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Abstract
Process mining techniques can help organizations to improve their operational processes. Organizations can benefit from
process mining techniques in finding and amending the root causes of performance or compliance problems. Considering
the volume of the data and the number of features captured by the information system of today’s companies, the task of
discovering the set of features that should be considered in causal analysis can be quite involving. In this paper, we propose
a method for finding the set of (aggregated) features with a possible causal effect on the problem. The causal analysis task
is usually done by applying a machine learning technique to the data gathered from the information system supporting the
processes. To prevent mixing up correlation and causation, which may happen because of interpreting the findings of machine
learning techniques as causal, we propose a method for discovering the structural equation model of the process that can be
used for causal analysis. We have implemented the proposed method as a plugin in ProM, and we have evaluated it using real
and synthetic event logs. These experiments show the validity and effectiveness of the proposed methods.

Keywords Process mining · Causality inference · Root cause analysis

1 Introduction

Organizations aim to improve operational processes to serve
customers better and to becomemore profitable. To this goal,
they can utilize process mining techniques in many steps,
including identifying friction points in the process, finding
what causes a friction point, estimating the possible impact
of changing each factor on the process performance, and also
planning process enhancement actions. Finding the set of fea-
tures that cause (effect) another feature, i.e., the set of features
that change the value of any of the former ones can change
the value of the latter one, is the core of the process improve-
ment process. Today, there are several robust techniques for
process monitoring and finding their friction points, but little
work on causal analysis. In this paper, we focus on causal
analysis and investigating the impact of interventions.
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Processes are complicated entities involving many steps,
where each step itself may include many influential factors
and features. Moreover, not just the steps but also the order
of the steps that are taken for each process instance may vary,
which results in several process instance variants. Thismakes
it quite hard to identify the set of features that influence a
problem. However, in the literature related to causal analysis
in the field of process mining, it is usually assumed that the
user provides the set of features that have a causal relationship
with the observed problem in the process (see for example
[1,2]). To overcome this issue, we investigate the application
of feature selection methods to find the set of features that
may have a causal relationship with the problem. Moreover,
we use a method based on information gain to identify the
values of these features that are more prone to causing the
problem.

Traditionally, the task of finding the root cause of a prob-
lem in a process is done in two steps; first gathering process
data, and then applying data mining and machine learning
techniques. It is easy to find correlations, but very hard
to determine causation. Although the goal is to perform
causal analysis, a naive application of such approaches often
leads to amix-up of correlation and causation. Consequently,
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process enhancement based on the results of such approaches
does not always lead to any process improvements.

Consider the following three scenarios:

(i) In an online shop, it has been observed that in many
delayed deliveries certain employees were responsible.

(ii) In a consultancy company, there are deviations in those
cases done by the most experienced employees.

(iii)In an IT company, it has been observed that the higher
the number of resources assigned to a project, the longer
it takes.

The following possibly incorrect conclusions can bemade by
considering the observed correlations as causal relationships.

• In the online shop scenario, the responsible employees
are causing the delays.

• In the second scenario, we may conclude that over time
the employees get more and more reckless, and conse-
quently the rate of deviations increases.

• In the IT company,wemay conclude that themore people
working on a project, themore time is spent on teamman-
agement and communication, which prolongs the project
unnecessarily.

However, correlation does not mean causation. We can have
a high correlation between two events when they both are
caused by a possibly unmeasured (hidden) common cause
(set of common causes), which is called a confounder.
For example, in the first scenario, the delayed deliveries
are mainly for the bigger size packages which are usually
assigned to specific employees. Or, in the second scenario,
the deviations happen in the most complicated cases that are
usually handled by the most experienced employees. In the
third scenario,maybe both the number of employeesworking
on a project and the duration of a project are highly depen-
dent on the complexity of the project. As it is obvious from
these examples, changing the process based on the observed
correlations not only leads to no improvement but also may
aggravate the problem or create new ones.

Two general frameworks for finding the causes of a prob-
lem are (1) randomized experiments and the (2) theory of
causality [3,4]. A randomized experiment provides the most
robust and reliable method for making causal inferences and
statistical estimates of the effect of an intervention, i.e., inten-
tionally changing the value of a feature. Thismethod involves
randomly setting the values of the features that have a causal
effect on the observed problem and monitoring the effects.
Applying randomized experiments in the context of pro-
cesses is usually too expensive (and sometimes unethical)
or simply impossible. The other option for anticipating the
effect of any intervention on the process is using a structural
equation model [3,4]. In this method, first, the causal mech-

anism of the process features is modeled by a conceptual
model, and then this model is used for studying the effect of
changing the value of a process feature.

The main benefit of modeling the relationships among the
process feature using a structural equation model, over those
methods that are based onmere correlations, is the possibility
to investigate the distribution of unseen data. Using a struc-
tural equationmodel, we can study the effect of interventions
on one of the process features on the other features.

This paper is an extension of [5], where we have proposed
a method for causal analysis using structural equation mod-
eling. Here we address one of the main issues in this method.
Finding the features that may have a causal effect on the prob-
lem often requires substantial domain knowledge. Moreover,
considering the variety of the feature values in a process, even
in the presence of extensive domain knowledge, it may not
be easy to determine those values of the features that have the
strongest effect on the problem. So, we propose a simple yet
effectivemethod for finding a set of features and feature value
pairs that may contribute the most to the problem. Applying
causal inference on a smaller set of features not only increases
the time efficiency of the causal inference but also results
in simpler and consequently more understandable structural
equation models. Moreover, we add aggregated features to
the features that can be extracted from the event log, which
makes the method capable of analyzing more scenarios. The
method explained in this paper includes the following five
steps:

1. As a preprocessing step, the event log is enriched by sev-
eral process-related features. These features are derived
from different data sources like the event log, the process
model, and the conformance checking results. Also, here
we consider the possibility of adding aggregated features
to the event log regarding the time window provided by
the user.

2. In the second step, based on the class and descriptive
features (denoted in Fig. 1 as class situation feature and
descriptive situation features) provided by the user a
class-dependent data table is created, which we call sit-
uation feature table.

3. A set of pairs of the form (feature, feature value) are rec-
ommended to the user where the set of recommended
features is a subset of descriptive features in the situa-
tion feature table created in the second step. Such pairs
include the descriptive features that might have a causal
relationship with the problem and those values of them
that possibly contribute more to the problem. Users can
modify this set of features that have been identified auto-
matically or simply ignore it and provide another set of
features to create a new situation feature table (or trim
the situation feature table).
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Fig. 1 The general structural
equation model discovery
approach. Each step is annotated
with a number which is
corresponding to the number of
the item dedicated to explaining
that step in the overview of the
method in Sect. 1

4. The fourth step involves generating a graphical object
encoding the structure of causal relationships among the
process features. This graphical object can be provided
by the customer or be inferred from the observational data
(the situation feature table from the previous step) using
a causal structure learning algorithm, also called search
algorithm. The user can modify the resulting graphical
object by adding domain knowledge as input to the search
algorithm and repeating this step or by modifying the
discovered graph.

5. The last step involves estimating the strength of each
discovered causal relationship and the effect of an inter-
vention on any of the process features on the identified
problem.

In Fig. 1, the general overview of the proposed approach
for structural equation model discovery is presented. The
remainder of the paper is organized as follows. In Sect. 2, we
start with an example. We use this example as the running
example throughout this paper. In Sect. 3, we present some
of the related work. In Sect. 4, we present the approach at
a high level. The corresponding process mining and causal
inference theory preliminaries are presented in Sect. 5 and,
in Sect. 6, an overview of the proposed approaches for fea-
ture recommendation and causal equationmodel discovery is

presented. In Sect. 7, the assumptions and the design choices
in the implemented plugin and the experimental results of
applying it on synthetic and real event logs are presented.
Finally, in Sect. 8, we summarize our approach and its appli-
cations.

2 Motivating example

As the running example, we use an imaginary IT company
that implements software for its customers. However, they do
not do the maintenance of the released software. Here, each
process instance is corresponding to the process of imple-
menting one software. This process involves the following
activities: business case development, feasibility study, prod-
uct backlog, team charter, development, test, and release.
The Petri net for this process is shown in Fig. 2. We refer to
the sub-model including two transitions “Development” and
“Test” (the two blue activities in Fig. 2) as the implementation
phase.

The manager of the company is concerned about the dura-
tion of the implementation phase of projects. She wants
to know what features determine the implementation phase
duration. And also, if there is any way to reduce the imple-
mentation phase duration. If so, what would be the effect

Fig. 2 The Petri net model of
the process of IT company
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Fig. 3 A possible causal structure for the IT company

of changing each feature? These are valid questions to be
asked before planning for re-engineering and enhancing the
process. The manager believes that the following features of
a project might have a causal effect on the duration of its
implementation phase (i.e., she believes that by changing the
value of these features, the duration of the implementation
phase will also change.):

• “Priority” which is a feature of business case devel-
opment indicating how urgent the software is for the
customer,

• “Team size”which is a feature of team charter specifying
the number of resources working on a project,

• “Duration” of product backlog activity, a feature of prod-
uct backlog activity, which indicates its duration.

Analyzing the historical data from the company shows that
there is a high correlation between every one of these three
features and the duration of the implementation phase. We
consider “Complexity” (the complexity and hardness of a
project) as another feature that is not recorded in the event log
but has a causal effect on the duration of the implementation
phase.

The structure of the causal relationship among the fea-
tures has a high impact on designing the steps to enhance the
process. In Figs. 3, 4, and 5, three possible structures of the
causal relationship among the features of the IT company are
depicted1.

According to Fig. 3, just team size and priority of a project
have a causal effect on the duration of the implementation
phase. But the duration of product backlog does not have any
causal effect on it even though they are highly correlated.
Consequently, changing product backlog duration does not
have any impact on the duration of the implementation phase.

According to Fig. 4, all three features priority, product
backlog duration, and team size influence the duration of the
implementation phase. Thus, by changing each of these three

1 In these three figures and other figures in this paper that visualize
networks of feature, labels of the nodes (vertices) are either of form
Attribute name, Trace if the attribute name is related to a trace-level
attribute, or of form Attribute name, Activity name if the attribute name
is related to an event-level attribute. In the former case, the activity name
indicated the activity name of the event that the attribute belongs to.

