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Abstract
The gray wolf optimizer (GWO) and the whale optimization algorithm (WOA) are two esteemed optimization algorithms, 
and their various modified versions are proposed in recent years for different applications. The GWO and WOA simulate 
the hunting method of gray wolves and humpback whales, respectively. These algorithms have several operators for mov-
ing the search agents toward the optimum solution in the search space. But, the GWO and WOA encounter some problems 
such as falling in local optima and slow convergence. Various proposals have been presented so far to develop innovative 
and novel meta-heuristic optimization methods. Some of them are based on adding special evolutionary operators or local 
search steps to existing algorithms. Some others are established based on the combination of previous methods or applying 
the chaos theory in them. A novel hybrid method defined as chaotic GWO and WOA (CGWW) is proposed in this paper by 
modifying the WOA, merging it with GWO, and applying the chaotic maps. Also, the chaotic maps have been used in the 
CGWW algorithm to adjust the movement parameters and initialize the search agents. The combination of different operators 
of the mentioned algorithms and using the chaotic maps increases the exploration and exploitation power of the proposed 
algorithm and thus causes to obtain better results. Twenty-three mathematical benchmark functions are used to evaluate the 
CGWW algorithm. Besides, the proposed algorithm is applied for solving the feature selection problem in intrusion detec-
tion systems, which is intrinsically multi-objective. The proposed algorithm finds competitive results in contrast to other 
well-known meta-heuristic algorithms in most of the experiments. It can avoid local optima and find the global optimum in 
most cases using its balanced exploration and exploitation ability.

Keywords Gray wolf optimization · Whale optimization algorithm · Chaotic maps · Roulette wheel operator · Hybrid 
optimization method

1 Introduction

In recent years, expanding the range of complex indus-
trial and theoretical problems has increased the need for 
advanced optimization algorithms. Some of these algorithms 
are called meta-heuristics, and part of them are inspired by 
the social behaviors of creatures or natural phenomena. Due 
to the random mechanisms of meta-heuristic algorithms, 
they can quickly escape from local optima and find the best 
solution.

1.1  Optimization algorithms

Typically, every meta-heuristic algorithm has two main 
phases of exploration and exploitation. In the exploration 
phase, the algorithm tries to probe the whole search space 
of the problem, and the movements of search agents are long 
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and random. But in the exploitation phase, the search agents 
are moving around the promising solutions with short steps 
[1]. For developing a new meta-heuristic algorithm, finding 
a balance between exploration and exploitation is a signifi-
cant challenge[2, 3]. Various meta-heuristic optimization 
algorithms with high computational efficiency are intro-
duced for global search [4]. One of the well-known nature-
inspired optimization algorithms is the genetic algorithm 
(GA) [5], which imitates the Darwinian theory of evolution. 
Operators like selection, crossover, and mutation support the 
GA to generate new solutions and avoid local optima. Some 
of the other meta-heuristic algorithms that are applied for 
comparisons in this paper are as follows: the particle swarm 
optimizer (PSO) [6], ant lion optimizer (ALO) [7], artifi-
cial bee colony (ABC) [8], artificial electric field algorithm 
(AEFA)[9], salp swarm algorithm (SSA) [10], biogeogra-
phy-based optimization [11], satin bower bird optimization 
(SBO)[12], poor and rich optimization method (PRO) [13], 
water evaporation optimization (WEO) [14], multi-verse 
optimizer (MVO) [15], moth search (MS) [16], grasshopper 
optimization algorithm (GOA) [17], barnacles mating opti-
mizer (BMO) [18], farmland fertility [19], symbiotic organ-
isms search (SOS) [20, 21], butterfly optimization algorithm 
(BOA) [22], Harris hawks optimizer (HHO) [23], interactive 
search algorithm (ISA) [24], gray wolf optimizer (GWO) 
[25], and whale optimization algorithm (WOA) [3].

The GWO algorithm [25] mimics the hierarchical leader-
ship of gray wolves as a social behavior for hunting. Four 
types of wolves participate in this hierarchy called alpha, 
beta, delta, and omega. According to the experiments on 
unimodal benchmark functions, the GWO presents a supe-
rior performance in the exploitation phase. Also, the explo-
ration power of the GWO is confirmed by the multimodal 
functions. The GWO has a high performance for engineer-
ing design and real problems with unknown search spaces. 
Mirjalili et al. proved the superiority of GWO to some other 
well-known optimization algorithms, which is related to the 
high search speed and precision along with the simplicity of 
the GWO [25]. All the mentioned strength points reveal the 
high research value of the GWO for applying as a part of 
new combinatorial optimization algorithms.

The WOA is another optimization algorithm that is 
inspired by the feeding behavior of humpback whales in 
nature. Three main activities in the WOA algorithm are 
searching for, encircling, and attacking the prey. The WOA 
algorithm presents a high performance in solving different 
kinds of problems like feature selection [26, 27] and data 
clustering [28, 29]. The GWO and WOA algorithms have 
some drawbacks like slow convergence and getting stuck in 
the local optimums.

As the No Free Lunch (NFL) theorem [30] says, most 
of the heuristic methods are suitable for solving specific 
problems, and they are not applicable for all fields. Various 

approaches have been proposed so far to develop effective 
and innovative meta-heuristics. Some of them are made 
based on improving the existing methods by adding special 
evolutionary operators or local search steps. Some others are 
made based on the combination of previous algorithms or 
applying the chaotic maps in them. The combinatorial algo-
rithms usually benefit from one algorithm’s high exploration 
and the other one’s exploitation ability [31]. Numerous com-
binatory meta-heuristics are introduced so far which some 
of the recent ones are as follows: GSA-GA [32], PSO-GA 
[33], GA-GSA [34], PS-ABC [35], TVAC-GSA-PSO [36].

