problem,
some authors [61] have proposed to sample several posi-
tive examples around the vicinity of each bounding box.
However, this degrades the quality of positive samples and
ultimately contributes to poor performance. State-of-the-art
approaches tackle the data imbalance problem by utiliz-
ing advanced appearance modeling techniques that allow to
encode invariant representation of visual features using one
accurate positive sample generated by the detector. While
both detection and re-identification need good features for
robust performance, they typically utilize different kinds
of features [62]. The detector performs inference at the
object level (i.e., using high-level semantic features that are
obtained fromdeeper layers), while re-identification operates
on invariant, low-level features from shallower layers that
allow to encode intra-class variations. Thus, it is common

to adopt two different sets of robust feature representation
schemes for detection and re-identification.

(c) Auxiliary tasks. In many state-of-the-art tracking algo-
rithms, especially in MOT, additional subtasks such as
affinity computation are frequently used to improve track-
ing performance in challenging situations. Several different
techniques [63–66] have been proposed to enhance data asso-
ciation or compute affinity for matching candidate objects
with target instances. In the literature, some of the most
popular techniques include Bayesian methods (e.g., [63]),
deep reinforcement learning (e.g., [64]), Hungarian algo-
rithm (e.g., [66]), particle filter (e.g., [145] [67]) and linear
programming (e.g., [65]).Most recently, a number of authors
[68,69] have proposed replacing these data association tech-
niques based on heuristics with differentiable neural network
sub-models.

As a result of recent advances in robust visual feature
embedding techniques, a number of authors [70,71] have
proposed using detections alone to accomplish object track-
ing. These approaches formulate the tracking problem as a
frame-to-frame re-identification task. For instance, in [70],
Bergmann et al. proposed a detector-only tracking approach
that outperformed more complex models in a range of mul-
tiple object tracking tasks on standard benchmarks. In this
case, the re-identification model was trained offline and
employed to perform detections in the tracking process.
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Fig. 3 Taxonomy of advanced deep learning-based appearance model-
ing methods discussed in this paper

However, Jia et al. [72] suggests these approaches may be
weak against adversarial attacks. Other recent approaches
[62,73–76] have suggested jointly performing detection and
tracking as a one-step process so as to better leverage both
processes. For instance, in [73] Feichtenhofer et al. applied
both detection and tracking as complementary processes for
better performance. That is, trajectory predictions are used
to refine detections and vice versa.

2.2.4 Advanced deep learning-based appearance modeling
techniques

As outlined above, classical deep learning techniques are
inadequate for appearance modeling in complex domains.
To overcome this limitation, several lines of work have
been proposed. In the following sections, we explore these
approaches in detail using the taxonomy depicted in Fig. 3.
These advanced appearance modeling techniques facilitate
invariant feature representation that enables accurate and
robust detection and re-identification.

3 Data-centric approaches

One of the most important factors that accounts for the
astounding success of deep learning approaches in machine
vision tasks is the availability of large and rich annotated
training data. However, visual tracking tasks usually involve
dealing with arbitrary objects in an online manner, where
the possibility of obtaining relevant training data in suf-
ficient quantity is severely limited. This limitation often
results in relatively poor generalization performance of deep

learning methods in object tracking tasks as compared to
other machine vision settings like object classification.Many
authors have proposed to alleviate this problem by utilizing
various techniques to generate large and diverse training data
that cover all possible appearance conditions.

3.1 Manual data augmentation

An important problem in many practical machine vision
applications is the class imbalance problem [77,78]—a sit-
uation where training data is excessively skewed towards
some particular categories.More specifically, in object track-
ing settings, this is usually a relative scarcity of positive
instances compared to negative ones [79,80]. This presents
enormous difficulties to creating appearance models that
are robust against different view conditions. One way to
address the problem is by employing manual data augmenta-
tion techniques [81,82]. These approaches focus onmanually
generatingmore diverse positive samples that capture all pos-
sible appearance variations in the particular setting. In [81]
Bhat et al. exploited different data augmentation strategies
where positive samples are manually created to improve the
robustness of the resulting model in object tracking tasks.
Approaches utilizing synthetically generated data have also
been suggested [83–85] to provide diverse positive samples
for improved generalization performance.Augmenting train-
ing data with negative samples has also shown to be effective
in visual tracking. For instance, in [79], Zhu et al. proposed
to improve the discrimination of targets from semantic back-
ground (i.e., other objects in the scene) by introducing hard
negative samples into the training data through data augmen-
tation.

Despite the fact that manual augmentation techniques
have successfully been used to improve robustness of deep
learning models in many machine vision domains, they have
limited scope of application in visual tracking domains. The
main reason for this limitation is that in many visual track-
ing tasks, target objects are not usually known a-priori; the
appearance details are determined online only upon initial-
ization, making it challenging to apply manual augmentation
in the tracking process. In addition, the process of creat-
ing new samples usingmanual data augmentation techniques
such as [81,82] is notoriously time consuming and can only
be achieved by an expert with an extensive knowledge of
the end application domain. Moreover, in many cases, the
manually created data may not be semantically rich and
meaningful to capture complex appearance variations in real-
world settings. This can lead to poor performance in practical
applications. These issues are addressed by generative mod-
eling techniques that perform automatic data augmentation.
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3.2 Generative modeling

A recent trend is to employ deep learning algorithms to
automatically generate relevant training data to extend and
diversify the original data. The main idea of generative mod-
eling is to automatically create “artificial” data that contain
predictive features as the tracked instance. The use of gen-
erative methods is desirable both from the point of view of
their ease of implementation and from the point of view of
their scope of application; models based on them are gen-
erally invariant under more diverse transformations of the
target appearance, including complex nonlinear transforma-
tions which cannot be generated manually.

3.2.1 Automatic data generation based on Generative
Adversarial Networks

The most popular class of approaches [80,86,87] for gen-
erating training data in object tracking domains is based
on generative adversarial network (GAN) [88] architectures.
The GAN approximates the distribution of the input data
by sampling from that distribution. This, thus, overcomes
problems of sample scarcity and data imbalance. A GAN is
a composite neural network made up of a generator and a
discriminator that are designed to compete with each other
(Fig. 4). Usually, the discriminator is simply a standard CNN
classifier whose task is to distinguish generated images from
real ones. The generator’s goal, on the other hand, is to gen-
erate as realistic as possible data that makes it difficult for
the discriminator to discriminate.

A repeated process of generation and discrimination is
carried out until convergence, when the generator learns to
synthesize data that is so close to the input sample that the
discriminator is unable to distinguish between the real and
generated data.

In many machine vision settings, the goal of generative
modeling is often to generate artificial samples that look as
realistic as possible. In contrast, common implementations
[80,90–92] of GANs in object tracking domains are designed
to accomplish feature-level generation. This typically con-
sists in first generating an output mask from convolution
features and then using it to alter output features from training
images in a way that produces artificial variations which are
subsequently learned through adversarial training. In [90]
Yin et al. proposed a GAN-based tracker which generates
random masks adversarily with the help of cropped images
placed around input image samples. The masks are then used
toproduce richer appearancevariations that are learnedby the
model. [91] employs a CNN classifier that leverages atten-
tion mechanism to enhance the robustness of the network in
[90] against appearance drifts.

Most of the recent GAN-based approaches (e.g., [80,92])
additionally exploit strategies to select a subset of features—
the most robust with respect to the given context—out of
the generated samples. The goal is to improve performance
by retaining only the most robust features of the tracked
instance which can then be used to train a final classifier.
In [92], Javanmardi et al. argued that randomly masking out
features to produce appearance variations, as implemented
in [90], for example, may lead to potential loss of useful
information which may be disadvantageous. To address this
problem, they proposed to generate an adaptive mask that
aligns the most informative features of local image regions
of the most recent scenes with that of earlier target images. In
[80], the authors proposed a tracker that augments positive
samples through adversarial learning. They incorporated a
generator-discriminator pair into a conventional CNN archi-
tecture, specifically a VGG-M model [93]. They utilize the
generator to generate masks which are subsequently used
to adaptively mask out input convolutional features from
positive samples. This procedure produces multiple output
features corresponding to different appearance changes. Fur-
ther, they trained a discriminator to be robust to these visual
appearance variations.

There are a number of GAN-based approaches (e.g.,
[89,94–96]) that formulate the tracking problem as a similar-
ity learning problem. To provide robustness to more diverse
tracking problems, Han et al. [89] utilized two separate GAN
modules to handle sample- and feature-level generation (Fig.
5). First, a sample GAN (SGAN) model generates diverse
training samples which are then fed into a feature GAN
(FGAN) that learns to generate diverse features for differ-
ent appearance conditions such as deformations, occlusions
and motion blur.
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Fig. 5 Generative adversarial network (GAN)-based appearance modeling approach proposed in [89]. It utilizes sample-level data generation
sub-model based on the conventional GAN architecture and feature-level generation sub-model to diversify features by occlusion masking

3.2.2 Other generative modeling methods for automatic
data augmentation

Although GANs remain the predominant approaches for
generative modeling, the use of other generative modeling
techniques in robust image feature generation has been grow-
ing over the years. Researchers have explored a number of
related techniques to improve the quality of feature rep-
resentation and generalizability. Most notably, approaches
based on autoencoders [100–102] and variational autoen-
coders (VAEs) [95,98,99,103] have demonstrated good per-
formance. To address overfitting problems arising from small
training data, Liu et al. [102] employed an auto-encoder sub-
network to impose constrain on the loss function. In [98],
Kim et al. used a conventional variational autoencoder (VAE)
to implement a deep learning model for learning rich spa-
tial information about objects. They demonstrated the use of
conventional variational autoencoders (VAEs) in generating
rich appearance features for tracking. In [99], Lin et al. used
a custom variational autoencoder consisting of three encoder
branches to extract visual features at different semantic lev-
els for video object segmentation and tracking. The extracted
visual features are used to enhance Mask R-CNN segmen-
tation robustness in tracking. The branches provide different
semantic levels of generalization: the input layer is sensitive
to simple image features such as lines and their orientation
in certain areas of the visual area, while the response of other
layers is more complex, abstract, and position-independent
of the image. Similar functions are realized in the cognitron
by modeling the organization of the visual cortex. Methods
have also been developed that combine different generative
schemes to produce better appearance features. For example,

Wang et al. [95] proposed a generative modeling technique
using the earlier developed Siamese Instance Search Tracker
(SINT) [104] as a backbone model. Their generative mod-
eling approach uses two different subnetworks—Positive
Sample Generation Network (PSGN) based on VAE archi-
tecture to generate and augment positive samples, and a
so-called Hard Positive Transformation Network (HPTN)
based on deep Q-network to create occlusion and deforma-
tion patterns that can be learned by the discriminator. The
final component, the Siamese network, is used to infer the
similarity between the target sample that is initialized in the
initial frame and candidate samples in subsequent frames.
Common generative modeling-based trackers and their con-
stituent components are summarized in Table 1.