Fig. 4 Another possible causal structure for the IT company

Fig. 5 Another possible causal structure for the IT company

features, one can influence the duration of the implementa-
tion phase.

Based on Fig. 5, we can conclude that the complexity,
which is a hidden feature in the model (depicted by the
gray dashed rectangle), causally influences both implementa-
tion phase duration and product backlog duration. Therefore,
the correlation among them is because of having a common
cause. Grounded in this causal structure, it is not possible to
influence the duration of the implementation phase by forcing
product backlog activity to take place in a shorter or longer
amount of time.

It is worth noting that not all the features are actionable,
i.e., in reality, it is not possible to intervene on some of the
features. For example, in the context of this IT company,
we can imagine that the manager intervenes on team size by
assigning more or fewer people to a project; but he cannot
intervene in the complexity of a project. Judging whether a
feature can be intervened requires using common sense and
domain knowledge.

In the rest of this paper, we show how to answer such
questions posed by the manager of our imaginary IT com-
pany. We first mention how to extract data in a meaningful
way regarding the class feature (implementation phase dura-
tion in this example), and then we show how to discover
the causal relationships between the process features and the
structural equation model of the features that may affect the
class feature using our method. Finally, we demonstrate how
questions related to investigating the effect of an interven-
tion on the class feature are answered in this framework. In
Sect. 7.2, we show the results of applying our method for
answering the questions of the IT company manager in this
example.
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3 Related work

In the literature, there is plenty of work in the area of process
mining dedicated to finding the root causes of a performance
or compliance problem. The causal analysis approach of the
proposed methods usually involves classification [1,6], and
rule mining [7]. The main problem of these approaches is
that the findings of these methods are based on correlation
which does not necessarily imply causation.

The theory of causation based on the structural causal
model has been studied deeply [4]. Also, a variety of domains
benefit from applying causal inference methods (e.g. [8,9]).
However, there is little work on the application of the theory
of causality in the area of process mining. There are some
works in process mining that use causality theory. These
include:

• In [10], the authors propose an approach for discovering
causal relationships between a range of business pro-
cess characteristics and process performance indicators
based on time-series analysis. The idea is to generate a
set of time series using the values of performance indica-
tors, and then apply the Granger causality test on them,
to investigate and discover their causal relationships.
Granger test is a statistical hypothesis test to detect pre-
dictive causality; consequently, the causal relationships
using this approach might not be true cause-and-effect
relationships.

• In [11], the authors use the event log and the BPMN
model of a process to discover the structural causalmodel
of the process features. They first apply loop unfolding
on the BPMNmodel of the process and generate a partial
order of features. They use the generated partial order to
guide the search algorithm. In this work, it is assumed
that the BPMN model of a process is its accurate model,
which is not always the case.

There is also some work devoted to the case level causal
analysis [2,12]. In [12] a method for case-level treatments
recommendation has been proposed. The authors identify
treatments using an action rule mining technique, and then
they use uplift trees to discover subgroups of cases for which
a treatment has a high causal effect. In [2], the authors have
utilized the causal structure model of the whole process and
an optimization method to explain the reason for an undesir-
able outcome in the case level.

It is worth mentioning that all the process-level causal
inference approaches that have been presented above are
based on statistical tests for discovering causal relationships.
Consequently, these approaches are not feasible when there
are a huge number of features. However, none of them pro-
vides a method for feature recommendation. Yet, there is
some work on influence analysis that aims at finding feature

values that correlate with a specific property of the process
[13–15]. These methods utilize the frequency of the con-
currence of each one of the process feature values with the
problematic cases to determine their influence.

4 Overview of themethod

In this section, we informally describe the method.

4.1 Data extraction

Process mining techniques start from an event log extracted
from an information system. The building block of an event
log is an event. An event indicates that a specific activity
happened at a point in time for a process instance. A set
of events that are related to a specific process instance are
called a trace. We can look at an event log as a collection
of traces. An event log may include three different levels
of attributes: log-level attributes, trace-level attributes, and
event-level attributes. However, there is much more perfor-
mance and conformance-related information encoded in the
event log that might be helpful for causal inference and root
cause analysis. For example, we can add deviation infor-
mation, the number of log moves, and the trace duration as
additional trace-level features and event duration and next
activity as event-level features to enrich the event log. If we
are interested in the aggregated feature, such as average trace
duration or process workload, then we need to enrich the
event log with aggregated features. For that, given k ∈ N as
the number of time intervals, we divide the time-span of the
event log into k consecutive equal length time intervals. The
value of an aggregated feature for an event (trace) is the value
of that aggregated feature in the time interval that includes
its timestamp (the timestamp of its last event).

Example 1 An event log with two traces for the IT company
in Sect. 2 is presented in Table 1. This event log has been
enriched by adding the duration attribute to its events (dura-
tion of each event) and the implementation phase duration
attribute to the traces.

One of the fundamental rules of cause and effect is their
time precedence. So, assuming negligible recording time
while gathering the data by the information system of the
companies, we have to extract the data from the part of the
trace that happens before the occurrence of the class fea-
ture. Thus that data should be extracted from a prefix of the
trace which has been recorded before the occurrence of the
class feature. We call a prefix of a trace and its (trace-level)
attributes a situation. Depending on the type of class feature,
we can define different types of situations such as:
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Table 1 An event log with two traces for the IT company in Sect. 2

Case ID Activity name Timestamp Priority Team size Duration Responsible Implementation phase duration

1 Business case development 20,10,2018 2 Alice 324

1 Feasibility study 15.1.2019 87 Alice 324

1 Product backlog 19.2.2019 35 Alice 324

1 Team charter 19.3.2019 21 28 Alice 324

1 Development 19.11.2019 245 Alice 324

1 Test 6.2.2020 79 Alice 324

1 Release 8.2.2020 2 Alice 324

2 Business case development 20.2.2019 1 Alex 807

2 Feasibility study 22.2.2019 33 Alex 807

2 Product backlog 26.4.2019 63 Alex 807

2 Team charter 3.5.2019 33 7 Alex 807

2 Development 3.2.2020 276 Alex 807

2 Test 17.4.2020 74 Alex 807

2 Release 25.4.2020 8 Alex 807

2 Development 31.3.2021 340 Alex 807

2 Test 26.7.2021 117 Alex 807

2 Release 29.7.2021 3 Alex 807

• Trace situation, when the class feature is one of the trace
features, e.g., trace delay, and each situation is a trace.

• Event situation, when the class feature is one of the event
features, e.g., the duration of activity “Test” (in the con-
text of IT company in Sect. 2), and each situation is a
prefix of a trace and its trace-level attributes. In this exam-
ple, each situation includes a prefix of a trace in the IT
company event log ending with an event with the activity
name “Test” and the trace-level attributes of that trace.

An interesting subclass of event situations includes those
when the class feature refers to the decision in one of the
choice places of the process. In this case, each situationwould
be a prefix of a trace where the last event is the one that hap-
pened before the chosen choice place (and the trace-level
attributes of that trace). Such a situation is suitable for ana-
lyzing the causes of the decision made in a choice place.

To extract the data, we need to know the exact features.
However, it is possible to have the same attribute names in
several events of the same trace. For example, we might be
interested in the “timestamp” of the event with the activity
name “Test” and not other events. To overcome this hurdle,
we use situation feature notation, which is identified by a
pair including an attribute name and a group of events for
which we are interested in the attribute value. The group of
events is determined in terms of the property that they have
in common. However, if we are interested in a trace-level
attribute, we leave the second element of the situation feature
empty. For example, a situation feature may refer to:

• the duration of the trace,
• the timestamp of events with activity name “Test”,
• the duration of the events with activity name “Develop-
ment”, or

• the resource of the events that took longer than 80 days.

Moreover, given a situation and a situation feature, we assign
the corresponding trace-level attribute value to the situation
feature if it is a trace-level situation feature (i.e., the second
termof the situation feature is empty). In the case of the event-
level situation feature, we assign the corresponding event-
level attribute value of the latest event in that situation that
belongs to the specified event group (satisfies the required
event group properties) to it. For example, considering the
second trace of the event log in Table 1 as a situation, we
have:

• the duration of the trace is 807 days,
• the timestamp of the event with activity name “Test” is
117,

• the duration of the event with activity name “Develop-
ment” is 340 days, and

• the resource of the events that took longer than 80 is
Alex which is the one for activity “Test” with duration
117 days.

Knowing the situation feature that represents the class fea-
ture (which in the rest of the paper we call class situation
feature), we can turn an event log into a collection of situ-
ations with respect to that class situation feature. Here we
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consider those collection of all situations extracted from an
event log in which each situation is:

• a trace if the second term of the class situation feature
is empty. In other words, the first element of the class
situation feature is a trace-level attribute name.

• a prefix of a trace and its trace-level attributes in the event
log ending with an event that belongs to the event group
specified by the second term of the class situation fea-
ture. In this case, class situation feature is an event-level
situation feature.

Having the set of descriptive situation features and the class
situation feature, we can simply map each situation to a data
point which we call an instance. We call a data table which
is a collection of instances driven from a subset of situations
(of an event log) a situation feature table.

4.2 Feature recommendation

We can extract an astronomical number of situation features
from a given event log. Thus a piece of valuable information
that can help the process owners in causal inference is the set
of situation features that may have causal relationships with
the class situation feature. Moreover, considering the vari-
ety of the values that can be assigned to a situation feature,
another advantageous piece of information is those values
of the selected situation features that contribute more to the
problem. To provide the stakeholders with such information,
We use a method based on information gain for situation fea-
ture and value recommendation. Knowing which values of
the class situation feature are undesirable, we compute the
information gain of each descriptive situation feature value
(we use binning technique in case of numerical situation fea-
tures). Then those pair of situation features and values are
recommended to the user with information gain bigger than
a given threshold.