Applying random number generators is necessary for 
implementing most of the optimization algorithms. The 
chaos theory in mathematics is related to dynamic systems, 
which have infinite unstable and periodic variations. These 
systems are sensitive to the initial conditions, so a small 
change in the initial conditions may result in large variations 
in the outcomes. Chaos-based systems exhibit similar behav-
ior to random systems. One of the applications of chaotic 
maps in the meta-heuristic optimization algorithms is adjust-
ing the parameters, which increases the convergence speed 
and possibility of escaping from the local optima [37, 38]. 
Different types of chaotic maps are applied in the following 
algorithms: the PSO [39], harmony search (HS) [40], ABC 
[41], imperialist competitive algorithm (ICA) [42], firefly 
algorithm (FA) [43], Krill-Herd (KH) [44], butterfly opti-
mization algorithm (BOA) [45], GWO [46], the WOA[47], 
and SSA [48]. The motivation of introducing a new hybrid 
algorithm in this paper was developing an algorithm to solve 
a more extensive scope of problems by combining and modi-
fying the existing meta-heuristics methods.

1.2  Research objectives

This study aims to develop a combinatorial meta-heuristic 
algorithm for solving optimization problems. This algo-
rithm, named chaotic GWO and WOA (CGWW), merges 
the GWO and modified WOA to get the advantage of both 
algorithms. The CGWW algorithm has the moving steps 
of the WOA and GWO algorithms simultaneously, so it 
has a perfect set of evolutionary operators. Accordingly, 
the hybrid algorithm can obtain more promising solutions 
for the problem. This algorithm uses a reliable strategy to 
initialize the search agents and guide them to achieve the 
near-optimal solutions. Several chaotic maps are applied for 
the initialization step and adjusting the parameters of the 
proposed algorithm. In the CGWW algorithm, the roulette 
wheel selection operator is employed to select the target 
search agents based on their fitness value. Therefore, the 
proposed algorithm preserves the elite search agents and 
tries to direct search agents toward optimal solutions. From 
another viewpoint, the hybrid algorithm has the properties of 
a multi-swarm algorithm with more diversity for population 
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members. The CGWW algorithm is evaluated using 23 
benchmark functions and a real-world application for intru-
sion detection systems. Then the results are compared with 
the obtained results by several states of the art optimization 
methods.

The rest of this paper includes the following sections. 
A brief description of the applied and well-known meta-
heuristic algorithms, the application of chaotic maps for 
optimization, and different kinds of chaotic maps are pre-
sented in Sect. 2. The structure of the proposed combina-
tory algorithm is presented in Sect. 3. In Sect. 4, the 23 
mathematical benchmark problems, performed experiments, 
and the generated results are presented. Finally, in Sect. 5, 
the conclusion of the paper and future works are described.

2  Preliminary

Swarm-based meta-heuristic optimization methods are 
developed based on the evolution of a group of solutions for 
a problem in a search space. Solutions with high-quality will 
survive in the iterations of the optimization method to obtain 
the optimal solution. Followingly, the applied techniques 
and operation mechanisms of some of these meta-heuristic 
methods are summarized in Sect. 2.1. Using random number 
generators is necessary for implementing most of the optimi-
zation algorithms. Chaotic maps behave similarly to random 
number generators. In recent years, chaotic maps are applied 
to improve the exploration ability of the optimization algo-
rithms. Instead of random generators, the chaotic maps can 
generate a sequence of numbers to visit more places in the 
search space. They can be used to initialize the population 
and adjust the parameters of meta-heuristic algorithms. 
Because of dynamic characteristics and better coverage of 
chaotic maps, meta-heuristic optimization algorithms can 
work with higher speeds [47, 49, 50]. Some of the meta-
heuristic algorithms with the application of chaotic functions 
are discussed in Sect. 2.2. The GWO and WOA algorithms 
are briefly discussed in Sects. 2.3 and 2.4.

2.1  Meta‑heuristic optimization algorithms 
and hybrid methods

One of the oldest optimization algorithms is the GA, which 
is inspired by the natural selection process [5]. The GA 
algorithm applies different kinds of operators like selection, 
mutation, and crossover. After some generations, solutions 
with the highest fitness value will survive. The DE algorithm 
is much like the GA but with the local search facilities [31, 
51]. In the DE algorithm, all solutions have an equal chance 
to be selected for the next generation, but in GA, they are 
chosen based on their fitness. The moth-flame optimization 
algorithm (MFO) is created based on the routing mechanism 

of moths [52]. Moths fly in a straight line for long distances 
with a constant angle to the moon, but they sometimes entrap 
in a helix-shaped line around the artificial lights. These two 
straight-line and helix-shaped movements of moths imple-
ment the exploration and exploitation phases of the MFO 
algorithm. Group behavior of honeybees inspired the ABC 
algorithm [53, 54]. There are different groups of bees in the 
ABC, in which everyone in the group has a specific task. The 
final goal of all the activities is to produce honey, which is 
the solution to the investigated problem. Different theoretical 
and practical real-world problems have been tried to solve 
with the ABC algorithm [55, 56]. The ALO algorithm is 
inspired by the trapping and hunting method of the ant lions 
[7]. Ant lions make some traps in nature and hunt ants using 
them. Different stages of the ALO algorithm are designed 
based on this natural phenomenon. The AEFA is introduced 
by Anita et al. and is developed based on electrostatic forces 
[9]. In the AEFA, a group of particles establishes a popula-
tion wherein each particle retains a charge value. This value 
indicates the fitness for a particle, and the electrostatic force 
of a particle with a high charge value attracts other particles 
with a lower charge. Hence, all particles try to move toward 
particles with higher fitness, which results in finding the 
optimum solutions. The SSA is presented by Mirjalili et al. 
and imitates the social behavior of salps [10]. It starts with 
some random salps, which will forage and move in the ocean 
water. The salps population tries to move toward the food 
sources, the salps with maximum fitness value. After some 
iterations, the near-optimal solutions in the search space are 
found.