3.2.3 Feature hallucination techniques

In contrast to the aforementioned methods such as [80,90–
92,94–96] which aim to improve robustness by generating
feature masks to increase the diversity of training data, some
of themore recent generativemodeling approaches, knownas
hallucination methods (e.g., [97,105,107,108]), are aimed at
directly transferring different visual phenomena from train-
ing data to unseen data, thereby generating novel views. The
concept of hallucination has been motivated by the ability
of humans to imagine new visual contexts from observa-
tions [97,105,106,108]. The main idea is to learn image
transformations from exemplar images and then apply this
knowledge to unseen object classes in novel contexts. These
techniques, therefore, allows to learn robust visual feature
representations that can be applied across multiple domains
and tasks. These approaches generally utilize an encoder-
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Table 1 Representative generative modeling-based trackers and their construction

References Constituent generative modeling
sub-models

Function of generative modeling
components

Base model

[94] Custom GAN (generator and
discriminator)

Generator generates “similar” and
“dissimilar” samples for discrimination
by the discriminator

Siamese network

[92] Standard GAN (generator and
discriminator)

Generates and discriminates positive
samples

MDNet [36]

[97] Encoder-decoder network (HAT) Hallucinates novel views MDNet [36]

Selective deformation transfer (SDT) Selects right transformations for transfer

[80] Custom GAN (fully connected CNN as
generator and a CNN classifier as
discriminator)

Generates and discriminates positive
samples

VGG [93]

[90] Standard GAN (generator and
discriminator)

Generates and discriminates positive
samples

VGG [93]

[95] VAE (Positive Sample Generation
Network)

Generate positive samples

Deep Q-network (Hard Positive
Transformation Network)

Create occlusions

[98] Standard Variational Auto-Encoder Generates robust features for training a
base model

Siamese network

[99] Encoder Constructs compressed features Mask R-CNN backbone

Proposal decoder Extracts high-level features

Auxiliary decoder Extracts low-level features

Augment decoder Aggregates multi-level cues

decoder scheme where the encoder learns transferable image
transformations from pairs of exemplar images (e.g., differ-
ent poses, scales, illumination conditions) of the same class,
and the decoder’s task is to learn to apply these learned trans-
formations to new categories. For instance, in [90] Wu et al.
proposed to generate new image samples using an encoder-
decoder network based on what they termed Adversarial
Hallucinator or AH. The hallucinator generates transformed
images which are then used to train CNN classifiers. In
addition, they incorporated a so-called selective deformation
transfer (SDT) sub-model to select and transfer the most rel-
evant transformations to unseen contexts. In [106], Wei et al.
proposed a re-identification framework, PTGAN, that uses a
GAN to transfer persons in labeled datasets to novel styles
(i.e., appearance conditions such as different backgrounds,
illuminations and view angles), while preserving useful fea-
tures that define the identity of the persons. Amirkhani et al.
[109] employ visual style transfer technique to compose new
training dataset from an existing dataset and combined them
to achieve a larger and more diverse data for training object
trackers. The various data augmentation methods described
in this section are summarized in Table 2.

4 Compositional part modeling

A part model of an object is understood as the set of simple
geometric primitives that provides a meaningful representa-
tion of that object. The rationale for this approach is based
on the fact that appearance variations of object parts are
generally much less drastic than the possible variations of
the object as a whole. Hence, simpler models and smaller
datasets can be used to effectively obtain robust models.
Many different approaches are used to encode composi-
tional parts as information priors in deep learning pipelines
(Fig. 6). In general, object classes are represented as mix-
ture of parts, with each part representing specific appearance
instances such as different viewpoints [110,111], size varia-
tions [112], pose instances [113] or occlusion extend [114].
In many tracking applications (e.g., [115,116]) composi-
tional part models serve to enhance robustness of object
detectors. The main strength of compositional parts is their
ability to handle complex transformations such as nonlin-
ear deformations and significantly occluded objects, even if
trained without including transformed examples [114,117].
Two broad strategies of part-based approaches can be iden-
tified: approaches that explicitly formulate part models as
representation priors and those based on deeply learned parts.
In the first family of approaches, object parts are manually
modeled independently before using some algorithm, usually
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Table 2 Summary of the major data augmentation approaches

Method Designa Main Purpose Major shortcomings Works

Basic data manipulation Manual Increase diversity of
existing data by
applying
transformations to
produce more positive
(target) or negative
(background) samples

Limited to situations
where desired
categories already
exist; laborious
process

[79,81,82]

Data synthesis using
computer graphics
tools

Manual Generate data (from
scratch) in situations
where no training data
exists

Domain shift between
synthetic and real
data; tedious process

[83–85]

Generative modeling Automatic Expand training samples
using examples from
similar categories

Requires large amounts
of training data; no
reliable metrics to
determine quality of
generated samples

[80,87,89–92,100]

Hallucination Automatic Transfer the visual style
of data to new domain
or context

Typically requires
examples from the
target domain which
may not be accessible
in some situations

[97,105,106]

aDesign denotes the method of composing the augmentations

Grid and Patch-based

Deformable Part Models (DPMs)

Fig. 6 Taxonomy of part modeling approaches based on representing
compositional parts as information priors in deep learning pipelines

a machine learning model, for feature classification. In the
second case, part-level representations are directly learned
end-to-end from deep CNN feature maps.

4.1 Part models as representation priors in deep
CNNs

A large number of approaches [118–123] propose to explic-
itly model compositional parts as representation priors in
object detection and tracking pipelines. These approaches
usually approach feature learning as a two-step process;
building informative, invariant mid-level features as vec-
tors of compositional parts and using deep CNN models
to learn robust representations for these parts. The simplest
approaches to compositional part modeling utilize natural
images that are artificially divided into grids or smaller

patches [119,121,122,124,125]. In [122] for example, Tian
et al. proposed a part-based pedestrian detection technique
utilizing a pool of human body parts defined as a rectangular
human body grid and then trained a CNN classifier to learn
relevant features for each of these parts by sliding filters over
the entire grid. Another common method for compositional
part modeling is to segment training images on the basis
of low-level pixel properties—superpixels [126,127]. This
approach is based on the intuition that pixels sharing com-
mon visual characteristics in a given region may represent a
unique semantic context. Superpixels are commonly defined
by clustering algorithms [128]. However, newer approaches
[129–131] have proposed learning superpixels end-to-end
with deep neural networks.

More sophisticated compositional part modeling tech-
niques such as [110,111,117,132–134] encode additional
information such as spatial dependencies among constituent
parts. To handle object deformations, for example,
deformable part models (DPMs) [135,136], encode defor-
mations from part displacements. DPMs are often used to
help with the object detection sub-task, where they help to
encode robust features in region-based CNN detection mod-
els [115,116]. For instance, in [137] Ouyang et al. used
deformable part models to generate region proposals con-
taining deformable object parts. After this, a dense subgraph
discovery (DSD)-based filter is used to select the most useful
region proposals.

Richer part-based methods model the structural features
of an object based on its constituent parts and their spatial
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relationships [133]. In this regard, structural information of
objects in images is represented using simple sub-entities
that are themselves described by even simpler entities. The
most advanced part models (e.g., [138–141]) are typically
described by hierarchical graph structures in the form of
nodes and links which encode more detailed information
about the spatial properties of the constituent parts, includ-
ing local interactions. In [139], for instance, Wang et al.
proposed an appearance model for object tracking using
a graph-based architecture consisting of multiple CNNs to
encode visual features of local parts. The learned features
are then fused using a regularization framework. Similarly,
in [138] , Nam et al. employed separate CNN sub-networks
in a hierarchical, tree-like arrangement to model the appear-
ance of different parts. In their implementation, the edges
of the structure characterize the structural relationships that
exist among the different parts (represented by the different
CNN sub-networks). To simplify the representation, some
graph-based approaches (e.g., [142,143]) utilize superpixel
information to segment images into parts which are then
defined as graph elements.

Despite the aforementioned advantages of using informa-
tion priors in the form of compositional parts, the approach
has a number of significant drawbacks. First, object tracking
based on parts results in the loss of high-level information,
thereby reducing performance in some cases. Second, build-
ing rich part models is usually a labor-intensive and time
consuming process. Another area of difficulty when using
explicit part models as representation priors relates to the
inability of human experts to manually identify good parts
that are optimal for visual recognition tasks. In view of these
limitations, several authors propose to learn part representa-
tions automatically in an end-to-end manner.

4.2 Deeply learned quasi-compositional part
representations frommid-level CNNs features

In [144–146] it was shown that in deep convolutional neural
networks, part-level information is present in the mid layers
and that extracting features from these layers could provide
contextual hierarchy in object representations. This concept
has two main advantages. First, it does not generally require
additional model parameters since these mid-level features
are mined from existing layers of the network. Also, the
requirements for adapting filters or for exploiting complex
network structures for learning invariance is eliminated, thus
providing a more simple approach to appearance modeling.
Inspired by this finding, a large number of recent approaches
[50,147–154] exploit this idea to design end-to-end deep
CNNmodels to learn quasi-part representations directly from
image-level data. These methods unify the processes of part
modeling and feature representation by jointly extracting
part-level features from deep CNN layers and learning suit-

able representations from the extracted parts. In [50], Ma
et al. used features from early CNN layers to encode more
nuanced spatial details while employing the last activation
layer to capture object semantics. Many approaches employ
special strategies such as dedicated compositional part filters
[153,154], unsupervised clustering [155,156], special activa-
tions [157–159] or pooling techniques [153] in selected CNN
layers to learn high level compositional parts. For instance, to
overcome the limitations of conventional pooling techniques
like average pooling and max pooling in encoding part-level
information, Ouyang and Wang [160] proposed a part-based
CNN model that incorporates a deformation layer between
the fully connected layer and the last convolutional layer to
capture part deformations. Ouyang et al. [153] extended this
concept by introducing deformation- or def-pooling which is
designed to replace conventional pooling layers at multiple
locations within a deep CNN network.