Information gain quantifies the amount of information
gained about the class situation feature from a descriptive
situation features. It measures the reduction in informa-
tion entropy of class situation feature by conditioning on a
descriptive situation feature. The number of situation features
considered as possible causes of the class situation feature
is more using information gain than other more enhanced
techniques for feature recommendation. However, based on
our experiments, more enhanced techniques are more prone
to fail to discover the whole set of parents and ancestors of
the class situation feature (descriptive situation features con-
nected to class situation feature by a directed path longer than
one).

4.3 Causal inference

We can encode the causal relationships among the situation
features of a given situation feature table, in the form of a
set of equations which are called Structural Equation Model
(SEM). In other words, a SEM encodes how the data has been
generated and hence the observational distribution (the dis-
tribution that the data come from). To discover the SEM of
the data, we need to know the structure of the causal relation-
ships among the situation features, as well as the strength of
each causal relationship.

The structure of the causal relationships among the sit-
uation features in a situation feature table can be captured
and presented in the form of a graph, which we call a causal
structure. A causal structure is a Directed Acyclic Graph
(DAG) in which each vertex is corresponding to a situation
feature. If a situation feature is a direct cause of another sit-
uation feature then there should be a directed edge from the
corresponding vertex of the former situation feature to the
corresponding vertex of later one in the causal structure. The
causal structure of the data can be provided by the user. How-
ever, if the user does not have such information, then we can
approach the causal structure discovery in a data-drivenman-
ner by analyzing statistical properties of situation features in
the situation feature table (observational data).

The number of potential causal structures grows exponen-
tially with the number of situation features which indicate
the hardness of the causal structure discovery problem [16].
Yet, several algorithms have been proposed in the literature
with this purpose.We can do causal structure inference using
a causal structure learning algorithm which (also called a
search algorithm). The search algorithms use partial corre-
lation tests to determine the existence of a potential causal
relationship between two features2. There are twomain types
of search algorithms [17]:

• Score-based methods, where the goal is finding a DAG
(as the causal structure of the data) that maximizes the
likelihood of the data, according to a fitness score indi-
cating how good the DAG describes the data. Refer to
[18–20] for some examples of score-based search algo-
rithms.

• Constraint-based methods, where conditional indepen-
dence tests on data are used as constraints to construct
the DAG structure. Refer to [21–23] for some examples
of construct based search algorithms.

2 Loosely speaking, a partial correlation test is a statistical test designed
to measure the degree of association between two features (random
variables) where the effect of a set of other features (random variables)
has been removed.
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The output of the search algorithm is not always a DAG,
but a Partial Ancestral Graph (PAG) which is a graphical
object encoding all statistically supported causal structures
by the data. A PAG is simply a graph with four types of
edges. Each edge type has semantics and encodes a piece of
information about the causal structure of the corresponding
situation features in its ends. To turn the discovered PAG into
a causal structure, we can use domain knowledge and com-
mon sense. For examplewe can guide the search algorithmby
adding required and forbidden directions. A required direc-
tion indicates a causal relationship that must exist in the
causal structure whereas, a forbidden direction indicates a
causal relationship that should not exist in the causal struc-
ture. Having the causal structure of the data, discovering the
SEM is simply an estimation problem.

Using SEM of the data, we can predict the effect of the
interventions on the process. An (atomic) intervention on a
process is done by forcefully setting the value of one of its
situation features to a specific value. An example of an inter-
vention in the context of the IT company in Sect. 2 would
be setting “Team size” to 5 for all the projects regardless of
their other properties. To predict the effect of an intervention
on a process, we need to replace the equation corresponding
to the situation feature that we intervene on (the equation
for “Team size” in the mentioned example) with the fixed
value assignment (i.e., with “Team size = 5”). The distri-
bution induced by the modified SEM is the interventional
distribution describing the behavior of the process under
intervention. If the SEM is the correct model, then all the
deduced interventional distributions correspond to distribu-
tions that we would obtain from randomized experiments
[4].

5 Preliminaries

In this section, we describe some of the basic notations and
concepts of the process mining and causal inference theory
in a more formal way.

5.1 Process mining

In the following section, we follow two goals: first, we
describe the basic notations and concepts of the process min-
ing, and second, we show the steps involved in converting a
given event log into a situation feature table.

We start by explicitly defining an event, trace, and event
log in a way that reflects reality and, at the same time, is suit-
able for our purpose. But first, we need to define the following
universes and functions:

• Uatt is the universe of attribute names, where {act Name,
t imestamp, caseI D} ⊆ Uatt . act Name indicates the
activity name, t imestamp indicates the timestamp of an
event, and caseI D is an identifier indicating the trace
(process instance) that the event belongs to.

• Uval is the universe of values.
• values ∈ Uatt �→ P(Uval) is a function that returns the

set of all possible values of a given attribute name3.
• Umap = {m ∈ Uatt � �→ Uval | ∀at ∈ dom(m) : m(at) ∈

values(at)} is the universe of all mappings from a set of
attribute names to attribute values of the correct type.

Also, we define ⊥ as a member of Uval such that ⊥ /∈
values(at) for all at ∈ Uatt . We use this symbol to indicate
that the value of an attribute is unknown, undefined, or is
missing.

Now, we define an event as follows:

Definition 1 (Event) An event is an element of e ∈ Umap,
where e(act Name) �= ⊥, e(t imestamp) �= ⊥, and
e(caseI D) �= ⊥. We denote the universe of all possible
events by E and the set of all non-empty chronologically
ordered sequences of events that belong to the same case
(have the same value for caseI D) by E+. If 〈e1, . . . , en〉 ∈
E+, then for all 1 ≤ i < j ≤ n, ei (t imestamp) ≤
e j (t imestamp) ∧ ei (caseI D) = e j (caseI D).

Example 2 The events in the following table are some of the
possible events for the IT company in Sect. 2.

Each event may have several attributes which can be used
to group the events. For at ∈ Uatt , and V ⊆ values(at), we
define a group of events as the set of those events in E that
assign a value of V to the attribute at ; i.e.

group(at, V ) = {e ∈ E | e(at) ∈ V }.

Some of the possible groups of events are:

• the set of events with specific activity names,
• the set of events which are done by specific resources,
• the set of events that start in a specific time interval during
the day, or,

• the set of events with a specific duration.

3 In this paper, it is assumed that the reader is familiar with sets, multi-
sets, and functions. P(X) is the set of non-empty subsets of set X �= ∅.
Let X and Y be two sets. f : X � �→ Y is a partial function. The domain
of f is a subset of X and is denoted by dom( f ). We write f (x) = ⊥ if
x /∈ dom( f ).
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e1:={(caseI D, 1), (Responsible, Alice), (act Name, “Business case development”), (timestamp, 20.10.2018), (Priori t y, 2)}
e2:={(caseI D, 1), (act Name, “Feasibility study”), (timestamp, 15.1.2019)}
e3:={(caseI D, 1), (Responsible, Alice), (act Name, “Product backlog”), (timestamp, 19.2.2019), (Duration, 35)}
e4:={(caseI D, 1), (Responsible, Alice), (act Name, “Team charter”), (timestamp, 19.3.2019), (T eam size, 21)}
e5:={(caseI D, 1), (Responsible, Alice), (act Name, “Development”), (timestamp, 19.11.2019), (Duration, 245)}
e6:={(caseI D, 1), (Responsible, Alice), (act Name, “Test”), (timestamp, 6.2.2020), (Duration, 79)}
e7:={(caseI D, 1), (Responsible, Alice), (act Name, “Release”), (timestamp, 8.2.2020)}
e8:={(caseI D, 2), (Responsible, Alex), (act Name, “Business case development”), (timestamp, 20.2.2019), (Priori t y, 1)}
e9:={(caseI D, 2), (Responsible, Alex), (act Name, “Feasibility study”), (timestamp, 22.2.2019)}
e10:={(caseI D, 2), (Responsible, Alex), (act Name, “Product backlog”), (timestamp, 26.4.2019), (Duration, 63)}
e11:={(caseI D, 2), (Responsible, Alex), (act Name, “Team charter”), (timestamp, 3.5.2019), (T eam size, 33)}
e12:={(caseI D, 2), (Responsible, Alex), (act Name, “Development”), (timestamp, 3.2.2020), (Duration, 276)}
e13:={(caseI D, 2), (Responsible, Alex), (act Name, “Test”), (timestamp, 17.4.2020), (Duration, 74)}
e14:={(caseI D, 2), (Responsible, Alex)(act Name, “Release”), (timestamp, 25, 4, 2020)}
e15:={(caseI D, 2), (Responsible, Alex), (act Name, “Development”), (timestamp, 31.3.2021), (Duration, 340)}
e16:={(caseI D, 2), (Responsible, Alex), (act Name, “Test”), (timestamp, 26.7.2021), (Duration, 117)}
e17:={(caseI D, 2), (Responsible, Alex), (act Name, “Release”), (timestamp, 29.7.2021)}

We denote the universe of all event groups by G = P(E).
For the sake of simplicity, we restrict the group of events

to be defined based on conditions expressed on a single
attribute. However, in principle, it is not a restriction. It is
possible to define a group of events via multi-attribute con-
ditions. To do so, the user may enrich the event log by adding
a derivative attribute considering the required conditions on
multi-attributes of interest and then use the new derivative
attribute to define a group of events.

Example 3 Here are some possible event groups based on the
IT company in Sect. 2.

G1:=group(act Name, {“Business case development”})
G2:=group(act Name, {“Product backlog”})
G3:=group(act Name, {“Team charter”})
G4:=group(act Name, {“Development”})
G5:=group(team size, {33, 34, 35})

G1, G2, G3, and G4 group the events based on their activ-
ity name. For example, event group G1 is the set of events
with activity name “Business case development” (i.e., G1 =
{e ∈ E | e(act Name) = “Business case development”}.).
However, event group G5 represents the group of events for
which the value of attribute team size is 33, 34, or 35.

Based on the definition of an event, we define an event log
as follows:

Definition 2 (Event Log) We define the universe of all event
logs as L = E+ × Umap. We call each element (σ, m) ∈ L
where L ∈ L a trace in which σ represent the sequence
of events of the trace and m is a mapping from the trace-
level attribute names to their values (possibly with an empty
domain).