In recent years, some hybrid meta-heuristic optimization 
algorithms have also been introduced. One of these algo-
rithms is the GSA-GA algorithm, introduced by Garg, for 
solving the constrained optimization problems [32]. In the 
GSA-GA algorithm, the problem solutions are firstly con-
ducted with the gravitational search method then, they are 
enhanced with the GA operators. The PSO-GA is another 
hybrid method again presented for solving the constrained 
optimization problems by Garg [33]. In the PSO-GA algo-
rithm, the exploration and exploitation operation is per-
formed with cooperating the GA operators and the PSO. 
A parameter-free penalty function handles the problem 
constraints in the PSO-GA. The GA-GSA is also a com-
binatorial optimization algorithm introduced by Garg for 
optimizing an industrial system [34]. The GA-GSA is used 
for maximizing the availability, reliability, and maintainabil-
ity parameters as the objectives to increase the productivity 
and performance of the industrial system. The fuzzy sets 
are applied for resolving the conflicts between the problem 
objectives in [34]. The PS-ABC is another hybrid algorithm 
proposed by Li et al. for solving high-dimensional optimi-
zation problems [35]. This algorithm applies global search 
phases of the ABC algorithm with the local search phase of 
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the PSO to obtain the global optimum. The PS-ABC consid-
ers the aging degree of each search agent’s best for deciding 
on the type of search. Beigvand et al. introduced the hybrid 
TVAC-GSA-PSO algorithm with time-varying accelera-
tion coefficients for solving the large-scale Combined Heat 
and Power Economic Dispatch (CHPED) problems [36]. 
The TVAC-GSA-PSO algorithm is developed based on the 
self-adaptive learning strategy of swarm-based algorithms 
using various particle movements and the Newtonian laws 
for gravitation.

2.2  Chaotic maps and optimization algorithms

Seven kinds of ABC algorithms are proposed in [41]. In 
these algorithms, chaotic maps are applied to adjust the 
parameters’ values to increase convergence speed and scape 
from local optima. For increasing the strength of the bat 
algorithm (BA) for global search, chaotic maps are applied 
in [49]. Thirteen chaotic maps are evaluated in [49], and four 
different types of BA are developed using chaos. A chaotic 
map named sinusoidal has been applied as the rate of pulse 
emission in the BA, which resulted in developing the CBA-
IV algorithm with the best performance. A chaotic map 
called piecewise linear (PWLCM) is presented by Xiang 
et al. [57]. The PWLCM chaotic map is applied in the PSO 
to develop the PWLCPSO algorithm. Another PSO algo-
rithm merged with chaotic maps is introduced in [58]. This 
algorithm uses the PSO and a new operator named adaptive 
inertia weight factor (AIWF) to explore the search space. 
Talatahari et al. presented an optimization method called 
chaotic imperialist and competitive algorithm (CICA) [59]. 
The ICA is inspired by the socio-political evolution process 
of the world’s countries. Different kinds of chaotic maps 
are implemented and evaluated in CICA. The results indi-
cated the superiority of the logistic and sinusoidal maps. The 
chaotic maps are applied to set the light and other absorp-
tion parameters of fireflies in the firefly algorithm (FA) to 
increase the global search capability [43]. The Gaussian map 
as the absorption coefficient is reported to have the best per-
formance. The chaotic maps are also applied inside the KH 
algorithm to accelerate the general convergence [44]. Dif-
ferent types of krill movements are proposed using chaotic 
maps, in which the singer map has had the best performance.

2.3  The gray wolf optimization algorithm

Mirjalili suggested a meta-heuristic algorithm named gray 
wolf optimization (GWO), which imitates the leadership 
mechanism and hunting method of gray wolves in nature 
[25]. There are four types of wolves known as alpha, beta, 
delta, and omega in the GWO to simulate the leadership 
hierarchy. Moreover, the GWO algorithm has three funda-
mental steps of encircling, searching, and attacking the prey. 

From four types of wolves, alpha is the leader and manages 
the other types. The alpha wolves control the hunting steps 
and take the principal decisions. The beta wolves are in the 
second level of the hierarchy and return the feedback from 
others to the alpha type. The next level of the gray wolves 
hierarchy comprises delta wolves, which dominate the last 
one, containing omega wolves. Equation (1) calculates the 
distance of each wolf from alpha, beta, and delta wolves. X 
is the position of the current wolf in the search space.

To obtain the next position of the current wolf, the X1, X2, 
and X3 values, can be calculated by Eq. (2).

The A, a, and C are some parameters to control the algo-
rithm calculated by Eq. (3). The r1 and r2 are two random 
values ranging from 0 to 1. The C is a value to increase 
the exploration ability of the GWO algorithm. The value of 
‘a’ changes linearly from 2 to 0 during the iterations of the 
algorithm.

The next position of each wolf in the population is 
updated by Eq. (4).

2.4  The whale optimization algorithm

The whale optimization algorithm (WOA) [3] works based 
on a hunting method called bubble network, which belongs 
to humpback whales. In the WOA, for each iteration of the 
algorithm, the search agent with the best fitness (X*) is 
selected. Other search agents try to get their location close 
to the X*. The distance of each agent to the X* is calculated 
by Eq. (5). In Eq. (5), C is a vector calculated by Eq. (6), X is 
the position vector, r is a random number between 0 and 1, 
and t is the iteration number.

The position of each agent in the next iteration is cal-
culated by Eq. (7). The value of A is a vector computed by 
Eq. (8). ⇀a is also a coefficient that changes linearly from 2 
to 0.

(1)

Dalpha =
|||C1.Xalpha − X

|||, Dbeta =
||C2.Xbeta − X ||,

Ddelta =
||C3.Xdelta−X||

(2)

X1 = Xalpha − A1.Dalpha, X2 = Xbeta − A2.Dbeta,

X3 = Xdelta − A3.Ddelta

(3)A = 2 a. r1− a, C = 2 . r2

(4)X(t + 1) =

(
X1 + X2 + X3

)
∕3

(5)��⃗D = |
⇀

C .
⇀

X
∗

(t) −

⇀

X(t)|

(6)
⇀

C = 2.
⇀

r



353Progress in Artificial Intelligence (2021) 10:349–374 

1 3

The exploitation phase of the bubble network hunting 
method contains two types of movements, named encir-
cling-shrinking and spiral-shaped around the prey. For the 
exploration phase, random moves are applied to prey search. 
The encircling-shrinking is done by Eq. (7) when the value 
of a is decreasing from 2 to 1 during the iterations. Each 
search agent (whale) tries to get its position closer to the 
best one (prey) of the previous iteration in this movement. 
In the spiral-shaped move, the search agent goes through a 
spiral-shaped path around the best solution using Eq. (8). b 
is a constant which defines the shape of the spiral-shaped 
movement, and l is a random number between -1 and 1. 
Value of D’ in Eq. (9) indicates the distance between the 
selected agent and the prey calculated by Eq. (10).