More recently, advanced compositional-part-modeling
approaches (e.g., [151,153,154,161,162]) that utilize com-
plex network architectures consisting of several independent
sub-networks have emerged. For instance, Wu et al. [162]
propose an approach for robust visual tracking usingmultiple
deep learning sub-networks to separately observe different
sub-regions of the input frames. Each sub-model is designed
to learn specific local features from a target sub-region. Qi, et
al. [148] employ several independent CNN trackers to learn
mid-level spatial features fromdifferent convolutional layers.
The predictions of these trackers are then adaptively fused
by means of an online decision-theoretic learning approach
using Hedge algorithm. An overall high-performance tracker
is obtained based on the weighted sum of the predictions of
all trackers. Yang et al. [154] proposed to integrate multiple
CNN-based compositional part extraction modules, called
P-CNN, into different layers of pre-trained CNN models—
AlexNet [163] and VGG19 [93]. The P-CNN utilizes part
filters which are optimized to select part-level descriptors
from feature maps of designated convolution layers (i.e.,
layers to which P-CNN modules have been attached). In
[151]Mordan et al. introduced “Deformable Part-basedFully
Convolutional Network (DP-FCN)”, which utilizes a (FCN)
network [152] together with a number of custom extensions
for part-level feature learning. The fully convolutional net-
work is responsible for extracting task-specific features of
each image class into feature maps. In addition, a deformable
part-based region-of-interest (RoI) pooling layer encodes
part-level representations of the resulting feature maps. The
deformable RoI pooling layer partitions the image-level fea-
ture maps into n × n region proposals (i.e. square grids)
and performs alignment of parts. The final extension, at
the end of the whole structure, consists of two separate
network branches that perform semantic classification and
deformation-aware localization by exploiting the effects of
part displacements. [153] proposed a deep CNN architecture
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that jointly learns object deformation and part-level feature
representations, aswell as incorporating context information.
The approachwas implemented using the ZFNet architecture
(proposed in [164]) as a CNN base model with additional
branches consisting of part-level kernels and classifica-
tion sub-networks. By changing the configuration of this
CNN, different detectors are obtained, leading to variabil-
ity, and hence better generalization performance in specific
situations. In addition, the approach further enhances gener-
alization by allowing the sharing of deformable parts among
different object categories.

While deeply learning compositional parts from CNN
layers can provide better generalization in unseen domains
[147], they are typically less transparent compared to their
explicit model counterparts, and ultimately suffer from the
black-box syndrome [165] commonly encountered in deep
neural networks. Another limitation pertaining to composi-
tional part modeling in general is that the approach is not
suitable for objects without distinct parts. Also, non-rigid
object parts can often exhibit many different shape and form
variations that completely diverge from the learned repre-
sentations and thereby making it difficult for the approach
to work well. Because of these limitations, in some scenar-
ios, they may be more prone to catastrophic failures than
traditional part-based models designed explicitly to account
for anticipated conditions. The main approaches to model-
ing compositional parts in the context of object detection and
tracking are captured in Table 3.

5 Similarity learning approaches

When tracking objects using deep learning methods, the net-
work is required to learn very reliable visual features that
remain stable under many different conditions. In this case,
the deep learning model relies on learning invariant visual
features from large datasets and then performing predic-
tions based on matching corresponding features in candidate
images to the previously learned representations. Since in
most tracking applications the target appearance is captured
only in the initial frame, it is often not possible to obtain
sufficiently rich features for tracking. Many traditional deep
learning approaches tackle this problem by training offline
utilizing large-scale datasets before fine-tuning online on the
specific visual tracking task. But this often requires perform-
ing parameter updates online using gradient decent, which
is computationally expensive and generally too slow for
most practical applications. The second option is to com-
bine classical algorithms such as particle filters [166] and
HoG-like features [167] with CNNs or to utilize special-
ized deep learning architectures (e.g., [95]) to encode robust
object appearance. These techniques are oftenmore complex,
highly specific and require more prior knowledge about the

target domain. All these considerations led to the widespread
use of similarity learning algorithms [168,169]. Similarity
learning trackers are typically offline trackers in that they
learn similarity embedding completely offline using avail-
able datasets that are similar to the target domain.

5.1 General principles of similarity learning

Similarity learning approaches to appearance modeling dif-
fer from conventional deep learning methods in that they do
not directly learn visual features for each object instance or
category. Instead, they learn a function that predicts the sim-
ilarity of input images. The decision boundary is defined by
a similarity measure [170] which can be independently com-
puted as a distance metric [171,172] or learned directly from
input images [66,104,173] using a neural network. In place
of the usual prediction error-based loss functions employed
in traditional CNNs, similarity learning methods use spe-
cial loss functions such as contrastive loss [174] to force
semantically similar image samples to be embedded in close
proximity while forcing dissimilar images apart. Another
important task in similarity learning is to minimize the intra-
class differences between objects while, at the same time,
maximizing the interclass differences. One major challenge
with distance metrics is in defining the right size of the dis-
tance, which must be large enough to include all intra-class
appearance variations but small enough to exclude interclass
appearance differences. Deeply learned similarity metrics
solve this problem but they are often not transparent and
may be subject to higher error rates when trained using
insufficiently large data. To further enhance robustness, some
approaches impose temporal constraints (e.g., [115]) or addi-
tional spatial constrains (e.g., [175,176]) on the definition of
similarity metrics. The main idea in [175] and [176] consist
in dividing images into sub-regions and then learning similar-
ity measures for corresponding regions independently before
combining the individual metrics to obtain a global similar-
ity metric. Once a similarity is learned, the tracking process
involves initializing the target object in the first frame and
then performing exhaustive search in subsequent frames to
locate the most probable region within the search area that
might contain the target. Thus, re-identification in the context
of similarity learning consists in finding a candidate region
with the minimum distance within the threshold specified by
the metric. The rest of this section explores common simi-
larity learning approaches categorized into different network
topologies and similarity embedding mechanisms.

5.2 Single-stream similarity networks

The simplest similarity learning approaches are based on
single-stream networks [9,177–179]. They typically con-
sist of deep convolutional neural network architectures that
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Table 3 A summary of
compositional part modeling
methods and their major
characteristics

Method Description Autoa Comp.b References

Grid or patch
representation

Partitions training
images into equally
sized rectangular parts

× Low [119,123,124]

Deformable part
modeling

Represents objects with
their constituent parts
as well as possible
deformations and part
displacements

× High [136,137]

Hierarchical graph
representation

Employs more granular
parts to represent
objects in a scene and
while encoding
contextual
relationships among
the parts.

× Very high [138–141]

Super-pixel
representation

Utilizes low-level pixel
characteristics of the
images to define parts

× Medium [126,127]

Composing parts from
CNN feature maps

Mines compositional
parts from
intermediate CNN
layers

� Low [147,149,153]

Learning parts using a
dedicated network per
part

Employs multiple
dedicated
sub-networks to
independently learn
and aggregate
different object parts

� Low [161,162]

aAuto denotes approach where the construction of compositional parts is usually exclusively automated.
bComp. denotes the relative complexity of the model design

employ contrastive loss at the end of the deeper layers to
learn similarity embedding. In [9], Moujahid et al. proposed
a single-stream similarity embedding network that uses soft
cosine similarity metric to compute similarity. During track-
ing, the approach samples candidate locations around the
initialized target and computes similarity for each candi-
date region. The region with the highest score is taken as
the new target location. A major limitation of the method is
that the model needs to make an assumption about the prob-
able location of the target. For this purpose, a motion model
is employed. In [179] Ning et al. proposed a single-stream
similarity network which employs contrastive loss layer to
implicitly learn the similarity from sample targets and back-
ground images selected by RoI layers. Despite its simplicity
and closeness in structure to traditional deep CNN architec-
tures, current literature emphasizes the use of more complex
topologies such as two-stream andmulti-stream networks for
enhanced similarity encoding.

5.3 Two-stream Siamese networks

In recent years, visual tracking approaches using pair-
wise, deep similarity learning architectures based on two-

stream and multi-stream networks have become very pop-
ular in many machine vision domains [180]. In particular,
the Siamese network [181,182]—a two-stream network
architecture—is currently the most popular visual tracking
approach for solving most SOT problems. Their success
in SOT is evidenced by the results of the annual Visual
Object Tracking (VOT)Challenge,where the top-performing
short-term trackers in recent years [30–32] have mostly been
Siamese-based architectures.

A generalized architecture of the Siamese network is
shown in Fig. 7. It consists of two identical CNN branches
with shared parameters. The network is trained by feeding
into the two branches a pair of similar (i.e., objects of the
same class) and dissimilar (objects belonging to different
classes) images. The features extracted by the two branches
are compared and fusedbymeans of a contrastive lossmecha-
nism whose goal is to learn a similarity function to correctly
predict object similarity given any pair of images. During
tracking, one of the branches is fed with the initialized target
(i.e., an image patch containing the object), while the other
branch takes as input a search area encompassing the whole
scene or part of it. Essentially, the search of candidate objects
consists in shifting the exemplar patch over the entire search

123



292 Progress in Artificial Intelligence (2022) 11:279–313

CNN Backbone
(e.g., ResNet)

Feature maps Fully-connected
      layers

Feature 
vectors

CNN Backbone
(e.g., ResNet)

Feature maps Fully-connected
      layers

Feature 
vectors

Similarity
     scoreContrastive lossShared weights

NETWORK BRANCH 1

NETWORK BRANCH 2

Input 1

Input 2

Fig. 7 General structure of Siamese network

area while computing similarity for each location. An exten-
sive review of Siamese architecture is presented by Chicco
in [180]. The author detailed several applications of Siamese
networks.