One of our assumptions in this paper is the uniqueness of
events in event logs; i.e., given an event log L ∈ L, we have
∀(σ1, m1), (σ2, m2) ∈ L : e1 ∈ σ1 ∧ e2 ∈ σ2 ∧ e1 = e2 �⇒
(σ1, m1) = (σ2, m2) and ∀(〈e1, . . . , en〉, m) ∈ L : ∀1 ≤
i < j ≤ n : ei �= e j . This property can easily be ensured by
adding an extra identity attribute to the events.

Also, we assume that the uniqueness of the “caseID”
value for traces in a given event log L . In other words,
∀(σ1, m1), (σ2, m2) ∈ L : e1 ∈ σ1 ∧ e2 ∈ σ2 ∧
e1(caseI D) = e2(caseI D) �⇒ (σ1, m1) = (σ2, m2).

Example 4 L I T = {λ1, λ2} is a possible event log for the
IT company in Sect. 2. L I T includes two traces λ1 and λ2,
where:

λ1:=(〈e1, . . . e7〉, {(caseI D, 1), (Responsible, Alice),

(implementation phase duration, 324)})

and

λ2:=(〈e8, . . . e17〉, {(caseI D, 2), (Responsible, Alex),

(implementation phase duration, 807)}).

As a preprocessing step, we enrich the event log by adding
many derived features to its traces and events. There aremany
different derived features related to any of the process per-
spectives; the time perspective, the data flow-perspective,
the control-flow perspective, the conformance perspective,
or the resource/organization perspective of the process. We
can compute the value of the derived features from the event
log or possibly other sources.

Moreover, we can enrich the event log by adding aggre-
gated attributes to its events and traces. We define an
aggregated feature as follows:

Definition 3 (Aggregated Attribute) LetL be the universe of
event logs, N+ a non-zero natural number (which indicates
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the number of time windows), Uatt the universe of attribute
names, and values(timestamp) the domain of timestamp.
We call an attribute name in Uatt an aggregated attribute if
its value is determined using a function

ξ ∈ L × Uatt × N
+ × values(timestamp) → R.

Function ξ(L, ag, k, t) where L ∈ L, ag ∈ Uatt , k ∈ N
+,

and t ∈ values(t imestamp), returns the corresponding
aggregated value of attribute ag at time t where we partition
the timebetween theminimumandmaximum timestamp in L
to k consecutive timewindowswith equal width. To compute
the value of an aggregated attribute ag for and event e ∈ L
(in the event-level) considering k time windows, we use
ξ(L, ag, k, e(t imestamp)) while for a trace t = (σ, m) ∈ L
(in the event-level) considering k time windows, we use
ξ(L, ag, k, t) where t = max{e(timestamp) | e ∈ σ }.

Some of the possible aggregated attributes are: the num-
ber of waiting customers, process workload, average service
time, average waiting time, number of active events with a
specific activity name, number of waiting events with a spe-
cific activity name, average service time, average waiting
time of a resource.

While extracting the data from an event log, we assume
that the event recording delays by the information system of
the process were negligible. Moreover, we assume that all
the trace-level features were recorded before the execution
of the trace. Considering the time order of cause and effect,
we have that only the features that have been recorded before
the occurrence of a specific feature can have a causal effect
on it. So the relevant part of a trace to a given feature is a
prefix of that trace and its trace-level attributes, which we
call a situation. Let prfx(〈e1, . . . , en〉) = {〈e1, . . . , ei 〉 | 1 ≤
i ≤ n}, a function that returns the set of non-empty prefixes
of a given sequence of events. Using prfx function we define
a situation as follows:

Definition 4 (Situation) Let L be the universe of all event
logs. We define the universe of all situations as Usi tuation =
⋃

L∈L SL where SL = {(σ, m) | σ ∈ prfx(σ ′)∧(σ ′, m) ∈ L}
is the set of situations of an event log L ∈ L. Moreover, we
call each element (σ, m) ∈ Usi tuation a situation.

Among the possible subsets of SL of a given event log L ,
we distinguish two important situation subset types of SL .
The first type is the G-based situation subset of L where
G ∈ G and includes those situations in SL that their last
event (the event with maximum timestamp) belongs to G.
The second type is the trace-based situation subset, which
includes the set of all traces of L4.

4 If a process includes decision points, then one of the derived attributes
that can be added to the event log when enriching the event log is the
choice attribute. A choice attribute is added to the activity that happens

Definition 5 (Situation Subset) Let SL ⊆ Usi tuation be the
set of situations for L ∈ L, and G ∈ G, we define

• G-based situation subset of L as SL,G = {(〈e1, . . . , en〉,
m) ∈ SL | en ∈ G}, and

• trace-based situation subset of L as SL,⊥ = L .

Example 5 Three situations s1, s2, and s3, where s1, s2, s3 ∈
SL I T ,G4 (G4 in Example 3, generated using the traces in
Example 4 are as follows:

s1:=(〈e1, . . . e5〉, {(caseI D, 1), (Responsible, Alice),

(implementation phase duration, 324)})
s2:=(〈e8, . . . e12〉, {(caseI D, 2), (Responsible, Alex),

(implementation phase duration, 807)})
s3:=(〈e8, . . . e15〉, {(caseI D, 2), (Responsible, Alex),

(implementation phase duration, 807)})

Note thatG4:=group(act Name, {“Development”}) andwe
have {e5, e12, e15} ⊆ G4. In other words e5(act Name) =
e12(act Name) = e15(act Name) = “Development”.

When extracting the data, we need to distinguish trace-
level attributes from event-level attributes. We do that by
using situation features which is identified by a group of
events, G (possibly G = ⊥), and an attribute name, at . Each
situation feature is associated with a function defined over
the situations. This function returns the proper value for the
situation feature regarding at and G extracted from the given
situation. More formally:

Definition 6 (Situation Feature)We defineUsfeature = Uatt ×
(G∪{⊥}) as the universe of situation features. Each situation
feature sf = (at, G) where at ∈ Uatt , and G ∈ G ∪ {⊥} is
associated with a function #sf : Usi tuation � �→ Uval such that:

• if G = ⊥, then #(at,G)((σ, m)) = m(at) and
• if G ∈ G, then #(at,G)((σ, m)) = e(at) where e =

argmaxe′∈G∩{e′′∈σ }e′(t imestamp)

for (σ, m) ∈ Usi tuation . We denote the universe of the situa-
tion features as Usfeature.

before the decision point and its value indicates which activity has been
enabled as the result of the decision that has beenmade. Sowe can use an
added choice attribute and its values to group the events in an event log
and extract a situation subset based on the occurrence of that specific
choice. We already defined two important types of situation subsets;
group-based situation subsets and trace-based situation subsets. We can
also distinguish the choice-based situation subsets where the situation
subset is extracted based on events that have a specific choice attribute.
These situation subsets are important as they are conceptually related
to a decision point. However, we do not emphasise on them as they are
a subset of G-based situation subset of L where G ∈ G and can be
handled the same way.
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We can consider a situation feature as an analogy to the
feature (a variable) in tabular data. Also, we can look at the
corresponding function of a situation feature as the function
that determines the mechanism of extracting the value of the
situation feature from a given situation. Given a situation
(σ, m) and a situation feature (at, G), if G = ⊥, its corre-
sponding function returns the value of at in trace-level (i.e.,
m(at)). However, if G �= ⊥, then the function returns the
value of at in e ∈ σ that belongs to G and happens last
(has the maximum timestamp) among those events of σ that
belong to G.

Example 6 We can define the following situation features
using the information provided in the previous examples:

sf1:=(T eam size, G3)

sf2:=(Duration, G2)

sf3:=(Priori t y, G1)

sf4:=(Duration, G4)

sf5:=(I mplementation phase duration,⊥),

where event groups G1, G2, G3, and G4 has been defined in
Example 3.

Also, considering s1 (Example 5), we have:

#sf1(s1) = 21

#sf2(s1) = 35

#sf5(s1) = 324

#sf3(s1) = 2

#sf4(s1) = 245

where s1 is one of the situations in 5.

We interpret a nonempty set of situation features, which
we call it a situation feature extraction plan, as an analog to
the schema of tabular data. More formally;

Definition 7 (Situation Feature Extraction Plan) We define
a situation feature extraction plan as SF ⊆ Usfeature where
SF �= ∅.
Example 7 A possible situation feature extraction plan for
the IT company in Sect. 2 is as follows:

SF I T ={(T eam size, G3), (Duration, G2),

(Priori t y, G1), (Duration, G4)}
={sf1, sf2, sf3, sf4}.

We can map each situation to a data point according to a
given situation feature extraction plan.We do that as follows:

Definition 8 (Instance) Let s ∈ Usi tuation and SF ⊆
Usfeature where SF �= ∅. We define the instance instSF(s)
as instSF(s) ∈ SF �→ Uval such that ∀sf ∈ SF :
(instSF(s))(sf) = #sf(s).

An instance is a set of pairswhere each pair is composed of
a situation feature and a value.With a slight abuse of notation,
we define values(sf) = values(at) where sf = (at, G) is a
situation feature.

Example 8 Considering SF I T from Example 6 and the situ-
ations from Example 5. We have:

instSF I T (s1) = {((T eam size, G3), 21), ((Duration, G2), 35),

((Priori t y, G1), 2), ((Duration, G4), 245)} = {(sf1, 21),

(sf2, 35), (sf3, 2), (sf4, 245)}
instSF I T (s2) = {((T eam size, G3), 33), ((Duration, G2), 63),

((Priori t y, G1), 1), ((Duration, G4), 276)}
= {(sf1, 33), (sf2, 63), (sf3, 1), (sf4, 276)}

instSF I T (s3) = {((T eam size, G3), 33), ((Duration, G2), 63),

((Priori t y, G1), 1), ((Duration, G4), 340)}
= {(sf1, 33), (sf2, 63), (sf3, 1), (sf4, 340)}

Given a situation feature extraction plan SF, we consider
one of its situation features as the class situation feature,
denoted as csf and SF \ {csf} as descriptive situation fea-
tures. Given SF ⊆ Usfeature, csf ∈ SF where csf = (at, G),
and an event log L , we can generate a class situation feature
sensitive tabular data-set. We call such a tabular data set a
situation feature table. To do that, we first generate SL,G and
then we generate the situation feature table which is the bag
of instances derived from the situations in SL,G , regarding
SF. Note that choosing SL,G such that G is the same group
in the class situation feature (where we have csf = (at, G)),
ensures the sensitivity of the extracted data to the class situ-
ation feature. More formally;

Definition 9 (Situation Feature Table) Let L ∈ L be an event
log, SF ⊆ Usfeature a situation feature extraction plan, and
csf = (at, G) ∈ SF. We define a situation feature table
TL,SF,(at,G) (or equivalently TL,SF,csf) as follows:

TL,SF,(at,G) = [instSF(s) | s ∈ SL,G ].