Selecting encircling-shrinking or spiral-shaped move-
ments is made by a random variable called p with a 50 per-
cent chance for each one. In the exploration phase of the 
WOA, each population member moves toward a randomly 
selected search agent. This kind of movement is called the 
random search of the WOA, which increases the population 
diversity. This movement is implemented by Eqs. (11) and 
(12).

Xrand in Eq. (11) is the position of the selected random 
search agent. ’A’ is a number greater than one or less than 
minus one calculated by Eq. (8). To improve the diversity 
of solutions, the value of A enforces the whales to get away 
from each other. The WOA algorithm initializes a whales’ 
population and updates the whales’ positions with the three 
types of movements mentioned above.

The CWOA algorithm is the chaotic version of WOA 
[47]. In the CWOA, chaotic maps are applied to adjust the 
variables used to balance the exploration and exploitation 
abilities of WOA. Ten types of chaotic maps are used and 
evaluated for developing the CWOA algorithm. An improved 
version of the whale optimization algorithm, called IWOA, 
is also suggested to solve different scales of 0–1 knapsack 

(7)
⇀

X(t + 1) =
⇀

X
∗

(t) −

⇀

A .
⇀

D

(8)
⇀

A = 2
⇀

a .
⇀

r −
⇀

a

(9)
⇀

X (t + 1) =
⇀

D
�.ebl. cos (2l) +
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∗
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⇀

D
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⇀
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X
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−

⇀
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D

(12)
⇀

D =

||||

⇀

C .
⇀

X
rand

−

⇀

X

||||

problem with one and multi-dimensions [60]. A negative 
penalty value is considered inside the evaluation function to 
detect invalid solutions found by the IWOA. Moreover, to 
balance exploration and exploitation, a local search strategy 
and Lévy flight trajectories are implemented to develop the 
IWOA.

3  Chaotic and hybrid GWO and WOA 
algorithm

A chaotic and hybrid algorithm of GWO and WOA, 
called CGWW, is proposed in this section, which uses 
chaotic maps for initialization and adjusting its param-
eters.

3.1  Combination of the GWO and WOA algorithms

Exploration and exploitation are two fundamental phases 
of an optimization algorithm. In the exploration phase, 
the algorithm tries to search the entire search space of the 
problem with long steps. But in the exploitation, it strives 
to investigate the search space around the best solutions 
found in the exploration phase by small movements. The 
exploration phase of the WOA algorithm [3] is performed 
by the random search, where the exploitation phase is done 
by encircling-shrinking and spiral-shaped moves. But for 
some problems, the WOA gets stuck in the local optimum 
solutions.

In this paper, a modified version of the WOA algorithm 
is combined with the GWO to improve the exploration 
and exploitation operation. A random whale is selected 
in the random search of the WOA algorithm, as described 
by Eq. (11) in the previous section. As a modification, the 
whales’ selection in this movement could perform by the 
roulette wheel operator to enhance the exploration mecha-
nism of the WOA. In this way, the whales with better fitness 
values would be selected and became the target of other 
whales to move. The roulette wheel selection operator is one 
of the principal operators of GA [5].

Another defect of the WOA algorithm is fast convergence 
to solutions with low quality. Two approaches are proposed 
in this paper to solve this problem. The first approach is 
combining the GWO with the WOA to develop a multi-
swarm algorithm with high exploration capability. The 
second one is applying chaotic maps to generate solutions 
with a high degree of diversity. Chaotic maps are used to 
initialize the population and adjust different parameters and 
coefficients of the CGWW algorithm. The chaotic maps that 
are explained in the next section are applied for developing 
the CGWW. Some of the most significant properties of the 
CGWW algorithm are listed below.
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• The chaotic maps are applied to initialize the population 
of the CGWW algorithm.

• The CGWW algorithm is developed by combining the 
GWO and WOA, and it has more diverse movements for 
the search agents in the search space of the problem.

• The initial population of the CGWW is divided into 
two subpopulations. The GWO works on the first 
one, and the WOA works on the second one.

• After each iteration, the first and second subpopula-
tions are merged in a total population. Then the fit-
ness evaluation is performed, and the search agents 
of the total population are divided between the first 

and second subpopulations based on their fitness 
value. In this division, both subpopulations have 
approximately equal numbers of search agents with 
high fitness value.

• The roulette wheel selection operator is applied in 
CGWW to select the search agents in random move-
ments, so better ones from the fitness viewpoint 
would be the target whale instead of random ones.

The flowchart of the CGWW algorithm is presented in 
Fig. 1.

Algorithm 1 shows the pseudo-code of the proposed 
CGWW algorithm.
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3.2  Chaotic maps and the proposed hybrid 
algorithm

Random number generators are needed for implementing 
most of the optimization methods. In most optimization 
algorithms, randomness is attained by applying uniform or 
Gaussian probability distributions. The chaotic systems in 
mathematics are related to deterministic, non-linear, and 

dynamic systems, which have infinite unpredictable and 
periodic changes. They are sources of randomness, and 
they can perform explorations at higher speeds compared to 
random searches that principally rely on randomness [43]. 
Because of the similar behavior of chaotic maps and random 
systems, the chaotic maps are applied in most of the meta-
heuristic optimization algorithms to improve the exploration 
phase. This improvement occurs by increasing the diversity 

Fig. 1  Flowchart of the hybrid 
CGWW algorithm Start

Initialize the total population with the chaotic maps. 

Divide the total population to pop1 and pop2.

Evaluate the fitnesses of the total population.

Update a, A, C, I, and p.

Select the random whale from the pop2 by the 

roulette wheel operator.

Update the positions of whales in pop2.

Determine the alpha, beta, delta, and omega 

wolves in the pop1.

Update the positions of wolves in pop1.

Update a, r1, r2, C, and A.

Calculate the distance of each wolf (X) from 

alpha, beta, and delta wolves.
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EndOutput the best search agent.
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using a chaotic map.
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if there is no 

improvement in 

the previous 

five iterations  

Initialize the wolf 

using a chaotic map.