In one of the pioneer works, Tao et al. in [104] proposed
Siamese Instance search Tracker (SINT) based on conven-
tional two-stream Siamese framework that employed Radius
Sampling method proposed in [183] to sample candidate
objects for tracking. In [184], Bertinetto et al. introduced
SiamFC which employs a dedicated cross-correlation layer
on top of the Siamese branches. In this case, the search
for candidate targets during tracking is reduced to com-
puting cross-correlation between the target patch and the
search patch. Similar to [184], CFNet [185] utilizes cross-
correlation layer to estimate similarity; but in contrast to
SiamFC, CFNet additionally employs a correlation filter unit
as a differentiable CNNmodule in the template image branch
of the Siamese framework to help learn varying appearance
cues. GORUN [186], on the other hand, employs a Siamese
framework to learn target appearance featureswhile applying
fully connected CNN layers to fuse the extracted features.
[187] proposed to use region proposal network (RPN) on
top of a traditional Siamese architecture to perform object
detection. Zhu et al. [79] extended the SiamRPN model
by proposing DA-SiamRPN, which incorporates a so-called
distractor-aware sub-module to transfer learned representa-
tions of semantic negative object interactions in complex
scenes to the online tracking process. To handle out-of-view
and full occlusion problems in long-term tracking, they also
proposed a strategy to incrementally expand the search area
to provide a global view in order to recover the lost object
(through re-detection) once it reappears.

Some Siamese-based approaches propose to fuse fea-
tures of different abstraction levels from multiple CNN
layers [188] or learn low- and high-level features in separate
Siamese networks [189,190] before combining the results
for inference. In [189], He et al. proposed a special Siamese
framework consisting of a double two-stream network struc-
ture. The network is made up of an appearance branch that
extracts invariant visual features from shallower layers and
a semantic branch that exploits deeper features to encode
high-level semantic representation. The similarity scores for
the two branches are computed separately in the training
phase before being combined to obtain a final similarity result
during tracking. The appearance and semantic branches are
aimed at enhancing the network’s discriminative and gener-
alization abilities, respectively.

Fundamentally radical modifications of the standard
Siamese architecture have also been proposed. Notably,
Zagoruyko and Komodakis in [191] investigated a num-
ber of new Siamese network architectures, including a
so-called pseudo-Siamese network. While Siamese archi-
tectures employ two identical CNN streams with shared
weights, the Pseudo-Siamese architecture proposed in [191]
employs two streamnetworkswith unsharedweights.Accord-
ing to the authors, the technique allows more parameters
to be adjusted easily during training. The authors further
extended this concept with the introduction of a so-called
2-channel network, which operates based on completely
uncoupled two-stream networks. From the results of their
studies, the performance of these different models seem to
depend strongly on the specific application scenario. Despite
their promise, these approaches have not yet been fully
exploited in object tracking domains.

123



Progress in Artificial Intelligence (2022) 11:279–313 293

Positive (P)

Triple loss
Anchor (A)

Negative (N)

dp

dn

Minimize

Maximize

dp

dn1

Minimize

Maximize

dn2

A

P

N1

N2

Maximize

A

P

N

QUADRUPLET NETWORKTRIPLET LOSS QUADRUPLET LOSS

Negative (N)

Positive (P)

Triple lossAnchor (A)

Negative (N)

TRIPLET NETWORK

w

w

w

w

w

dcba

Fig. 8 Structure of triplet and quadruplet networks with their respective losses

5.4 Multi-stream similarity networks

Multi-streamnetworks are a special type of Siamese architec-
tures that employ, typically, three (triplet networks) or four
(quadruplet networks) CNN branches to learn image simi-
larity. Multi-stream models provide more advanced feature
embedding mechanisms than two-stream Siamese networks.

(a) Triplet trackers. Triplet networks [192–195] (Fig. 8a)
are made up of three identical neural networks with shared
parameters and are trained by using three groups of input
samples at a time: a target instance P, a positive sample
from the target class A, known as anchor or reference, and
a negative sample N (i.e. a sample from a different class).
Generally, a triplet network uses triplet loss functions [192]
to learn similarity (Fig. 8b). The idea is to minimize the
distance dp between the targetPand the referenceA andmax-
imize the distance dn between the negative N and target P.
During inference, the objective is to determine whether the
input image at anchor channel is closer to the reference or
negative sample. Thus, training with triplet loss allows to
compare similarity in relative terms rather than simply deter-
mining absolute correspondence of two input images. This
way, more expressive visual features are extracted compared
to two-stream architectures [194].

(b) Quadruplet network trackers. Most quadruplet net-
work trackers [196–198] employ quadruplet loss for simi-
larity learning. For instance, Chen et al. [199], and Dike and
Zhou [200] propose to use quadruplet networks with quadru-
plet loss that jointly learns similarity using the entire scene
(search area) in addition to the three patches used in triplet
network architectures. The quadruplet network (Fig. 8c) sam-
ples from four images consisting of a positive image P
representing the target object; an anchor or reference image
A, which is also a positive sample (i.e., an instance of the
target object); and a pair of dissimilar images N1 and N2 that
are different fromA andP samples representing two negative
instances. The quadruplet loss (see Fig. 7d) involves mini-

mizing the distance dp between the positive sampleP and the
reference image A, maximizing the distance dn1 between the
negative instanceN1 and the referenceA, andmaximizing the
distance dn2 between the two negative samples N2 and N1.
Although conventional quadruplet networks use quadruplet
loss, somenewapproaches have proposed using different loss
combinations [196,198]. In [198] Zhang proposed a quadru-
plet network with shared weights using multi-task loss - a
combination of pairwise (i.e., contrastive) loss and a triplet
loss. The pairwise loss learns the similarity between an exem-
plar patch (reference image) and a search area (candidate
image), while the triplet loss compares positive and negative
instances against the reference image. By using these losses
in combination, the relationship among the input samples is
better exploited for robust representation. Similarly, Dong et
al. [196] proposed a four-stream network and introduced a
special loss function with both pairwise loss and triplet loss
within the same quadruplet network architecture.

5.5 Approaches to online-learning with similarity
models

A significant limitation of conventional similarity learning
approaches is that the similarity embedding is learned com-
pletely offline and is generally fixed—further updates are
often not applicable once the model is deployed online.
The visual appearance changes inherent in most track-
ing scenarios, especially in long-term tracking tasks, make
it challenging to achieve robust performance with these
models. Consequently, to enhance robustness in complex
scenarios, some approaches resort to incorporating robust
motion models to complement predictions [201]. Another
common solution is to embed Correlation Filters (CF) into
the Siamese network (e.g., in [185]) to handle appearance
variations online. Recently, several online learning mech-
anisms [185,193,202,203] have been proposed that allow
Siamese networks to update learned appearance embeddings
during the tracking process. [203] uses an LSTM-based neu-

123



294 Progress in Artificial Intelligence (2022) 11:279–313

Table 4 A summary of compositional part modeling methods and their characteristics

Architecture Main principle Modea Typical loss function References

Single stream Extracts and compares
target with non-target
(background) regions
of the same image

Online Contrastive loss [177,178]

Two stream Computes similarity of
target and template
images by performing
cross-correlation of
search and template
input streams

Offline Contrastive loss [183,184,186]

Three stream Compares the
similarities between a
target and a different
instance from the
target category on one
hand, and between the
target and background
on the other

Offline Triplet loss [193–195]

Four stream Compares the
similarities between a
target and three
different samples: two
dissimilar background
samples and a positive
instance from the
target category

Offline Quadruplet loss [196,199,200]

Combines a two-stream
and a three-stream
sub-networks into a
composite,
four-stream
architecture

Offline Contrastive and triplet loss [196,198]

a Mode denotes the mode of training (i.e., either offline or online) that is natural for the particular method

ral network to determine when updates are required and
then performs updates by modifying the appearance features
stored in external memory. In [193], Liu, et al. extended the
SiamFC model proposed in [184] from two-stream network
to a three-stream network in which the third stream is used
for onlinemodel update, while the other two streams are used
in the usual way to learn similarity embeddings. In addition,
the network includes a Faster R-CNN-based detector known
as localization network that allows it to re-establish a lost
target. Similarly, Shi et al. [204] uses a triplet net exten-
sion to improve both SiamFC [184] and SiamCAR [205]
through online model updates. Siamese networks are also
increasingly being used in MOT as part of a more com-
plex architecture to perform specific tasks in the tracking
pipeline—for example, feature extraction [65,206,207], data
association [208] or affinity computation [209,210]. The
important properties, topologies and operating principles of
similarity learning models are presented in Table 4.

6 Memory and attentionmechanisms

An emerging trend in visual appearance modeling for object
tracking tasks is the increasing use of memory and atten-
tion to improve performance. The concept of attention [211]
is based on selective processing of input signals to enhance
robustness and efficiency. Since different features havediffer-
ent discrimination andgeneralization abilities [212], utilizing
all visual features with equal priority for visual tasks such
as tracking is inefficient and may produce sub-optimal
results. Visual attention [213–215] provides a mechanism
to adaptively select and process the most semantically use-
ful features for a given task while at the same time ensuring
compactness and efficiency of representation. On the other
hand,memory [203,216,217] endows themodelwith the abil-
ity to preserve learned representations over time. Memory
(e.g., [218]) and attention mechanisms (e.g., [219,220]) have
also been proposed as a means of incorporating context to
enrich visual representation in object detection and tracking
tasks. Chen and Gupta in [218] proposed Spatial Mem-
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ory Network (SMN) to characterize contextual relationships
among objects in images. Li et al. [219] proposed to model
global and scene-level contexts using Attention to Context
Convolutional Neural Network (ACCNN). Most attentional
networks are implemented using feedback architectures such
as RNNs. By virtue of their feedback arrangements, RNNs
are also naturally endowedwithmemory. Beyond this natural
occurrence, memory and attention do often perform comple-
mentary roles in machine vision tasks. In particular, since
memory capacity is often limited, attention can enable selec-
tive storage of relevant information. Conversely, recall of
stored information can also leverage attention to enable fast
and efficient retrieval of information.