Note that if csf = (at, G) where G ∈ G, then the situation
feature table TL,SF,csf includes the instances derived from
the situations in G-based situation subset SL,G . However,
if G = ⊥, then it includes the situations derived from the
situations in trace-based situation subset SL,⊥.

Example 9 Based on Example 8 we have

TL I T ,SF I T ,(Duration,G4)

= [instSF I T (s1), instSF I T (s2), instSF I T (s3)].

Note that in this example, the class situation feature is
csf = sf4 = (Duration, G4). Another way to present
TL I T ,SF I T ,(Duration,G4) is as follows:
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In this table, each row includes the values of the situa-
tion features in SF I T (Example 7) extracted from one of
the situations s1, s2, and s3. The first row is correspond-
ing to the instSF I T (s1), the second row is corresponding to
the instSF I T (s2), and the third row is corresponding to the
instSF I T (s3).

sf1 = sf2 = sf3 = sf4 =
(T eam size, G3) (Duration, G2) (Priori t y, G1) (Duration, G4)

21 35 2 245
33 63 1 276
33 63 1 340

5.2 Structural equationmodel

A structural equation model is a data-generating model in
the form of a set of equations. Each equation encodes how
the value of one of the situation features is determined by the
value of other situation features5. It is worth noting that these
equations are a way to determine how the observational and
the interventional distributions are generated and should not
be considered as normal equations. More formally6;

Definition 10 (Structural Equation Model (SEM)) Let
TL,SF,csf be a situation feature table, in which L ∈ L,
SF ⊆ Usfeature, and csf ∈ SF. The SEM of TL,SF,csf is
defined as EQ ∈ SF → Expr(SF)where for each sf ∈ SF ,
Expr(sf) is an expression of the situation features in SF\{sf}
and possibly some noise Nsf. It is needed that the noise dis-
tributions Nsf of sf ∈ SF be mutually independent.

We need SF to be causal sufficient, which means SF
includes all relevant situation features.We assume that SEMs
are acyclic; i.e., given a SEM EQ over the SF of a situation
feature table TL,SF,csf, for each sf ∈ SF, the right side of
expression sf = Expr(SF) in EQ does not include sf.

Given EQ over the SF of a situation feature table
TL,SF,csf, the parents of the sf ∈ SF is the set of situation fea-
tures that appear in the right side of expression EQ(sf). The
set of parents of a situation feature includes those situation
features with a direct causal effect on it.

Example 10 A possible SEM for the situation feature table
shown in Example 9 is as follows:

The structure of the causal relationships between the situ-
ation features in a SEM can be encoded as a directed acyclic
graph,which is called causal structure. Given a SEM EQ on a

5 In the case of nominal situation features, each equation determines
the distributions of one of the situation feature values based on the value
of other situation features.
6 Definition 10 and 12 are based on [4].

(Priori t y, G1) = N(Priori t y,G1) N(Priori t y,G1) ∼
Uni f orm(1, 3)

(T eam size, G3) =
10(Priori t y, G1) + N(T eam size,G3)

N(T eam size,G3) ∼
Uni f orm(1, 15)

(Duration, G2) =
2(T eam size, G3) + N(Duration,G2)

N(Duration,G2) ∼
Uni f orm(−5, 5)

(Duration, G4) =
5(Duration, G2) + 10(Priori t y, G1)

N(Duration,G4) ∼
Uni f orm(−100, 100)

+(T eam size, G3) + N(Duration,G4)

Fig. 6 The causal structure of the SEM in Example 10

set of situation features SF, each vertex in its corresponding
causal structure is analogous to one of the situation features
in SF. Let sf1, sf2 ∈ SF, there is a directed edge from sf1
to sf2 if sf1 appears in the right side of expression EQ(sf2).
More formally,

Definition 11 (Causal Structure) Let EQ be the SEM of the
situation feature table TL,SF,csf.We define the corresponding
causal structure of EQ as a directed acyclic graph (U,�)

where U = SF and (sf1, sf2) ∈� if sf1, sf2 ∈ SF and sf1
appears in the right side of expression EQ(sf2).

In the rest of this paper, we use sf1 � sf2 instead of
(sf1, sf2) ∈�.

Having a situation feature table TL,SF,csf, the structural
equation model of its situation features can be provided by
a customer who possesses the process domain knowledge or
in a data-driven manner.

Example 11 The causal structure of the SEM in Example 10
is as depicted in Fig. 6.

To predict the effect of manipulating one of the situation
features on the other situation features, we need to intervene
on theSEMbyactively setting the value of one (ormore) of its
situation features to a specific value (or a distribution). Here,
we focus on atomic interventions where the intervention is
done on just one of the situation features by actively forcing
its value to be a specific value.

Definition 12 (Atomic Intervention) Given an SEM EQ over
SF where sf ∈ SF \ {csf}, and c ∈ values(sf), the SEM EQ′
after the intervention on sf is obtained by replacing EQ(sf)
by sf = c in EQ.

Note that the corresponding causal structure of EQ′ (after
intervention on sf) is obtained from the causal structure of EQ
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by removing all the incoming edges to sf [4]. When we inter-
vene on a situation feature, we just replace the equation of
that situation feature in the SEMand the others do not change
as causal relationships are autonomous under interventions
[4].

Example 12 We can intervene on the SEM introduced in
Example 10 by forcing the team size to be 13. For this case,
the SEM under the intervention is as follows:

(Priori t y, G1) = N(Priori t y,G1) N(Priori t y,G1) ∼
Uni f orm(1, 3)

(T eam size, G3) = 13
(Duration, G2) =
2(T eam size, G3) + N(Duration,G2)

N(Duration,G2) ∼
Uni f orm(−5, 5)

(Duration, G4) =
5(Duration, G2) + 10(Priori t y, G1)

N(Duration,G4) ∼
Uni f orm(−100, 100)

+(T eam size, G3) + N(Duration,G4)

Please note that in Definition 12 (and consequently in
Example 12), we just consider atomic interventions in the
sense of forcefully setting one of the situation features to
a fixed value regardless of the value of other features. In
general, it is possible to intervene on a situation feature by
intentionally assigning values from a specific distribution.
As an example, in Example 12, it is possible to replace
the equation for (T eam size, G3) (in the SEM presented
in Example 11) by

(T eam size, G3) = 20(Priori t y, G1).

The above intervention captures the situationwhere the num-
ber of resources assigned to a project is 20 times its priority.

6 Approach

Observing a problem in the process, we need to find a set of
situation features SFwhichnot only include csf (the situation
feature capturing the problem) but also be causal sufficient
(i.e., no hidden confounder exists). The expressiveness of
the discovered SEM is highly influenced by SF (even though
SEMs, in general, candealwith latent variables).Considering
the variety of the possible situation features captured by the
event log and the derived ones, finding the proper set SF and
also those values of the situation features (or combination of
values) that contribute more to the problem is a complicated
task and needs plenty of domain knowledge.

We know that correlation does not mean causation. On
the other hand, if a situation feature is caused by another
situation feature (set of situation features), this implies that
there is a correlation between the given situation feature and

its parents. We use this simple fact for the automated situ-
ation feature recommendation. It is worth noting that there
are many situation recommendation methods possible. The
automated situation feature recommendation method and the
SEM discovery process are described in the following:

6.1 Automated situation feature recommendation

Given an event log L ∈ L and the class situation feature name
csf = (at, G), we consider a situation feature name sf a pos-
sible cause of csf if there exists a value v ∈ values(sf) that
appearsmore in the situationswith the undesirable (problem-
atic) result for csf. In other words, we are looking for those
descriptive situation features such that at least for one of the
values in their domain the probability of having an undesir-
able result for class situation feature increases. To identify
such a situation feature and situation feature values, we use
the information gain concept. But first, we need to turn the
situation feature table into a binary situation feature table in
which the class situation feature is binary (based on being a
desirable or an undesirable outcome).

Let TL,SF,csf be a situation feature table where csf =
(at, G) and SF = (sf1, . . . , sfn, csf). Moreover, let
values(csf)↓ be the set of undesirable values of csf. We can
define T bL,SF,csf,values(csf)↓ as a situation feature table with
binary class situation feature as follows:

T bL,SF,csf,values(csf)↓
= [{#sf1(s), . . . , #sfn (s), 1} | s ∈ SL,G ∧ #csf(s)

/∈ values(csf)↓]�
[{#sf1(s), . . . , #sfn (s), 0} | s ∈ SL,G ∧ #csf(s)

∈ values(csf)↓].

We can derive this binary situation feature table from
TL,SF,csf by replacing the class situation feature value in
every instance by 0 or 1 depending on being desirable or
undesirable. Now, we define the potential intervention set of
situation feature and situation value pairs as follows:

Definition 13 (potential Intervention pairs) Let L ∈ L be
an event log, SF ⊆ Usfeature a nonempty set of descriptive
features, and csf = (at, G) the class situation feature where
csf ∈ SF and G ∈ G∪{⊥}. Moreover, consider α as a thresh-
old where 0 < α ≤ 1 and values(csf)↓ ⊂ val(csf) as the set
of undesirable values for csf. We call a pair (sf, v) where
sf ∈ SF \ {csf} and v ∈ values(sf) a potential intervention
pair if

I GL,SF,csf,values(csf)↓(sf, v) ≥ α

in which I GL,SF,csf,values(csf)↓(sf, v) is the information gain
of splitting the instances in the binary situation feature table
T bL,SF,csf,values(csf)↓ by sf = v and sf �= v.
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We present the set of the potential causes to the user as a
set of tuples (sf, v) where sf ∈ Usfeature and v ∈ values(sf)
in the descending order regarding the information gain of
splitting the binary situation feature table by sf = v and
sf �= v. This way, the first tuples in the order are those values
of those situation features that intervention on themmay have
(potentially) themost effect on the value of the class situation
feature. The choice of the value α depends on the application
and is determined by the user.