Yes

No
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of population members using chaotic maps. In this way, the 
meta-heuristic algorithms can perform the iterative search 
faster than the standard random searches, which use the 
mentioned probability distributions. The chaotic systems 
are sensitive to the beginning conditions, and a minor vari-
ation in them may result in essential changes in the results 
[49, 50]. Due to the dynamic behavior and non-repetition 
characteristics of the chaotic maps, they are applied mainly 
for the initialization and adjusting the parameters of meta-
heuristic methods to increase the convergence speed and 
scape from the local optima [37, 38]. Various chaotic maps 
are designed by mathematicians, physicians, and researchers 
which some of the most commonly used single-dimensional 
ones are presented below [61]. These maps are applied in 
this paper to implement the CGWW algorithm. In the fol-
lowing functions, k is the iteration number, and xk is the 
kth chaotic value. All of the investigated chaotic maps are 
adjusted to generate values between 0 and 1.

 (1) Chebyshev map: Eq. (13) defines this map [62].

 (2) Circle map: This map is defined by Eq. (14), which 
produces a chaotic sequence between 0 and 1 for 
a = 0.2 and b = 0.5 [63].

 (3) Gauss/Mouse map: Equation (15) defines this map 
[61].

 (4) Iterative map: Iterative map with infinite falling 
points can be expressed by Eq. (16), as a ∈ (0,1) [64].

 (5) Sine map: Eq. (17) expresses this map [65], which 
0 < a ≤ 4.

 (6) Singer map: Eq. (18) shows this one-dimensional 
map, as µ is a parameter between 0.9 and 1.08 [66].

(13)x
k+1 = cos

(
kcos−1

(
x
k

))

(14)x
k+1 = x

k
+ b −

(
a

2
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sin
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k
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0

1

xkmod(1)

x
k
= 0

otherwise
,

1

x
k
mod(1)

=

1

x
k

−

[
1

x
k

]

(16)x
k+1 = sin

(
a

x
k

)

(17)x
k+1 =

a

4
sin

(
x
k

)

(18)x
k+1 =

(
7.86x

k
− 23.31x2

k
+ 28.75x3

k
− 13.3x4

k

)

 (7) Sinusoidal map: Eq.  (19) expresses the sinusoi-
dal chaotic map [67], that in a particular case, once 
a = 2.3 and X0 = 0.7, it can be simplified by Eq. (20).

 (8) Tent map: This map is similar to the well-known 
logistic function that Eq. (21) defines [68].

 (9) Sawtooth map: It can be formulated by mod function 
by Eq. (22) [69].

 (10) Logistic map: Eq. (23) expresses this map [67]. The 
x will be between 0 and 1 only if the initial value of x0 
is in (0, 1).

3.3  Advantages of the proposed algorithm

The CGWW algorithm is developed to solve various kinds 
of continuous optimization problems with its diverse opera-
tors and procedures, which have been borrowed from the 
well-known GWO and WOA algorithms. In other words, 
theoretically, the strengths points of the GWO and WOA 
are integrated into the CGWW along with the chaotic maps 
to represent a high-performance meta-heuristic algorithm. 
Some advantages of the CGWW algorithm are as follows:

• The CGWW algorithm has a high power of exploration, 
and it can search the search space of the problem effec-
tively to find the promising regions. This characteristic of 
the proposed algorithm is due to the search agents con-
taining diverse solutions from the combined algorithms.

• Due to the dynamic behavior and application of chaotic 
maps in the optimization algorithms to better exploring 
the search space, they have been applied in the CGWW 
algorithm. The second reason for the increased explora-
tion ability in the proposed algorithm is initializing the 
search agents with the chaotic maps.

• Also, during the iterations of the hybrid algorithm, the 
chaotic maps are applied to avoid stagnation in the solu-
tions, which causes to find new promising regions in the 
search space.

• The proposed algorithm represents a high performance in 
the exploitation phase due to the combinatorial operators 

(19)x
k+1 = ax

2
k
sin

(
x
k

)

(20)x
k+1 = sin

(
x
k

)

(21)x
k+1 =

{
xk

0.7
10

3

(
1 − x

k

) x
k
< 0.7

x
k
> 0.7

(22)x
k+1 = 2x

k
mod(1)

(23)x
k+1 = x

k

(
1 − x

k

)
x0 ∈ (0.0, 0.25, 0.75, 0.5, 1.0)
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given from the GWO and WOA. These operators search 
around the found promising solutions of the search space 
in the exploration phase. This ability is improved using 
the roulette wheel selection operator to determine the tar-
get solutions for the search agents of the WOA algorithm.

• About the local optima avoidance, the CGWW algorithm 
performs well with balancing the exploration and explo-
ration ability. The chaotic maps also help in establish-
ing this balance. In the first iterations of the proposed 
algorithm, the diversity of search agents is high due to 
generating the initial population by two strategies of the 
GWO and WOA, along with the chaotic maps. But in the 
ending iterations, the diversity decreases, and the popula-
tion members converge to optimal solutions.

• Some mechanisms are applied to implement the elitism 
in the proposed algorithm. The best solutions of each 
iteration are saved as elite solutions and inserted in the 
subsequent populations. Besides, the stagnation of each 
search agent is examined in each iteration. If there is no 
improvement in the best position for the previous five 
iterations, the chaotic maps reinitialize the search agent.

• The last advantage of the proposed CGWW algorithm is 
its application for solving most of the continuous opti-
mization problems without any information about the 
search space. In other words, the proposed algorithm 
looks at the given problem as a black box. Moreover, by 
some modifications in the fitness function, the proposed 
algorithm can also solve some kinds of multi-objective 
problems.