6.1 Attention in visual tracking

The attention mechanism works by adaptively re-weighting
network parameters so as to prioritize more relevant fea-
tures or relevant areas of interest for subsequent processing.
The original work on visual attention—proposed by [211]—
use attention to enhance the computational efficiency and
at the same time increase the robustness of deep learning
models in classification tasks. Attending to specific objects
locations in large scenes can also be used to enhance visual
search in challenging object detection tasks. This has been
demonstrated with impressive results in [221]. Attention
mechanisms [222–224] are recently being widely used to
develop robust models for online trackers. They are able
to adapt trackers to visual appearance changes of target
objects over long time periods. Kahoú et al. [222], for exam-
ple, implemented attention mechanism using RNN-based
framework that performs spatial “glimpses” on relevant and
informative regions of a scene. For target localization, the
model uses a binary classification module to classify image
features at the various locations. In [222], Kosiorek et al. uti-
lized both spatial and feature attention mechanisms to allow
a deep learning network to search in the right regions of a
scene as well as select relevant features that are important for
the tracking task at hand.

Recently, approaches based on modified RNN architec-
tures like Long Short-Term Memory networks (LSTMs)
[225,226] and Gated Recurrent Units (GRUs) [207,227],
have been introduced. They allow deeper models to proces
longer video sequences without the effects of vanishing gra-
dients. In [227] two GRUs were used within a Recurrent
Autoregressive Network to separately learn visual appear-
ance and motion models. Instead of conventional recurrent
networks based on RNNs, an increasingly large number
works [121,213,228,229] propose to use special CNN con-
figurations to learn different types of attentions. For instance,
Stollenga et al. [230] implemented an attention mechanism
by using special feedback arrangements constructed on the
basis ofMaxout networks [231]. In their approach, the synap-

tic weights of the feedback connections are learned using
reinforcement learning techniques. This is done so as to
enable the tracking model adapt its convolutional filters to
important features present in the input images. In [59], Chu
et al. proposed to use spatial graph transformer for learning
attention.

More recentworks (e.g., [59,232–235,237]) have explored
the use of deep neural networks based on transformer [236]
architectures as an alternative method of encoding attention
in visual trackingmodels. In contrast to RNN-based attention
models which utilize feedback in recurrent network topology
to process information sequentially, the transformer employs
feedforward attention blocks within an encoder-decoder
structure. They can process larger amounts of data in parallel
and model relatively longer-range dependencies. This allows
them to learn inherent interdependencies between different
entitiesin different parts of an image to help model the global
context of the underlying scene. TrTr [232], for instance,
incorporates transformer units within an encoder-decoder
network that utilizes self- and cross-attention mechanisms
to model contextual relationships between template and
search image features in a single object tracking framework.
TransTrack [235] proposes a transformer-based query-key
method for multiple object tracking that is capable of effec-
tively detecting and tracking new objects that appear in the
scene during the tracking process. It employs two decoders—
one for object detection and the other for propagating object
features to the following frame—and a single encoder for
learning robust feature maps through attention. The feature
maps serve as input queries (object and track queries) for the
decoders. That is, one decoder predicts bounding box detec-
tions using object query, while the other one aims to estimate
the current locations of features from previous frames with
the help of the track query. This allows the model to identify
new objects that were not previously present in the scene.
Trackformer [237] uses single encoder to learn both object
and track queries and matches tracks entirely using self- and
cross-attention operations. Approaches based on transformer
architectures are presently one of the most impressive visual
tracking models.

6.2 Long-termmemory in visual tracking

Thememory in RNN-based approaches (e.g., [203,217] does
not provide long-term storage, as these models do not con-
tain actual memory (i.e., storage). To address long-term
storage needs, some authors (e.g., [215,238,239]) have pro-
posed various techniques to enhance the information storage
capacity of deep learning models. Chanho et al. [215], for
example, proposed to increase the information storage capac-
ity of conventional LSTM methods using Bilinear LSTM.
Chen et al. [238] proposed a dedicated memory mechanism,
referred to as Long Range Memory (LRM), to cache pre-
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viously extracted local and global features as intermediate
features for re-use by later frames. However, the ability to
retain information over long term periods requires actual
storage resources which are absent in approaches based on
neural networks. A number of works [203,240,241] have
proposed using explicit memory that provides reading and
writing capabilities to deal with visual appearance variations
over long periods of time. With this approach, the storage
capacity of deep neural networks can easily be enlarged by
increasing the size of external memory. In [203], Yang and
Chan proposedDynamicMemoryNetworks to overcome the
problem of low capacity of LSTM-based approaches. Instead
of keeping object appearance information as weight param-
eters in deep neural networks, the proposed approach stores
visual feature information in external memory and retrieves
relevant appearance details as needed. Appearance changes
are handled by updating the stored information in mem-
ory. Because the method uses external memory, long-term
appearance variations can be stored. The approach employs
LSTM to control the writing and reading of information into
and frommemory. In addition, a spatial attention mechanism
is used to direct the LSTM input to the probable locations of
the relevant target. In [240], Deng et al. proposed an external
memory to store features extracted from detections (i.e., fea-
tures located within the bounding boxes) in a video sequence
to be subsequently combined with features from later video
frames.

7 Approaches for learning spatial
transformations

A prevalent problem in object tracking settings is the appar-
ent variation in objects’ visual appearances emanating from
phenomena such as non-rigid deformations, changes in
object proximity and camera view angles, rotations and pose
variations. These changes, in turn, result in geometrically
transformed objects in the captured images, thus making
it difficult to adequately encode the object’s appearance in
all possible contexts using a single appearance model. To
address this problem, one promising class of approaches
[242–256] seek to embed additional convolutional or pooling
layers as independent, dedicated differentiable units in deep
CNNs to explicitly learn geometric transformations. The
most well-known methods in this class are those proposed
in [257] and [258]. As shown in Table 5, these approaches
can broadly be categorized into three groups [259]: methods
that address (1) affine transformations, (2) general (including
arbitrary and nonlinear) transformations, and (3) specific (or
single) transformations.

7.1 Approaches tomodeling affine transformations

Many spatial transformation modeling approaches [242,243,
243–248,248–253] specifically target affine transformations.
In [257] Jaderberg et al. proposed spatial transformer network
(STN), which embeds a differentiable model, called spatial
transformer, to learn the parameters of affine transformations
of a target object. The learned transformation parameters
are then used to generate new sampling kernels which are
applied to extract features from input data. Approaches based
on spatial transformers have already become very popu-
lar in many machine vision tasks—including detection and
tracking [245–248]. In most of the implementations, the spa-
tial transformers are embedded in base CNN classification
models or placed on top of detection heads to align input
images to canonical views. For instance,Qian et al. [251] pro-
posed a method to allow the detection of heavily deformed
pedestrians in fish-eye camera views. Because of the lack of
wide field of view (FoV) pedestrian detection datasets, they
first transformed canonical images into fish-eye views by
means of a so-called Projective Model Transformer (PMT)
and then utilized a so-called Oriented Spatial Transformer
Network (OSTN) consisting of a pair of STNs to learn fish-
eye image transformations. Spatial transformers have also
been employed to help generate positive samples in differ-
ent poses for adversarial training [260,261]. In [253], Li et al.
used an STN to learn localization information for latent com-
positional parts in a pedestrian re-identification framework.
Luo et al. [252] (Fig. 9) combined STN and re-identification
modules in a similarity learning framework for robust per-
son re-identification. The STN learns affine transformation
parameters and is able to accurately sample the most simi-
lar holistic image patches that match target (partial) persons
in distorted and cropped images. Similar to the STN-based
models, Xie et al. [243] proposed to incorporate a custom
affine transformation manifold in a Faster R-CNN object
detection model in order to learn geometric transformations
of target objects, and to adapt and align detection bounding
boxes to object shape. The bounding box alignment allows
to better capture spatial features in the effective area of the
tracked object. To encode possible deformations, three dif-
ferent kernel sizes are used for RoI pooling. Additionally, a
multi-task loss simultaneously optimizes the robustness and
accuracy of detections.

7.2 Approaches tomodeling nonlinear
transformations

Approaches such as [243] and the STN-based methods [242,
243,245–248,250–252] employ explicit geometric transfor-
mation operations to learn spatial appearance variations.
As a result, they cannot effectively handle complex, non-
analytical transformations. To overcome this shortcoming,
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Fig. 9 Spatial Transformer Network (STN)-based person re-identification framework—STNReID [252]. The approach employs an STN in a
Siamese network configuration to perform re-identification of persons in cropped and severely warped images

Dai, et al. in [258] introduced the (DCN), a technique that
allows arbitrary nonlinear geometry transformations to be
learned. The approach embeds a module that allows arbi-
trary deformations to be applied to the sampling kernels
of its convolutional and RoI pooling layers. When incor-
porated into a standard CNN network, these deformable
kernels can be applied on input features to learn geomet-
ric transformations. Following the original work in [258],
several works utilizing the method for better visual fea-
ture encoding in object detection and tracking tasks have
been proposed [62,133,248,254–256,262]. For instance, Cao
and Chen [256] proposed Deformable Convolution Network
Tracker (DCT) which consists of using deformable convolu-
tionmodules inmultipleCNNbranches dedicated to different
domains. In [62], it was shown that deformable convolutions
can help to align re-identification features with detections,
thereby significantly improving the accuracy and robustness
of tracking. In contrast to the above approach to learning
spatial deformations by adaptively changing the shape of
convolutional kernels, Johnander et al. [263] proposed to
encode target transformations by composing filters as linear
combination of smaller filters.

Based on the knowledge [264] that expanding the recep-
tive field improves generalization to spatial transformations,
some approaches [253,265–267] proposed to expand the
receptive field by replacing the CNN’s conventional dense
convolutions with dilated or atrous convolutions [268,269].
For instance, in [265] Chen et al. composed a visual tracker
which uses a ResNet-50 backbone with dilated convolutions
within a Siamese network structure to learn robust appear-
ance features for tracking. Similar to [265], Jiang et al. [266]

employed dilated convolutions based on a Hybrid Dilated
Convolution (HDC) [270] organization to learn rich feature
hierarchies. Zhang et al. [271] proposed irregular atrous con-
volutional scheme to further enhance feature representation
in object tracking tasks.