The selected set of situation features by this method is
the set of situation features for which the information gain is
more than the given threshold α. The user can use this set as
the descriptive set of situation features in the situation feature
extraction plan to generate a situation feature tablewith fewer
situation features. Let’s call such a situation feature table
which contains just the selected set of situation features a
trimmed situation feature table.

6.2 SEM inference

Here we show how to infer the SEM of a given situation
feature table in two steps:

• The first step is causal structure discovery, which
involves discovering the causal structure of the situation
feature table. This causal structure encodes the existence
and the direction of the causal relationships among the
situation features in the situation extraction plan of the
given situation feature table.

• The second step is causal strength estimation, which
involves estimating a set of equations describing how
each situation feature is influenced by its immediate
causes. Using this information we can generate the SEM
of the given situation feature table.

6.2.1 Causal structure discovery

The causal structure of the situation features in a given sit-
uation feature table can be determined by an expert who
possesses domain knowledge about the underlying process
and the causal relationships between its features. But having
access to such knowledge is quite rare. Hence, we support
discovering the causal structure in a data-driven manner.

Several search algorithms have been proposed in the lit-
erature (e.g., [22,24,25]). The input of a search algorithm
is observational data in the form of a situation feature table
(and possibly knowledge) and its output is a graphical object
that represents a set of causal structures that cannot be dis-
tinguished by the algorithm. One of these graphical objects
is Partial Ancestral Graph (PAG) introduced in [26].

A PAG is a graph whose vertex set is V = SF but has
different edge types, including →,↔,�→,�. Similar to
�, we use infix notation for→,↔,�→,�. Each edge type

has a specific meaning. Let sf1, sf2 ∈ V . The semantics of
different edge types in a PAG are as follows:

• sf1 → sf2 indicates that sf1 is a direct cause of sf2.
• sf1 ↔ sf2 means that neither sf1 nor sf2 is an ancestor

of the other one, even though they are probabilistically
dependent (i.e., sf1 and sf2 are both caused by one ormore
hidden confounders).

• sf1�→sf2 means sf2 is not a direct cause of sf1.
• sf1 � sf2 indicates that there is a relationship between

sf1 and sf2, but nothing is known about its direction.

The formal definition of a PAG is as follows [26]:

Definition 14 (Partial Ancestral Graph (PAG)) Let SF ⊆
Usfeature be a situation feature extraction plan. A PAG is a
tuple (V ,→,↔,�→,�) in which V = SF and →,↔
,�→,�⊆ V×V such that→,↔,�→, and� aremutually
disjoint.

The discovered PAG by the search algorithm represents a
class of causal structures that satisfies the conditional inde-
pendence relationships discovered in the situation feature
table and ideally, includes its true causal structure. Each
edge in the discovered PAG indicates a statistically supported
(potential) causal relationship among the situation features
in the situation feature table. This graph can be used as initial
insight into the causal relationships of the situation features
by the user.

Example 13 Two possible PAGs for the SEM in Example 10
are shown in Fig. 7.

Now, it is needed to modify the discovered PAG to a
compatible causal structure. To transform the output PAG
to a compatible causal structure, which represents the causal
structure of the situation features in the situation feature table,
domain knowledge of the process and common sense can
be used. This information can be applied by directly mod-
ifying the discovered PAG or by adding them to the search
algorithm, as an input, in the form of required directions or
forbidden directions denoted as Dreq and D f rb, respectively.
Dreq , D f rb ⊆ V ×V and Dreq ∩ D f rb = ∅. Required direc-
tions and forbidden directions influence the discovered PAG
as follows:

• If (sf1, sf2) ∈ Dreq , then we have sf1 → sf2 or sf1�→sf2
in the output PAG.

• If (sf1, sf2) ∈ D f rb, then in the discovered PAG it should
not be the case that sf1 → sf2.

We assume no hidden common confounder exists, so we
expect that in the PAG, relation ↔ be empty. If ↔�= ∅,
the user can restart the procedure after adding more situa-
tion features to the situation feature table. We can define the
compatibility of a causal structure with a PAG as follows:
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Fig. 7 Two possible PAGs for
the SEM presented in
Example 10

Definition 15 (Compatibility of a Causal Structure With a
GivenPAG)Given aPAG (V ,→,↔,�→,�) inwhich↔=
∅, we say a causal structure (U,�) is compatible with the
given PAG if V = U , (sf1 → sf2 ∨ sf1�→sf2) �⇒ sf1 �
sf2, and sf1 � sf2 �⇒ (sf1 � sf2 ⊕ sf2 � sf1), where ⊕
is the XOR operation and sf1, sf2 ∈ V 7.

It is worth noting that the assumption of the absence of
hidden confounders plays an important role in the definition
of compatibility of a causal structure with a PAG. For exam-
ple, it enables us to infer sf1 � sf2 from sf1�→sf2 while this
implication might not be true in general as it may signifies
the existence of a confounder (one or more) which causes
both sf1 and sf2.

Example 14 The causal structure shown in Fig. 6 is compat-
ible with both PAGs demonstrated in Fig. 7.

6.2.2 Causal strength estimation

The final step of discovering the causal model is estimating
the strength of each direct causal effect using the observed
data. We do that by estimating each situation feature by a
function of its parents and a noise function. We can estimate
the strength of the causal relationships in the following man-
ner. Let D be the causal structure of a situation feature table
TL,SF,csf. As D is a directed acyclic graph, we can sort its
vertices in a topological order γ . Now, we can statistically
model each situation feature as a function of the noise terms
of those situation features that appear earlier in the topolog-
ical order γ . In other words, sf = f

(
(Nsf′)sf′:γ (sf′)≤γ (sf)

)
[4].

The set of these functions, for all sf ∈ SF, is the SEM of
SF. Note that the set of situation features that appear ear-
lier than a situation feature in the topological order γ of D
includes the parents of that situation feature and none of its
descendants.

Finally, we want to answer questions about the effect of
an intervention on any of the situation features on the class
situation feature. We can do the intervention as described in

7 Please note that even though according to this definition the causal
structure may just have the causal relationships compatible with the
discovered PAG, in the implemented plugin the user can freely modify
causal relationships by adding or removing edges in the discovered PAG
or provide the causal structure starting from an empty graph.

Definition 12. The resulting SEM (after intervention) demon-
strates the effect of the intervention on the situation features.

Note that, if there is no directed path between sf ∈ SF
and csf, in the causal structure of a situation feature table
TL,SF,csf, they are independent and consequently, interven-
tion on sf by forcing sf = c has no effect on csf.

7 Experimental results

We have implemented the proposed approach as a plugin in
ProM that is available in the nightly build of ProM under the
name Causal Inference Using Structural Equation Model.
ProM is an open-source and extensible platform for process
mining [27]. The inputs of the implemented plugin are an
event log, the Petri net model of the process, and the confor-
mance checking results of replaying the given event log on
the given model. In the rest of this section, first, we mention
some of the implementation details and design choices that
we have made, and then we present the results of applying
the plugin on a synthetic and several real-life event logs.

7.1 Implementation notes

In the implemented plugin, we first enrich the event log by
adding some attributes. Some of the features that can be
extracted from the event log using the implemented plugin
are as follows:

• Time perspective: timestamp, activity duration, trace
duration, trace delay, sub-model duration.

• Control-flow perspective: next activity, previous activity.
• Conformance perspective: deviation, number of log
moves, number of model moves.

• Resource organization perspective: resource, role, group.
• Aggregated features (regarding a given time window):

– Process perspective: the number of waiting cases,
process workload.

– Trace perspective: average service time, average
waiting time.

– Event perspective: number of active events with a
specific activity name, number of waiting events with
a specific activity name.
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– Resource perspective: average service time, average
waiting time

Let L ∈ L be an event log, k ∈ N (a non-zero natu-
ral number) the number of time windows, tmin the minimal
timestamp, and tmax the maximum timestamp in L , we
divide the time span of L into k consecutive time win-
dows with equal length (the length of each time window
is (tmax − tmin)/k and compute the value of aggregated
attributes for each of these k time windows. We define
ξ : L × Uatt × N × values(timestamp) → R as a func-
tion that given an event log, an aggregated attribute name,
the number of time windows, and a timestamp returns the
value of the given aggregated attribute in the time window
that includes the timestamp. We can use ξ for aggregated
attributes at both the event and the trace-level. More pre-
cisely, given L ∈ L, (σ, m) ∈ L , e ∈ σ , k ∈ N,
and at ∈ Uatt where at is an aggregated attribute, we
define e(at) = ξ(L, at, k, e(timestamp)) and m(at) =
ξ(L, at, k, t ′) where t ′ = max{e(timestamp) | e ∈ σ }.

In other words, we can use any of the (process, trace event,
and resource perspective) aggregated features in both event
and trace levels. At the event-level, we compute the value
of the aggregated feature in the time window including the
timestamp of the event. While in the trace-level, we compute
its value for the time window that includes the timestamp
of the last event of the trace. It is worth noting that there
are different possible design choices on how to compute and
enrich the event log with aggregated features.

As the second step, the user needs to specify csf and SF.
The user can specify SF bymanually selecting the proper set
of situation features or use the implemented situation feature
and value recommendation method on an initial situation
feature table (for example an initial situation feature table
in which the descriptive situation features includes all the
implemented situation features) to identify the relevant set
of situation features to csf.