3.4  The complexity of the proposed algorithm

Considering the structure and implementation method of the 
proposed CGWW algorithm, the computational complexity 
is evaluated and discussed in this section. Most of the meta-
heuristic algorithms have limited memory usage, and the 
proposed algorithm is no exception. But in terms of runtime, 
various algorithms behave differently, and the algorithms 
with less computational complexity have a better perfor-
mance. For the CGWW algorithm, the number of wolves in 
the GWO part, number of whales in the WOA part, maxi-
mum number of iterations, number of variables in the solu-
tion, applied chaotic map functions, sorting method of popu-
lation, and the roulette wheel selection operator determines 
the computational complexity. The merged population, con-
taining the wolves of the GWO and whales of the WOA, is 
sorted based on fitness value in each iteration of the CGWW 
algorithm. Whenever the sorting operation is required in the 
CGWW, the Quicksort algorithm with the complexity of 
O(n2) and O(n log n) for the worst and best case is used. As 
mentioned in the previous sections, to improve the WOA, 
the roulette wheel selection operator is applied for selecting 
the target whales during movements. The complexity of this 

operator, related to the implementation method, is O(n) or 
O(log n). For every iteration of the proposed algorithm, if 
the search agents have no improvement in the last five itera-
tions, the chaotic maps reinitialize them. But no function 
evaluations are required for these operations, and their cost 
is trivial. Equation (24) presents the computational complex-
ity of the CGWW algorithm.

In Eq. (24), t is the maximum iterations, n is the number 
of search agents (wolves in the GWO plus whales in the 
WOA), and d is the dimension or number of variables.

3.5  Tips for converting the proposed algorithm 
to a multi‑objective optimization method

The proposed CGWW algorithm is intrinsically a single-
objective optimization algorithm but, with some modifica-
tions, it can be transformed into a multi-objective optimi-
zation algorithm. For solving a multi-objective problem, 
the final result is a set named Pareto optimal solutions. The 
currently proposed CGWW algorithm cannot be applied 
for solving multi-objective problems due to the follow-
ing reasons. The first reason is that in each iteration of 
the CGWW, two solutions are found and saved as the best 
ones. One for the GWO and the other for the WOA. But 
for solving a multi-objective problem, the output is multi-
ple non-dominated solutions. The second reason is that, for 
solving a multi-objective problem, a set of non-dominated 
solutions (Pareto set) are required for updating the positions 
of the remaining population members. Therefore, the first 
modification over the proposed algorithm may be having 
a repository of non-dominated solutions or the Pareto set. 
This repository is very similar to the archives in the multi-
objective particle swarm optimization algorithm (MOPSO) 
[70, 71]. The obtained solutions of the GWO and WOA are 
compared against the repository members during the exe-
cution of the multi-objective algorithm using a dominance 
operator. If a solution dominates a member of the repository, 
the member will be replaced by it. During the optimization 
process, a solution may be non-dominated comparing with 
the repository members, which has to be added to the reposi-
tory. By applying the mentioned rules, the repository always 
has the non-dominated solutions which have been found so 
far. The repository should have a limited capacity, so some 

(24)

O (CGWW) = O (t × O (Quick sort)

+ O (positions update of the GWO)

+ O (roulette wheel for the whales of the WOA)

+ O (positions update of the WOA)))

O (CGWW) = O (t × n
2
+ n∕2d + n∕2log n + n∕2 × d))

= O
(
tn

2
+ tnd + tn (log n)∕2

)
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members should be removed by adding new non-dominated 
solutions beyond capacity. The simplest way to remove the 
surplus solutions from the repository is the random method, 
but deleting the similar non-dominated solutions could be a 
better way. The proposed multi-objective algorithm should 
obtain the uniformly distributed Pareto optimal solutions. 
Therefore, removing some similar solutions from the popu-
lated regions of the repository is the best approach [71]. The 
segmentation of the repository for grouping similar solutions 
in each segment can be applied to do this. Then for each 
repository member, a rank is assigned based on the number 
of neighboring solutions. Solutions with a higher rank num-
ber are selected with the roulette wheel selection operator 

to remove from the repository. After some iterations of the 
multi-objective algorithm, the repository members will have 
improved distribution. In an ideal situation for the reposi-
tory, there will be one solution per segment. Figure 2 illus-
trates an example for this repository updating process of the 
proposed multi-objective algorithm for solving a problem 
with two objective functions of f1 and f2. The solid black 
circles are candidates to be removed from the repository in 
the example of Fig. 2.

For the multi-objective CGWW algorithm, there should 
be a single repository for the GWO and WOA parts. In each 
iteration of the multi-objective CGWW, by using the domi-
nance operator, the GWO algorithm compares its alpha wolf 
with the repository members, and the WOA does the same 
for the best-found whale.

There is more than one best solution in a multi-objective 
search space. Therefore, as mentioned previously, the selec-
tion method of targets in the GWO and WOA for updating 
the positions of the remaining population members in each 
iteration is the second issue for developing the multi-objec-
tive version of the CGWW. This issue can be solved with the 
random selection of the targets. But a wiser way is to apply 
the same ranking method and roulette wheel operator for 
removing the surplus solutions from the repository. How-
ever, the non-dominated solutions with a lower rank, which 
has a less populated neighborhood, have a higher chance to 
be selected as the targets. For example, the non-dominated 
solution in the third row and second column in Fig. 2 with 
no neighbor has the highest probability for selection. Algo-
rithm 2 presents the pseudo-code of the proposed multi-
objective CGWW algorithm.

f2
 (M

in
im

iz
e)

f1 (Minimize)

Fig. 2  The repository updating process when it is full (solid black cir-
cles are candidates to be removed)

Table 1  Unimodal benchmark 
evaluation functions

Name Function Var-number Range fmin

Sphere F1(x) =
∑n

i=1
x2
i

30 [−100,  100] 0
Schwefel 2.22 F2(x) =

∑n

i=1
��xi�� +

∏n

i=1
��xi�� 30 [−10, 10] 0

Schwefel 1.2 F3(x) =
∑n

i=1
(

∑i

j−1
xj)

2 30 [−100, 100] 0

Schwefel 2.21 F4(x) = maxi{
||xi||, 1 ≤ i ≤ n} 30 [−100, 100] 0

Rosenbrock F5(x) =
∑n−1

i=1
[100

�
xi+1 − x2

i

�2
+ (xi − 1)2] 30 [−30, 30] 0

Step F6(x) =
∑n

i=1
([xi + 0.5])2 30 [−100, 100] 0

Quartic F7(X) =
∑n

i=1
ix4

i
+ random[0,1) 30 [−1.28, 1.28] 0
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Table 2  Multimodal benchmark evaluation functions

Name Function Var-number Range f
min

Schwefel
F8(x) =

∑n

i=1
− xisin(

�
��xi��)

30 [−500, 
500]