7.3 Approaches tomodeling single transformations

In contrast to the techniques considered in Sects. 7.1 and
7.2 which model general (affine and nonlinear) transfor-
mations, a common line of work aims to encode specific
geometric transformations by applying predefined transfor-
mations in a pre-processing step (e.g., [272–276]) or by using
multi-scale features [277,278] before using layers CNNs to
learn these transformations. These techniques are mostly
incorporated in standard backbone feature extraction and
object detection models such as VGG [93]. They are com-
monly designed to encode rotations [279], scale variations
[277,280], and perspective distortions [281,282].Multi-scale
methods are arguably the commonest of these techniques. In
[280], Szegedy et al. proposed to use of differently sized con-
volutional filters to extract multi-scale features from input
images. Fang et al. [277] employ a spatial arrangement of
filters to encode features of varying sizes. Other approaches,
for example, [283,284] adopt special pooling mechanisms
to dynamically adjust the scales of visual features. Even
thoughmethods in this category are less general as compared
to other geometric transformation techniques, they still find
widespread use in object detection and tracking applications
due to their low computational overheads.
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Table 5 Approaches to tackling geometric transformations in visual tracking settings

Types of transformations General functional mechanism Representative trackers

Nonlinear transformations Adaptation of receptive fields [133,248,255,256]

Affine transformations Analytical transformation operations [243,245–247]

Single transformations Predefined variable filters or specific image warping [272–275]

8 Datasets, evaluationmetrics and
performance results of state-of-the-art
object trackers

This section presents the common datasets, evaluation met-
rics and performance results of state-of-the-art visual trackers
surveyed in this work. We focus on datasets for which quan-
titative performance results are available for many of the
approaches surveyed. Conversely, in the presentation of per-
formance results, we pay less attention to approaches that
have not been evaluated on popular datasets. Also, we focus
on a subset ofmetrics forwhichwe have several results on the
selected datasets. Nonetheless, for each dataset, the selected
subset of performance metrics is the most important, and is
broad and can adequately characterize the performance of
visual trackers.

8.1 Datasets

To allow the training and evaluation of object tracking mod-
els, a large number of video datasets [30–32,286–295,298,
299] have been composed. The videos in these datasets are
typically captured under challenging conditions like varying
illumination and scale, occlusion, blur, background clutter,
deformation, as well as in-plane and out-of-plane rotations.
This allows researchers to train robust trackers and eval-
uate their ability to handle different real-world situations.
The major features of common object tracking datasets are
summarized in Table 6. In addition to these dedicated object
trackingdatasets, visual trackingmodels that rely on tracking-
by-detection methods may utilize large-scale video object
detection datasets such as ImageNet VID dataset [301] and
the YouTube-BoundingBoxes dataset [302] . In the follow-
ing paragraphs, we present a brief description of some of the
most important visual tracking datasets.

(a) SOT datasets: The large-scale datasets used for train-
ing single object trackers include the Visual Object Tracking
(VOT) family of datasets—VOT15 through to VOT20 [30–
32,287–289]; the Object Tracking Benchmark (OTB) line
of datasets—OTB-50 [303] and OTB-100 [286]; Need for
Speed (NfS) [294]; UAV123 [295]; GOT-10k [297]; LaSOT
[298], and TrackingNet [299].The Visual Object Tracking
(VOT), LaSOT, GOT-10k and Object Tracking Benchmark
(OTB) lines of datasets are the most popular datasets for

training and evaluating SOT algorithms. Some of the SOT
datasets focus on narrow application domains such as people
tracking in video surveillance scenarios (e.g., [32]) and vehi-
cle tracking (e.g., [295]). There are also many SOT datasets
(e.g., LaSOT [298],GOT-10k [297] and TC-128 [296]) that
aim to capture generic objects and scenes. The OTB-100
dataset, for example, contains one hundred (100) challeng-
ing labeled video snippets with a general focus. The TC-128
has 128 labeled video clips with a large diversity of object
categories captured under different conditions. It particularly
focuses on object and scene color variations. TheVOT family
of datasets and the OTB-100 [286] focus on human tracking.

(b)MOTdatasets:Existingmultiple object trackingdatasets
are typically domain-specific datasets, with many deal-
ing with pedestrian or vehicle tracking. The most popular
datasets are theMOT series [290–292]. Through several iter-
ations starting from MOT15 to MOT20, a large number of
these benchmarkdatasets havebeen collected through several
MOTChallenges. Todate, a total of 44 video snippets totaling
about 36, 000 seconds of streaming content [292] are avail-
able through the MOTChallenge. The latest MOT dataset,
MOT20 [292], contains 8 new (4 training and 4 test sets)
video sequences. The MOT datasets are domain-specific, all
dealing with pedestrian detection and tracking. The KITTI
object detection dataset [293] is another popular dataset used
for training and evaluating multiple object tracking models.
The dataset is intended for vehicle and pedestrian detection
and tracking. It contains a total of 50 short videos, 21 of
which are for training and the remaining 29 for testing. Wen
et al. recently introduced a new dataset, the UA-DETRAC
dataset [285], for vehicle tracking.

8.2 Evaluationmetrics

Many performance benchmarks and evaluation metrics have
been proposed to quantitatively assess the quality of object
tracking algorithms and validate their use in different situ-
ations. They also allow researchers to compare the perfor-
mance of different models. Typically, different datasets or
families of datasets provide different evaluation protocols
and metrics. We briefly introduce the metrics used to com-
pare visual trackers explored in this paper, and refer the reader
to appropriate sources for more detailed information on the
specific metrics.
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Table 6 Common object tracking datasets

Dataset Type FPS Domain No. videos No. frames

UA-DETRAC [285] MOT 25 Vehicles 100 140,000

OTB-100 [286] SOT 30 Humans 100 59,040

VOT series [30–32,287–289] SOT 30 Humans 60 10,390

MOT15 [290] MOT Varied (7–30) Pedestrians 22 11,283

MOT16/17 [291] MOT Varied (14–30) Pedestrians 14 11,235

MOT20 [292] MOT 25 Pedestrians 8 13,410

KITTI [293] MOT 10 Vehicles and pedestrians 50 19,000

NfS [294] SOT 30 and 240 Diverse (23 classes) 100 383,000

UAV123 [295] SOT 30 Vehicle tracking from air 123 11,2578

TC-128 [296] SOT 30 Diverse (color information) 129 55,346

GOT-10k [297] SOT 10 Diverse (563 classes) 10,000 56,000

LaSOT [298] SOT 30 Diverse (70 classes) 1400 3,520,000

TrackingNet [299] SOT Varied Diverse (27 classes) 30,643 14,431,266

UAVDT [300] MOT 30 Vehicle tracking from air 100 80,000

Table 7 Results of surveyed
state-of-the-art trackers on the
Visual Object Tracking (VOT)
datasets—VOT15, VOT16 and
VOT17 datasets

Model VOT2015 VOT2016 VOT2017

EAO↑ A↑ R↓ EAO↑ A↑ R↓ EAO↑ A↑ R↓
SiamFC [184] 0.289 0.534 0.88 0.235 0.53 0.46 0.188 0.495 2.049

SiamFC+ [304] 0.31 0.57 – 0.30 0.54 0.38 0.23 0.50 0.49

SA-Siam [189] 0.310 0.590 1.260 0.290 0.540 1.080 0.236 0.500 0.459

ECO [305] – – – 0.375 0.55 0.20 0.280 0.48 0.27

ECO-HC [305] – – – 0.322 0.54 0.30 0.238 0.49 0.44

CCOT [53] 0.303 0.54 0.82 0.331 0.536 0.895 0.267 0.49 0.32

AFSL [90] 0.366 0.62 0.98 0.342 0.58 1.08 – – –

MDNet [36] 0.378 0.603 0.693 0.257 0.54 0.34 – – –

Staple [51] 0.300 0.56 0.86 0.295 0.544 0.378 0.169 0.519 2.507

MemTrack [306] 0.275 0.558 1.729 0.272 0.527 1.438 0.243 0.494 1.774

SiamRPN [187] 0.349 0.58 1.13 0.344 0.56 0.26 0.244 0.49 0.46

SiamRPN+ [304] 0.38 0.59 – 0.37 0.58 0.24 0.30 0.52 0.41

VITAL [80] – – – 0.322 0.56 0.27 – – –

DaSiamRPN [79] – 0.630 0.660 0.411 0.610 0.220 0.326 0.560 0.340

VTAAN [91] – – – 0.327 1.41 1.98 – – –

AVA [92] – – – 0.366 0.53 0.68 – – –

MDSLT [195] 0.296 0.692 1.052 0.258 0.542 0.396 – – –

GDT [133] – – – 0.353 0.585 0.774 0.258 0.558 0.645

C-RPN [188] – – – 0.363 0.594 0.95 0.289 – –

For each metric, the best result is in bold font, while the second best is in italic

(a) SOT metrics: In this work, we present performance
results for VOT15 through to VOT20, as well as for Track-
ingNet, LaSOT and GOT-10K datasets. We briefly describe
the important metrics used on these datasets for performance
evaluation. Details about these metrics are presented in the
original works [30–32,287–289,297–299]. The most impor-
tant performance evaluation metrics provided by the VOT
family of datasets are accuracy (A), robustness (R), and the

expected average overlap (EAO). Accuracy describes the
preciseness of localization of the target, that is, how well
the estimated bounding box for a tracked object matches
the ground-truth bounding box. The metric is given as a
fractional number which is computed as the ratio of suc-
cessfully tracked frames to the total number of frames in
the given video sequence. A successful track is considered
to be a track whose region overlap exceeds a certain pre-
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Table 8 Results of surveyed
state-of-the-art visual trackers
on the Visual Object Tracking
(VOT) datasets—VOT18,
VOT19 and VOT20

Model VOT2018 VOT2019 VOT2020

EAO↑ A↑ R↓ EAO↑ A↑ R↓ EAO↑ A↑ R↓
TrTr [232] 0.493 0.606 0.110 0.384 0.601 0.228 – – –

Siam R-CNN [2] 0.408 0.609 0.220 – – – – – –

UPDT [81] 0.378 0.536 0.184 – – – 0.278 0.465 0.755

SiamRPN++ [307] 0.414 0.600 0.234 0.292 0.580 0.446 – – –

ATOM [308] 0.401 0.590 0.204 0.292 0.603 0.411 – – –

DiMP-50 [309] 0.440 0.597 0.153 – – – 0.274 0.457 0.740*

D3S [310] 0.489 0.597 0.178 – – – 0.439 0.699 0.769

SAMN [311] 0.521 0.652 0.145 0.408 0.639 0.231 0.461 0.720 0.794

DiMP [309] 0.441 0.597 0.152 0.321 0.582 0.371 – – –

SiamBAN [265] 0.452 0.597 0.178 0.327 0.602 0.396 – – –

Ocean [271] 0.467 0.640 0.150 0.327 0.590 0.376 0.430 0.693 0.754

DaSiamRPN [79] 0.383 0.586 0.276 – – – – – –

For each metric, the best result is in bold font, while the second best is in italic