According to the selected SF and csf the proper situation
subset of the event log is generated and the situation feature
table is extracted. Then we infer the causal structure of the
situation feature table. For this goal, we use the Greedy Fast
Causal Inference (GFCI) algorithm [25] which is a hybrid
search algorithm. The inputs of GFCI algorithm are the situ-
ation feature table and possibly background knowledge. The
output of GFCI algorithm is a PAG with the highest score on
the input situation feature table. In [25], it has been shown
that under the large-sample limit, each edge in the PAG com-
puted by GFCI is correct if some assumptions hold. Also, the
authors of [25], using empirical results on simulated data,
have shown that GFCI has the highest accuracy among sev-
eral other search algorithms. Some of the assumptions that

need to hold to ensure the correctness of the discovered causal
structure of the situation features by GFCI considering the
large sample limits are:

• Independence and identically distribution of the instances
in the situation feature table.

• Causal Markov conditionwhich is a form of local causal-
ity [22]. This condition states that a situation feature is
independent of all other situation features except its dece-
dents, given its direct causes (parents).

• Causal faithfulness condition [22]. This condition states
that all the independence relationships among the mea-
sured situation features are implied by the causalMarkov
condition.

• No selection bias which implies that the presence of each
instance in the situation feature table is independent of
the values of its measured situation features.

• The existence of no feedback cycle among the measured
situation features.

Assessing the satisfaction of these conditions by the sit-
uation feature table is non-trivial task. For example, for the
first condition, we need the instances in the situation fea-
ture table to be independent and identically distributed. This
assumption is probably violated inmany caseswhen the class
situation feature is in the form of (G, at) where G ∈ G. In
this case, each trace in the event logmaymap tomultiple situ-
ations (and consequently to several rows of the table) which
are not independent. It is worth noting that even if one or
more of these assumptions are violated, the PAG generated
by GFCI algorithm may still include correct edges (but there
are no theoretical guarantees for that).

In the implemented plugin, we have used the Tetrad
[28] implementation of the GFCI algorithm. To use the
GFCI algorithm, we need to set several parameters. We have
used the following settings for the parameters of the GFCI
algorithm in the experiments: cutoff for p-values = 0.05,max-
imum path length =−1, maximum degree =−1, and penalty
discount = 2.

In the implemented plugin,we have assumed linear depen-
dencies among the situation features and additive noise when
dealing with continuous data. In this case, given a SEM
EQ over SF, we can encode EQ as a weighted graph.
This weighted graph is generated from the corresponding
causal structure of EQ by considering the coefficient of sf2
in EQ(sf1) as theweight of the edge from sf2 to sf1. Using this
graphical representation of the SEM, to estimate the magni-
tude of the effect of sf on the csf, we can simply sum the
weights of all directed paths from sf to csf, where the weight
of a path is equal to the multiplication of the weights of its
edges.
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7.2 Synthetic event log

For the synthetic data, we use the IT company example in
Sect. 2. The situation feature extraction plan is:

{(T eam size, G3), (Duration, G2), (Priori t y, G1),

(I mplementation phase duration,⊥)}

where the class situation feature is (Implementation phase
duration, ⊥). We assume that the true causal structure of the
data is as depicted in Fig. 5.

To generate an event log, we first created the Petri-net
model of the process as shown in 2 using CPN Tools
[29]. Then, using the created model, we generated an event
log with 1000 traces. We have enriched the event log by
adding the duration of each event to each event and also
I mplementation phase duration attribute to the traces.
The later attribute indicates the duration of the sub-model
including “development” and “test” transitions. When gen-
erating the log, we have assumed that the true SEM of the
process, which we call it EQ1, is as follows:

(Complexi ty,⊥) = N(Complexi t y,⊥) N(Complexi t y,⊥) ∼ Uni f orm(1, 10)
(Priori t y, G1) = N(Priori t y,G1) N(Priori t y,G1) ∼ Uni f orm(1, 3)
(Duration, G2) = 10(Complexi ty,⊥) + N(Duration,G2) N(Duration,G2) ∼ Uni f orm(−2, 4)
(T eam size, G3) = 5(Complexi ty,⊥) + 3(Priori t y, G1) + N(T eam size,G3) N(T eam size,G3) ∼ Uni f orm(−1, 2)
(I mplementation phase duration,⊥) = 50(Complexi ty,⊥)+ N(I mplementation phase duration,⊥) ∼ Uni f orm(10, 20)
5(T eam size, G3) + N(I mplementation phase duration,⊥)

The summary of the generated event log and its trace vari-
ants (generated by ProM) are shown in Fig. 8.

Generating situation feature table.

We generate a situation feature table using the above situ-
ation feature extraction plan. A snapshot of the generated
situation feature table using the implemented plugin is
shown in Fig. 9. In this figure, the class situation fea-
ture is colored in pink and the descriptive situation fea-
tures are colored gray. Please note that in the pictures
of this section, (Duration, G2) is denoted as “Duration,
Product backlog”, (I mplementation phase duration,⊥)

is denoted as “Implementation phase duration, Trace”,
(T eam size, G3) is denoted as “Team size, Team charter”,
(Priori t y, G1) is denoted as “Priority, Business case study”,
and (Complexi ty,⊥) is denoted as “Complexity, Trace”.

SEM inference.

Applying the implemented plugin on the situation feature
extracted from the event log, thePAGdepicted inFig. 10awas
discovered. In this PAG, (Complexi ty,⊥) has not been con-
sidered as a descriptive situation feature. As a consequence,

two potential causal relationships between (Duration, G2)

and (I mplementation phase duration,⊥) and alsobetween
(Duration, G2) and (T eam size, G3) have been discovered
which do not exist in data-generating model EQ1. The cus-
tomer may guess that another influential attribute might exist
that acts as a confounder. Considering (Complexi ty,⊥)

as another descriptive situation feature, then the discov-
ered PAG by the implemented plugin would be as the one
in Fig. 10b. This PAG is more accurate and includes the
true causal structure of the situation feature table. We have
assumed that the complexity of a project is a feature that is not
recorded in the event log. The customer, may assume (based
on domain knowledge) that the duration of “product backlog”
is longer in more complex projects and assign to the com-
plexity of a project the floor of the value of (Duration, G2)

divided by 108. Now, using domain knowledge and the
chronological order of transitions, we can turn the discov-
ered PAG into the causal structure depicted in Fig. 10c. After
estimating the strength of the causal relationships, we obtain
the SEM shown in Fig. 10d.

Moreover, we can have the inferred SEM in text format.
In this case, the output would be as shown in Fig. 11.

By comparing the estimated coefficients of situation fea-
tures names in the output of the plugin (and equivalently the
weights of the edges in Fig. 10d), and those in the equations
of the true SEM of the data, we can see that the estimated
and real strengths of causal relationships are quite close.

Using the discovered SEM, we can answer the question
posed by themanager of the IT company in Sect. 2. For exam-
ple, we can see that (T eam size, G3), (Priori t y, G1), and
(Complexi ty,⊥) have a causal effect on (Implementation
phase duration, ⊥), but (Duration, G2) does not. To inves-
tigate the effect of an intervention on any of the situation
features on the class situation feature, we can find the equa-
tion capturing the effect of intervention by simply clicking on
its corresponding vertex in the causal structure. For example,
if we click on the corresponding vertex of (T eam size, G3),
we have

(I mplementation phase duration,⊥)

= 75.0004 × (Complexi ty,⊥) + noise.

8 Please note that the choice of the denominator has a high effect on
the discovered potential causal relationships by this method (on the
discovered PAG).
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Fig. 8 The trace variants in the synthetic event log

Fig. 9 A snapshot of the situation feature table generated for the synthetic event log

This equation means that by enforcing the complexity of a
project to be one unit more complex, then we expect that
its implementation phase takes approximately 75 more days
(assuming that the complexity of a project is actionable). As
another example, equation (Implementation phase duration,
⊥)= 0.0 × (Duration, G2) shows the estimated effect of
intervention on (Duration, G2). We can interpret this equa-
tion as “intervention on (Duration, G2) has no effect on
(I mplementation phase duration,⊥)”.

The heat map of the correlation among different sit-
uation features in this experiment is shown in Fig. 12.
As it is observed in this figure, there is a high correla-
tion between (I mplementation phase duration,⊥) and
(Duration, G2) (T eam size, G3), and (Complexi ty,⊥).
Thus, if we consider situation features with high correla-

tion with the class situation feature as its causes, then we
would consider (Duration, G2) as one of the causes of
(I mplementation phase duration,⊥) which is in contra-
diction with the data-generating model. On the other hand,
we could find the correct causal relationships using the pro-
posed method.

To investigate the effect of the amount of the noise
on the discovered SEM, we have generated three more
synthetic event logs with the true SEM of them are sim-
ilar to EQ1 except for the noise functions N(Duration,G2),
N(T eam size,G3), and N(I mplementation phase duration,⊥)

9. We

9 To generate event logs such that their true SEM of the process is
similar to EQ1 with customized uniform noise intervals, you can use
Footnote 9 continued
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Fig. 10 The PAG, causal structure and the SEM discovered using implemented plugin for the synthetic event log

Fig. 11 The discovered SEM from the situation feature table extracted from the synthetic event log after adding (Complexi ty,⊥) to the situation
feature extraction plan

call these SEMs EQ2, EQ3, and EQ4 where their noise func-
tions are as follows (we add the noise functions of EQ1 to
this table for the completeness):

N(Complexi t y,⊥) N(Priori t y,G1) N(Duration,G2) N(T eam size,G3) N(I mplementation phase duration,⊥)

EQ1 Uni f orm(1, 10) Uni f orm(1, 3) Uni f orm(−2, 4) Uni f orm(−1, 2) Uni f orm(10, 20)
EQ2 Uni f orm(1, 10) Uni f orm(1, 3) Uni f orm(−2, 58) Uni f orm(−1, 29) Uni f orm(10, 210)
EQ3 Uni f orm(1, 10) Uni f orm(1, 3) Uni f orm(−2, 118) Uni f orm(−1, 59) Uni f orm(10, 310)
EQ4 Uni f orm(1, 10) Uni f orm(1, 3) Uni f orm(−2, 178) Uni f orm(−1, 89) Uni f orm(10, 410)

Figure 13, on the left side, shows the heat map of the
correlation between the situation features of the generated
event logs and, on the right side, the PAG discovered by the
implemented plugin.Moreover, in this figure, the top,middle,
and button parts demonstrate the result of the experiment

the ProM plugin generate event log for IT company with selected noise
intervals.

where the true SEM of the process are respectively EQ2,
EQ3, and EQ4. The situation feature extraction plan in all of
these experiments is:

{(T eam size, G3), (Duration, G2), (Priori ty, G1),

(I mplementation phase duration,⊥), (Complexi ty, ⊥)}.