− 418.9829 
×Dim(30)

Rastrigin F9(x) =
∑n

i=1
[x2

i
− 10cos

�
2xi

�
+ 10] 30 [−5.12, 

5.12]
0

Ackley
F10(x) = −20exp

�
−0.2

�
1

n

∑n

i=1
x2
i

�
− exp

�
1

n

∑n

i=1
cos(2xi)

�
+ 20 + e

30 [−32, 32] 0

Griewank F11(x) =
1

4000

∑n

i=1
x2
i
−

∏n

i=1
cos

�
xi√
i

�
+ 1 30 [−600, 

600]
0

Penalty 1 F12(x) = n

�
10sin

�
y1
�
+

∑n−1

i=1

�
yi − 1

�2�
1 + 10sin2

�
yi+1

��
+

�
yn − 1

�2�
+

∑n

i=1
u
�
xi, 10,100,4

�

yi = 1 +
xi+1

4
u
�
xi, a, k,m

�
=

⎧
⎪
⎨
⎪
⎩

k
�
xi − a

�m
xi > a

0 − a < xi < −a

k
�
−xi − a

�m
xi < −a

30 [−50, 50] 0

Penalty 2 F13(x) = 0.1{sin
2
�
3�x1

�
+

∑n

i=1

�
x
i
− 1

�2�
1 + sin

2
�
3�x

i
+ 1

��
+

�
x
n
− 1

�2�
1 + sin

2
�
2�x

n

��
} +

∑n

i=1
u
�
x
i
, 5,100,4

� 30 [−50, 50] 0
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Algorithm 2 indicates that the multi-objective CGWW 
algorithm first initializes the total population using the cha-
otic maps. This algorithm then calculates the fitness of each 
solution and obtains the non-dominated ones. The repository 
is updated considering the new non-dominated solutions. If 
the repository becomes full, some solutions with a populated 
neighborhood are selected using the roulette wheel operator 
and then removed from the repository. In the next step, the 
alpha wolf and the best whale are chosen from the reposi-
tory, again with the roulette wheel, which both of them have 
the least populated neighborhood. The rest of algorithm 2 
is the same as algorithm 1 for the single objective CGWW.

In this section, some suggestions are presented to trans-
form the CGWW algorithm into a multi-objective approach. 
But, as mentioned earlier, the CGWW algorithm is intrin-
sically single-objective in its current form. However, with 
some modifications to the objective functions, the multi-
objective problems can be solved by the single-objective 
optimization algorithm to some extent. For instance, the 
GWO algorithm is applied for solving the feature selec-
tion problem in anomaly-based intrusion detection systems 
in [72]. In this study, a weighted sum fitness function has 
been proposed using the objective of the problem. There-
fore, to further evaluate the CGWW algorithm, a kind of 
feature selection problem in intrusion detection systems has 
been tried to solve with the proposed CGWW algorithm in 
Sect. 4.6.

4  Results of experiments and discussion

Several experiments are conducted to evaluate the CGWW 
algorithm with some benchmark functions and a real-world 
application for intrusion detection systems. In the following 
sections, the details of the performed experiments and their 
conditions and results are presented.

4.1  Benchmark functions and the optimization 
algorithms

The CGWW algorithm is evaluated using unimodal, mul-
timodal, and composite benchmark functions [73–79]. 
The first group of benchmark functions, called unimodal, 
includes seven members (F1 to F7), where each one has 
one optimum solution. The unimodal benchmark functions 
presented in Table 1 can evaluate the convergence power and 
exploitation ability of the optimization algorithms. The sec-
ond group, called multimodal (F8 to F13), has large dimen-
sions and is presented in Table 2. Multimodal benchmark 
functions have many local and one global optimum, so they 
are more challenging than unimodal functions. Multimodal 
benchmarks can evaluate the exploration and local optima 
avoidance abilities of optimization algorithms. The optimum Ta
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value of the F8 in Table 2 is a coefficient of problem dimen-
sion, which is 30 in the experiments. For the other bench-
marks of Tables 1 and 2, the optimum value is zero. The last 
group of functions is composite or multimodal with fixed 
or small dimensions (F14 to F23). Composite benchmark 
functions, shown in Table 3, are rotated, biased, shifted, and 
combined versions of unimodal or multimodal ones [80, 81]. 
Most of the composite benchmarks have complicated shapes 
and many local optimums, so they are more like real-world 
problems. For the composite benchmark functions, finding 
a balance between exploration and exploitation operations 
is essential to find the global optimum.

The proposed CGWW algorithm is compared with eight 
well-known optimization algorithms to evaluate the perfor-
mance of it. The algorithms are the GA [5, 82], PSO [6], 
MFO [52], ABC [8, 54], SSA [10], AEFA [9], GWO [25] 
and WOA [3].

4.2  Experimental setup

The proposed CGWW and other compared algorithms have 
some execution parameters. The initial values for the sig-
nificant parameters are adjusted to evaluate the CGWW 
algorithm. In Table 4, the initial values of the parameters 
of the compared algorithms are presented. These values are 
adjusted according to the values stated in the literature. The 
same initialization method has been applied for all the algo-
rithms to compare them equivalently. The number of search 

agents and iterations for all algorithms is considered 30 and 
500, respectively. Parameter values of the proposed CGWW 
algorithm are a combination of values for the GWO and 
WOA algorithms. The experiments and algorithms are 
implemented in Matlab R2018a using a system with a Core 
i5 Intel processor, 2.8 GHz clock speed, 8 GB of RAM size, 
and Microsoft Windows 10 64-bit OS.