Table 9 Results of surveyed state-of-the-art trackers on other popular SOT datasets—TrackingNet, GOT-10K and LaSOT

Model TrackingNet GOT-10k LaSOT

Prec.↑ Pnorm.↑ Success↑ AO↑ SR0.5 ↑ SR0.75 ↑ AUC↑ P↑ Pnorm↑
CFNet [185] – – – 0.293 0.265 0.087 0.275 0.259 0.312

SiamFC [184] 53.3 66.3 57.1 0.348 0.353 0.098 0.336 0.339 0.420

ECO [305] 49.2 61.8 55.4 0.316 0.309 0.111 0.324 0.301 0.338

CCOT [53] – – – 0.325 0.328 0.107 – – –

MDNet [36] 56.5 70.5 60.6 – – – 0.397 – 0.460

Staple [51] – – – 0.246 0.239 0.089 0.243 0.278 0.278

SiamRPN [187] – – – 0.483 0.581 0.270 – – –

AD-LSTM [217] 60.6 70.7 64.3 0.401 0.433 0.186

SiamRPN++ [307] 69.4 50.0 73.3 0.517 0.616 0.325 0.496 – 0.569

DaSiamRPN [79] 59.1 73.3 63.8 – – – 0.415 – 0.496

Siam R-CNN [2] 80.0 85.4 81.2 0.549 0.728 0.587 – – –

DiMP-50 [309] 68.7 80.1 74.0 0.611 0.717 0.492 0.569 – 0.643

For each metric, the best result is in bold font, while the second best is in italic

determined threshold value. Robustness, also called failure
score, is the number of times a tracker loses its target and
needs re-initialization. Expected average overlap is a com-
posite metric that characterizes the combined effect of the
robustness and accuracy measures. For GOT-10k, we report
results for average overlap (AO) and success rate (SR) scores.
The success rates are measured using overlap thresholds
of 0.75 (SR0.75) and 0.5 (SR0.5). TrackingNet uses pre-
cision (P), normalized precision (Pnorm) and success (S) to
quantitatively measure the performance of trackers. Preci-
sion measures the distance error or deviation, in pixel units,
between the center positions of the ground-truth and the pre-
dicted bounding box of the target object for each frame.
Precision is usually measured as the percentage of frames in
which this deviation is within a given limit. With normalized
precision, the raw precision values are normalized to account

for the influence of different image sizes or resolutions. In
this case, the distance error values are measured relative to
image sizes. Success is computed as the region overlap ratio
(i.e., the Intersection over Union or IoU) between the pre-
dicted and ground-truth bounding boxes. Again, a threshold
value is set, above which a track is considered to be success-
ful. The default value for this threshold is usually 0.5, and the
percentage of frames whose region overlap ratios are greater
than 0.5 gives the success score for the particular model.
LaSOT, similar to TrackingNet dataset, provides precision
and normalized precision for evaluation. Another important
metric is the area under curve (AUC). Thismetric is obtained
by first varying the overlap threshold between 0 and 1 and
computing the success score at each threshold for the entire
sequence. The average value of the success scores at each
(sampled) overlap threshold value gives the AUC score.
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Table 10 Results of surveyed
state-of-the-art trackers on
MOT17 dataset

Model MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓
RelationTrack [60] 75.6 80.9 75.8 43.1 21.5 9,786 34,214 –

FairMOT [62] 67.5 – 69.8 37.7 20.8 – – 2,868

FairMOTv2 [312] 73.7 81.3 72.3 43.2 17.3 27,507 117,477 3,303

Tractor [70] 56.3 – 55.1 21.1 35.3 8,866 235,449 1,987

SOMOT* [313] 71.0 – 71.9 42.7 15.3 39,537 118,983 5,184

CTTrack [71] 61.5 – 59.6 26.4 21.9 14,076 200,672 2,583

TransMOT* [59] 76.7 – 75.1 51.0 16.4 36,231 93,150 2,346

TraDeS [75] 69.1 – 63.9 36.4 21.5 20,892 150,060 3,555

DMAN* [314] 48.2 75.7 55.7 19.3 38.3 26,218 263,608 2,194

FPSN-MOT [208] 44.5 – – 23.4 31.2 25,639 156,422 4,775

Ref. [215] 47.5 – 51.9 18.2 41.7 25,981 268,042 2,069

Ref. [58] 51.3 77.0 47.6 21.4 35.2 24,101 247,921 2,648

MPNTrack [315] 58.8 – 61.7 28.8 33.5 17,413 213,594 1,185

ArTIST-T [316] 56.7 – 57.5 22.7 37.2 12,353 230,437 1,756

ByteTrack* [317] 80.3 – 77.3 53.2 14.5 25,491 83,721 2,196

TransCenter [233] 68.8 79.9 61.4 36.8 23.9 22,860 149,188 4,653

CorrTracker* [318] 76.5 – 73.6 47.6 12.7 29,808 99,510 3,369

TransTrack* [235] 74.5 80.6 63.9 46.8 11.3 28,323 112,137 3,663

For each metric, the best result is in bold font, while the second best is in italic. The marker “*” denotes
instances where private detectors are used

Table 11 Results of surveyed
state-of-the-art trackers on
MOT20 dataset

Model MOTA↑ MOTP↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓
RelationTrack [60] 67.2 79.2 70.5 62.2 8.9 61,134 104,597 4,243

FairMOTv2 [312] 61.8 78.6 67.3 68.8 7.6 103,440 88,901 5,243

ByteTrack* [317] 77.8 – 75.2 69.2 9.5 26,249 87,594 1,223

Tractor* [70] 52.6 – 52.7 29.4 26.7 6,930 236,680 1,648

TransMOT* [59] 77.5 – 75.2 70.7 9.1 34,201 80,788 1,615

FairMOT* [62] 58.7 – 63.7 66.8 8.5 103,440 88,901 6,013

TransCenter* [233] 61.0 79.5 49.8 48.4 15.5 49,189 147,890 4,493

CorrTracker* [318] 65.2 – 69.1 66.4 8.9 79,429 95,855 5,183

ArTIST-T [316] 53.6 – 51.0 31.6 28.1 7,765 230,576 1,531

SiamMOT* [319] 67.1 – 69.1 49.0 16.3 – – –

SOMOT* [313] 68.6 – 71.4 64.9 9.7 57,064 101,154 4209

Tractor++ [70] 51.3 – 47.1 24.9 26.0 16,263 253,680 2,584

deepTAMA [69] 47.6 – 48.7 27.2 23.6 38,194 252,934 2,437

MPNTrack [315] 57.6 – 59.1 38.2 22.5 16,953 201,384 1,210

TransTrack* [235] 64.5 80.0 59.2 49.1 13.6 28,566 151,377 3,565

For each metric, the best result is in bold font, while the second best is in italic. The marker “*” denotes
instances where private detectors are used

(b) MOT metrics: For evaluating the performance of mul-
tiple object tracking algorithms, the most commonly used
metrics are the multiple object target accuracy (MOTA)
and its newer extension—the multiple object tracking preci-
sion (MOTP). MOTA is computed using 3 main parameters:
missed tracks (false negatives or FN), false positives (FP),
and identifier assignment errors (i.e., identity switches).
The Identity or ID Switch metric (IDS) measures the total

number of times the IDs of correctly tracked objects are
erroneously changed. Since the proportion of missed tracks
is usually several orders of magnitude higher than false
positives, FN scores greatly influences the overall MOTA
scores. BYTE, recently proposed by Zhang et al. in [317]
aims to mitigate this challenge by grouping detections into
high- and low-confidence predictions. The high confidence
bounding box detections are first matched with tracklets.
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All tracklets that remain unmatched are then associated
with detections from the low-confidence group. This differs
from the common approach where low confidence detections
below a given threshold are rejected. The new method sig-
nificantly reduces false negatives and enhances the overall
tracking performance. Per the MOTA metrics, tracking suc-
cess can be categorized as mostly tracked (MT)—i.e., for
tracks with tracking success of 80% and above; mostly lost
(ML)—success not exceeding 20%, and partially tracked
(PT)—success between 20% and 80%. The MOTP metric
measures the localization accuracy of tracked objects. Other
notable evaluation metrics commonly used in visual tracking
models include false alarm per frame (FAF) and fragmenta-
tion (Frag). FAF is calculated as the number of false positive
instances detected in each frame. Frag is determined by the
number of times a tracker loses a tracked instance in an earlier
frame and re-establishes (i.e., re-detects) it in a later frame.
Most MOT datasets come with specific object detectors that
can be used in the detection stage. This is to ensure a fair
comparison of different approaches. That notwithstanding,
researchers are still able to use private or custom detectors
on these datasets. For a detailed overview of the various eval-
uation protocols and metrics, readers can refer to [290] and
[292].

8.3 Quantitative performance results of visual
trackers

In Tables 7, 8, 9, 10 and 11, we present quantitative perfor-
mance results of the surveyed trackers on selected large-scale
visual tracking datasets. For the metrics marked with up
arrow (↑), higher numerical values are better, while those
shown with the down arrow (↓) indicate metrics for which
lower numerical values are better. As already mentioned, we
selected the particular datasets that have been widely used to
evaluate many of the surveyed approaches. Tables 7, 8 and
9 present results for SOT methods, while Tables 10 and 11
capture results on MOT datasets.