As it is shown in Fig. 13, top and middle part, with a
relatively high noise this method id capable of finding pos-
sibility of potential causal relationships among the situation
features, even though it fails to discover the direction of dis-
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Fig. 12 The heat map of the correlation between the situation features
of the IT company

covered possible relationships. However, when the amount
of the noise is too high, this method fails to discover all the
possibility of potential causal relationships. This result was
expected as GFCI algorithm utilize partial correlation tests
to discover possible causal relationships in the data.

7.3 Time and quality evaluation

Here, we evaluate the time efficiency and quality of the
selected situation feature set by the proposed situation fea-
ture and value recommendation method. By the quality of
a selected situation features set, we mean the portion of the
causal relationships with the class situation feature that has
been preserved in the trimmed situation feature table.

To evaluate the time efficiency of the selected set of sit-
uation features by the proposed method (which we call it
Situation Feature Value Pair Recommendation (SFVPR)), we
compare its performance with two situation feature selection
methods;

• Situation Feature Selection using Random Forest
(SFSRF) and

• Situation Feature Selection Based on Correlation
(SFSBC).

For these two methods, we have used the implementation
provided by WEKA [30] with their default setting. More
precisely, for SFSRF, a random forest with 100 trees, unlim-
ited maximum depth of the tree, minimum of one instance
per leaf, and 10 folds cross validation have been used and.
For SFSBC, the backwards search method is greedy and the
merit of the found subset is 0.95.

The two main types of feature selection techniques in
machine learning are supervised and unsupervised,where the
supervised methods are further divided into wrapper, filter
and intrinsic [31]. Filter-based methods are based on sta-
tistical measures and do not incorporate a specific machine
learning algorithm. Wrapper methods, a specific machine
learning technique is used to evaluate the best subset of
features and the selected features are optimized for that par-

ticularmachine learning technique. Finally, intrinsicmethods
utilize those machine learning techniques, such as deci-
sion tree and random forest, that perform feature selection
automatically as part of learning the model. The proposed
situation feature and value recommendation method is a
supervised method. We have selected SFSRF as an instance
of intrinsic and SFSBC as an instance of a filter method to
evaluate our method.

Moreover, we have used the flowing event logs:

• Receipt phase of an environmental permit application
process (WABO)CoSeLoG project (receipt log for short)
that has 1434 traces [32].

• A subset of business process intelligence (BPI) challenge
2017 event log that includes traces of length at least 20
but at most 30. This event log has 11044 traces [33].

• A subset of BPI challenge 2019 event log that includes
traces of length at least 8 but at most 10. This event log
has 12574 traces [34].

We have used trace-level class situation features in these
experiments. So, the number of instances in the situation fea-
ture table is equal to the number of traces in each event log.
We have used the receipt event log for the first and second
experiments, BPI challenge 2017 event log for the third and
fourth experiments, and BPI challenge 2019 event log for the
fifth experiment. Figure 14 shows the results of this exper-
iment. We can see that considering time efficiency, SFVPR
is comparable with SFSRF and SFSBC. Figure 15 illustrates
the number of vertices and edges in the discovered PAGs.
Based on Fig. 15, we can see that in all cases the complexity
of the discovered PAG in terms of the number of vertices and
edges have been reduced.

To evaluate the quality of the recommended situation fea-
tures, we have generated 10 synthetic event logs with 1000
traces such that each one of them includes 20 situation fea-
tures10. These features are generated based on a randomly
generated SEM (that is the true SEM of the data). The causal
structures of the randomly generated SEMs include two con-
nected components with equal number of vertices. We have
applied feature selection using SFVRP aswell as SFSBC and
SFSRF. We have created a trimmed situation feature table
using the selected set of situation features. Then we have
compared the discovered causal structure with the true causal
structure of the data. Discovering the SEM of the observed
data, having its causal structure, is a simple estimation. So
we focus on the differences in the discovered causal struc-
ture. In this experiment, we set the number of bins to 20
and α = 0.01 (in SFVPR). Moreover, we have considered

10 The data-generating model and the generated event logs that have
been used for this experiment are available in https://github.com/
mahnaz-qafari/Experimental-data-generator.
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Fig. 13 The heat map of the correlations between the situation features and the discovered PAG using implemented plugin for the synthetic event
logs generated such that the true SEMs are EQ2 (the top figures), EQ3 (the middle figures), and EQ4 (the button figures)

Fig. 14 The time needed for causal structure learning in milliseconds for the whole situation feature table, and the trimmed situation feature table
using the situation features selected by SFVPR, SFSRF, and SFSBC
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Fig. 15 The number of vertices and edges in the PAG discovered from the whole situation feature table, and in the PAG discovered using the
trimmed situation feature table using selected situation features via applying SFVPR, SFSRF, and SFSBC

the mean value of the class situation feature as the threshold
where the values lower than this threshold are undesirable
class situation feature values.

We call the causal structure obtained by projecting the
true causal structure on the set of vertices including the
class situation feature and those situation features that have
a causal effect on it effective causal structure. Also, as in the
PAG discovered by the implemented plugin the direction of
the potential causal relationships (edges) are not determined
(and the discovered PAG has to be modified by the user by
modifying the direction of the discovered potential causal
relationship), we consider all the situation features whose
corresponding vertices are connected to the class situation
feature by an edge (regardless of the edge type), the set of
potential parents of the class situation feature in that PAG.
Moreover, consider:

• rs f as the set of selected situation features.
• ptcs as the set of parents of the class situation feature in

the true causal structure.
• p f cs as the set of potential parents of class situation
feature in the PAGdiscovered using the trimmed situation
feature table.

• etcs as the set of causal relationships (edges) in the effec-
tive causal structure.

• e f cs as the set of potential causal relationships (edges
regardless of their type) in the causal structure discovered
using the trimmed situation feature table.

We use the followingmetrics to quantify the difference in the
two causal structures.

parent recall = | ptcs ∩ prs f cs |
| ptcs | ,

parent precision = | atcs ∩ ars f cs |
| atcs | ,

causal relationship recall = | (ptcs ∪ atcs) ∩ rs f |
| rs f | ,

causal relationship precision = | (ptcs ∪ atcs) ∩ rs f |
| rs f | .

We can interpret the above metrics as follows:

• parent recall: the portion of parents of the class situ-
ation features in the true causal structure that have been
also a potential parent in the PAG discovered using the
trimmed situation feature table.

• parent precision: the portion of potential parents of the
class situation feature in the PAG discovered using the
trimmed situation feature table which are also a parent of
the class situation features in the true causal structure of
the data.

• causal relationship recall: the portion of causal rela-
tionships in the effective causal structure that have been
detected by the PAG discovered using the trimmed situ-
ation feature table. structure.

• causal relationship precision: the portion of poten-
tial causal relationships in the PAG discovered using the
trimmed situation feature table which are also a causal
relationship in the effective causal structure.
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The results of this comparison is presented at Table 2. The
above experiment shows that:

• In general, except for causal relationship precision,
SFVPR achieved better results than SFSBC and SFSRF.
Please note that none of the methods achieved the best
results in all the experiments.

• Considering causal relationship precision, SFVPR
achieved weaker results in comparison with SFSBC and
SFSRF. It can be explained by considering that this
method recommends more situation features than the
other two methods which usually results in discover-
ing more potential causal relationships in the discovered
PAG. In addition, to compute the causal relationship pre-
cision, we compare the portion of the potential causal
relationships in the discovered PAG on the trimmed sit-
uation feature which are also causal relationships in the
effective causal structure. The effective causal structure
includes a subset of the causal relationships of the con-
nected component of the true causal relationship that
includes the class situation feature. Many of the poten-
tial causal relationships present in the discovered PAG on
the trimmed situation feature by SFVPR method are cor-
responding to the causal relationships in the connected
including the class situation feature but not in the effec-
tive causal structure.

• In none of the experiments the recommended set of sit-
uation features by SFVPR includes a situation feature
that does not belong to that connected component of true
causal structure which includes class situation feature.
However, in three experiments both SFSBC and SFSRF
recommend situation features that do not belong to the
same connected component of the true causal structure
that includes class situation feature.

8 Conclusion

Distinguishing causal from mere correlational relationships
among the process features is a vital task when investigating
the root causes of performance and/or conformance problems
in a company. The best way to identify the causal relation-
ships is by using randomized experiments. However, this
requires implementing process changes to see their effect. As
applying randomized experiments is usually quite expensive
(if not impossible) in the processes, we propose a method
for causal analysis based on the theory of causality which
uses a mixture of data analysis and domain knowledge. The
stakeholders can use this method to incorporate both domain
knowledge and potential statistically supported causal effects
to find the SEM of the features and indicators of the process.
Moreover, this method helps stakeholders to investigate the

effect of an intervention on the process. This information can
be used to design and order the re-engineering steps.

The validity of a discovered structural equation model
(and any other machine learning technique) is highly influ-
enced by the set of features that have been used for
data extraction and consequently for structural equation
model discovery. However, the complex and dynamic inter-
dependencies in processes make the task of selecting the set
of featureswith a potential causal effect on the observedprob-
lem in the process a challenging task. So, we have proposed
a simple yet intuitive and effective feature recommendation
method in this paper. The proposed method provides the user
not just the set of features with the possible causal effect on
the class situation feature but also those values of the fea-
tures that increase the possibility of the observed problem in
the process more than a given threshold. Moreover, we have
shown the effectiveness of the proposed method in terms of
time efficiency and quality of the selected set of situation
features.

As future work, we would like to learn more process-
related features that go beyond individual cases. For example,
bottlenecks are caused by competing cases or a shortage of
resources.Also, notions such as blocking, batching, and over-
taking are not captured well. We would also like to make
the diagnostics more understandable. This requires mapping
diagnoses related to features back onto the process model
and event log. Finally, we would like to enhance simulation
models with SEM-based rules.
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