Tables 7 and 8 present results on the popular VOT fam-
ily of datasets. The evaluation metrics used are the expected
average overlap (EAO), accuracy (A) and robustness (R).
These metrics are briefly described in Sect. 8.2. The reader
may refer to [287] and [288] for further details on the com-
putation procedures. Results on other popular SOT datasets
- specifically, TrackingNet, GOT-10k and LaSOT - are pre-
sented in Table 9. For the TrackingNet dataset, results are
presented in terms of success, precision (prec.) and normal-
ized precision (Pnorm.). The GOT-10k dataset results are
based on average overlap (AO), success rate at 0.5 and 0.75
overlap thresholds (SR0.5 and SR0.75). For LaSOT, precision
(P), normalized precision (Pnorm) area under curve (AUC)
are used. Details on the calculation of these metrics are avail-
able in [299], [297] and [298].

In Tables 10 and 11, we present results for multiple object
tracking methods using MOT17 and MOT20, respectively.
The metrics used here are the multiple object target accu-
racy (MOTA), multiple object Tracking Precision (MOTP),
identification-F1 (IDF1), mostly tracked (MT), mostly lost
(ML), false positives (FP), false negatives (FN) and ID
Switch (IDS). We refer interested readers to [291] and [320]
for a detailed discussion on these metrics.In some cases
where the same model has been tested using public and pri-
vate detections, we provide results for both detections.

9 Summary and discussion

In Sects. 3 to 7, we have reviewed the main deep learning
approaches for enhancing robustness of appearance mod-
els in object detection and tracking tasks. The reviewed
techniques address different issues: sample efficiency, geo-
metric transformations, object deformations, occlusions,
complex backgrounds, and object interactions. Each tech-
nique approaches the problem of robust feature extraction
and representation differently, offering advantages in terms
of a combination of generalization performance with respect
to general or specific appearance changes, computational
efficiency, model adaptability and sample efficiency. Sec-
tion 8 presents the common datasets and evaluation metrics,
as well results of the surveyed object tracking models on
some of the popular datasets. A broad summary of the com-
mon features, main rationale, architectures and limitations of
the most important approaches covered in this work is given
in Table 12.

Currently, methods based on similarity learning
approaches, especially two-streamSiamese architectures, are
the most common techniques due to their simplicity, compu-
tational efficiency and the possibility for few-shot learning.
However, disadvantages associated with phenomena such
as occlusions, background clutter and object interactions
that are common in many complex MOT environments and
long-term tracking scenarios limit their scope of applica-
tion. In these scenarios, similarity learning approaches are
often used in conjunction with other techniques in more
complex pipelines. Solving problems such as occlusions and
complex background clutter is most effective using composi-
tional part modeling techniques, which treat the appearance
model as a composition of spatially related entities. How-
ever, the process of creating models by this means is very
time-consuming. A new trend is to automatically learn com-
positional parts from input samples. However, this is often
challenging in many practical tracking applications since it
requires training with large corpus of relevant data. GAN-
based approaches have been proposed to address the problem
of data scarcity and severe data imbalance by generating
appropriate samples in the training process. Unlike in gen-
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eral machine vision tasks that mostly deal with sample-level
generation, adversarial learning in object tracking contexts
typically involve feature-level generation.

While extending training datasets with GANs has proven
to be an effective way to learn invariant features robust to
different appearance conditions, these models are generally
harder to train and, in some situations, achieving conver-
gence may be unattainable. There is also a lack of reliable
empirical performance metrics to assess the quality of GAN-
generated data. Moreover, they also introduce additional
computational overhead, thereby hampering their suitability
for real-time applications. Attention-based models provide a
good balance of efficiency and robust performance. Unlike
conventional approaches to visual recognition where entire
input images are processed with equal “attention”—and as a
result learn both useful and irrelevant features of the object
and scene – in models using attention mechanisms, only the
most informative image segments necessary for the particular
task are processed. This greatly reduces computational costs
and increases detection efficiency while maintaining invari-
ance to image transformations. In addition, the inclusion of
memory in attention models allows long-term appearance
characteristics to be preserved for future use. Another way
to improve the robustness of deep learning-based appear-
ance modeling is to integrate specialized CNN modules to
explicitly model spatial transformations. The modules are
differentiable and can seamlessly be incorporated into stan-
dard CNNmodels like the faster R-CNN framework (e.g., as
in [247,321]) and trained end-to-end without modifying the
structure of the base model. These techniques provide a fast
and reliable means of encoding robust appearance models
that can generalize well under various conditions. However,
when applying them in general settings, difficulties arise due
to their narrowly-defined formulation—they focusmainly on
spatial transformations. For this reason, photometric effects
(e.g., random noise, shadows, reflections and illumination
variability) can greatly reduce their effectiveness.

10 Future research directions

Arecent trend in object tracking is the development of [object
detection and tracking] techniques [95,98,102,148,250,253,
267,322] that combine different approaches dedicated to spe-
cific tasks into complex models in order to overcome the
limitations of the individual approaches. Indeed, many of
the approaches surveyed utilize two or more fundamental
methodologies so as to ensure more accurate and robust
detection and tracking performance. The resulting hybrid
architectures consist of a set of dedicated sub-systems for
feature representation using a combination of various mech-
anisms such as GANs, part models, visual attention and
similarity learning approaches. For example, [253] employed

a complex tracker that utilize a wide range of techniques.
These include multi-scale kernels to encode scale variations;
dilated convolutions to increase the receptive field; deeply
mined quasi-compositional parts from multiple convolution
layers; a spatial transformer network (STN) to learn affine
transformations of latent compositional parts, as well as
also modeling additional spatial constraints to better encode
visual features. Similarly, [267] utilized a deepCNNconfigu-
ration that involves an STN, a GRU and atrous convolutional
layers. Zhang et al. [250] proposed a Siamese framework,
within which an STN is employed to learn affine transfor-
mations of compositional parts for robust tracking. Lee et
al. [323] introduced a memory model in a Siamese model
to enable long-term tracking. In [322], attention mechanism
is used to extract robust features from compositional part
models.

Some of these hybrid models require the use of sophisti-
cated fusion algorithms, as well as refinement methods. In
[267] a GRU is used to fuse different features produced by
the model components. In [324], a soft-max-based fusion
mechanism is proposed for aggregating low-level features. In
addition, a high-level spatial feature fusion is used to combine
features from different components, including the soft-max
fusion output and channel and spatial attention sub-modules.
The techniques for fusing hybrid models are still at an early
stage of development, hence, there is still a lot of room for
the development of better fusion strategies to harness the
strengths of individual approaches in a unified framework.
The most promising application of future hybrid trackers
would be to enable generic object tracking algorithms that
generalize across multiple domains.

The main directions envisaged for future work include the
following.

• Robust feature transfer: More effective techniques for
transferring useful features from existing large-scale
datasets to novel visual contexts and challenging applica-
tion settings would be highly beneficial and compensate
for the difficulty in creating large-scale tracking datasets.

• Generic appearancemodels for tracking inopendomains:
Many practical tracking application scenarios are charac-
terized by openness, where arbitrary objects can appear
on and disappear from the scene. Most of the current
appearance models, however, work in specific, closed
environments, in which the number of object categories
are known and fixed. A relatively unexplored approach is
learning robust generic appearance models in open envi-
ronments.

• More advanced hybrid fusion methods: More sophisti-
cated “hybridization” techniques that rely on both low-
and high-level context information as well as advanced
decision making capabilities to aggregate visual features
will significantly improve the robustness and reliability
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Table 12 Summary of robust appearance modeling approaches, their strengths and weaknesses as well as the common deep learning architectures
used for their implementation

Approach Main aim Architectures Strength Weakness

Data augmentation Expand training data GANs, AE, VAE Can be the only effective
method when small or
no data is available

Inflates data, leading to
higher computational
resource requirements

Compositional part
modeling

Represent target objects
by their constituent
parts

DCNN, DPM Strong against
occlusions and
deformations

Not applicable to
objects without
distinctive parts

Similarity learning Predict by comparing
the similarity between
a given target and
template image(s)

Pairwise deep CNNs Simplicity; can be
trained on large-scale
image data offline

Difficult to update
online

Attention and memory Selectively process and
retains only useful
visual information

RNN, LSTM, GRU,
transformer, external
memory

Highly efficient; can
encode contextual
relationships; can
update model online
using previously
learned information

Functions at low (pixel)
level; limited memory
capacity; memory
access can slow
performance

Embedded units for
geometry learning

Explicitly model spatial
transformations of
real-world objects

STN, DCN, Astrous
convolutions

Explainable; general
(i.e., object-agnostic)

Introduces additional
complexity and
computational
overheads

of appearancemodels. These fusingmethods could allow
multiple and diverse inference engines to be modeled
as computational primitives within deep learning frame-
works and be fused to enable predictions in a manner that
is consistent with high-level real-world contexts.

• The use of automated machine learning (AutoML) tech-
niques: The emerging area of Automated Machine
Learning (AutoML) [325], especially Neural Architec-
ture Search (NAS) [326–328], has already produced
impressive deep learning models for many visual recog-
nition problems. However, it remained under-explored in
visual tracking tasks. An important dimension of future
research would potentially involve the exploitation of
these techniques to develop more advanced detectors and
trackers. The configuration of these machine-generated
frameworks could fundamentally differ from existing
architectures.

11 Conclusion

Appearance modeling is the most important task in visual
object tracking and is generally solved by extracting visual
features from sample data of the target objects into sets of
invariant feature vectors, and subsequently making inference
based on the encoded representations. In this paper,we exten-
sively survey themost important deep learning techniques for
learning robust visual representations for object detection and
tracking. The main motivations, key functional principles,
implementation issues and application scenarios of these

algorithms are thoroughly discussed. In addition, common
datasets, performance evaluation metrics and quantitative
results of state-of-the-art models surveyed in this paper are
presented.

As we have noted earlier in the survey, owing to the enor-
mous complexity of real-world visual tracking scenarios,
there is still a lot of room for further improvement of appear-
ance models with regard to their robustness and accuracy
in challenging detection and tracking tasks. State-of-the-art
deep learning techniques still fare poorly in visual tracking as
compared to other machine vision tasks. Nevertheless, with
the wide diversity of approaches at their disposal, develop-
ers and researchers have a lot of leverage and flexibility in
developing appearance models that meet the requirements
of specific applications. One of the main tasks for develop-
ers will be in defining the most suitable approaches for each
given application scenario and adaptively fusing appropriate
models for optimum performance.
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