The parameters of Table 4 for the PSO are adjusted 
according to the values recommended in [6, 83–85]. The 
inertial value between 0.4 and 0.9 adjusts the explora-
tion and exploitation phases, while the acceleration rates 
of c1 = c2 = 2 control the moving distance of particles. For 
the MFO algorithm, the convergence parameter linearly 
decreases from −1 to −2, according to [52], while the aban-
donment limit parameter of ABC is determined based on [8]. 
The GA algorithm has three parameters of crossover rate, 
mutation rate, and selection pressure. The crossover is the 
essential operator of the GA, and 0.7 is a reasonable rate for 
it. A high probability for this operator will combine different 
solutions to generate new ones. The mutation rate should be 
low since it will increase the diversity more than enough, 
and this will remove the high-quality solutions during the 
generations [5]. The K0 and ‘a’ are two main parameters of 
the AEFA algorithm, which are used to set the Coulomb’s 
constant according to [9]. The most significant parameter 
of the SSA is c1, which establishes a balance between the 
exploration and exploitation mechanisms. The other param-
eters of the SSA are c2 and c3, random numbers between 0 

Table 4  Parameters values of 
the compared algorithms

Algorithm Parameters Values

PSO Inertial value [0.4, 0.9]
Acceleration rate  (c1 and  c2) 2
Maximum velocity 8

MFO Convergence constant [− 2,  −1]
ABC Abandonment limit 0.6*Dimension*Colony size
GA Crossover rate 0.8

Mutation rate 8
Selection pressure 0.1

AEFA K0 500
a 30

SSA c1 2*exp(−(4* Current iteration /
Maximum iterations)^2)

c2 Random numbers between 0 and 1
c3 Random numbers between 0 and 1

GWO Control parameter (a) [2, 0]
WOA a [2, 0]

a2 [1, 2]
r1,  r2 Random numbers between 0 and 1

CGWW a [2, 0]
a2 [1, 2]
r1,  r2 Chaotic numbers between 0 and 1
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and 1, according to [10]. The GWO and WOA algorithms 
have a control parameter named ‘a’, which balances the 
exploration and exploitation and changes from 2 to 0 accord-
ing to [25]. The ‘a2′ parameter of the WOA and the hybrid 
proposed algorithm varies between 1 and 2, while r1 and r2 
are two random values as stated in [3]. The chaotic maps are 
used to set the r1 and r2 values in this paper.

For implementing the CGWW algorithm, the mentioned 
chaotic maps of Sect. 3.2 have been used and compared. 
The comparison results showed that the Iterative, Circle, and 
Sine maps present better performance than the others. All of 
the experiments of this paper have been repeated 100 times 
to get more accurate results. For all compared algorithms, 
the average, standard deviation, worst, and best values are 
computed and reported as the performance metrics using the 
obtained results. The first two criteria show the stability of 
the algorithm in solving the investigated problems. For each 
test function, the best-obtained solution is displayed by the 
bold-face in the tables.

4.3  Results of experiments on the benchmark 
functions

In the following sections, the comparison results of CGWW 
with eight popular meta-heuristic algorithms for solving the 
unimodal, multimodal, and composite benchmark test func-
tions are presented to evaluate the proposed algorithm.

4.3.1  Results for solving the unimodal benchmark 
evaluation functions

The first group of test functions, named unimodal, has only 
one optimum solution. Accordingly, the unimodal func-
tions (F1 to F7) are applicable for evaluating the conver-
gence speed of optimization algorithms. A high conver-
gence speed could improve the exploitation phase of the 
algorithms. Table 5 presents the execution results of the 
compared algorithms for the unimodal benchmark func-
tions. The results indicate that the CGWW algorithm could 
find the best solutions on 6 out of 7 unimodal test functions. 

Table 5  Results of compared algorithms on the unimodal benchmark functions

F GA PSO ABC MFO SSA AEFA GWO WOA CGWW 

1 Best 22.2014 3.70E−05 10.3477 0.66762 2.93E−08 0.00020107 1.38E−29 4.94E−84 4.30E−221
Worst 64.1458 0.0008444 50.0275 10,000.9141 3.47E−07 16.604 5.19E−26 3.41E−75 2.48E−179
Aver 37.5605 0.00032939 25.0387 2004.2166 1.37E−07 3.1811 6.06E−27 6.54E−76 2.77E−180
Stdd 13.9768 0.00028676 12.1122 4214.5541 1.03E−07 5.2947 1.62E−26 1.38E−75 0

2 Best 0.59135 0.021652 0.22036 10.1181 1.08 12.1174 1.76E−17 1.06E−56 3.01E−123
Worst 2.0649 30.0945 0.46986 70.0051 5.0871 45.5724 1.19E−16 3.36E−47 4.52E−100
Aver 1.1733 10.0444 0.33566 34.1064 2.3394 21.0975 7.09E−17 3.36E−48 5.05E−101
Stdd 0.44339 9.44 0.091427 18.2993 1.145 9.818 3.51E−17 1.06E−47 1.42E−100

3 Best 2231.7304 57.2928 25,399.548 8199.3378 507.3865 1570.9143 1.70E−08 33,922.2505 5.56E−156
Worst 4961.8458 180.7681 44,914.4413 41,971.0847 4742.1429 3965.5814 6.46E−06 68,087.9477 2.39E−31
Aver 3689.2329 101.8678 35,100.8536 25,205.7984 1705.5503 2592.5253 1.16E−06 50,313.5754 2.39E−32
Stdd 936.0154 38.5628 5588.6961 11,263.3919 1227.5846 870.3249 2.09E−06 11,847.3727 7.56E−32

4 Best 6.5736 1.2184 58.1881 46.1332 3.7487 3.0868 6.84E−08 0.12557 7.13E−89
Worst 12.717 1.9079 66.8287 81.2321 16.683 8.6916 1.81E−06 84.9739 2.71E−64
Aver 8.4476 1.5406 61.945 66.871 10.0647 5.3573 7.68E−07 47.2322 3.66E−65
Stdd 1.7648 0.21167 2.7193 10.4563 3.626 1.7431 5.19E−07 31.5726 8.41E−65

5 Best 574.4635 21.3694 75,410.9051 240.4725 26.3205 596.5247 26.1099 27.1857 25.7637
Worst 3469.4291 604.3909 285,425.531 90,242.872 1282.9922 11,579.1998 27.9393 28.7278 26.3556
Aver 1890.875 117.2056 164,579 13,461.3532 345.5362 5023.5947 26.9936 27.9263 25.9996
Stdd 953.0738 174.8223 84,848.7836 28,971.5555 429.1635 3811.8084 0.66428 0.48877 0.20006

6 Best 19.8057 6.76E−06 11.7883 0.92733 2.04E−08 3.78E−23 0.24228 0.061205 0.00012259
Worst 53.6208 0.002217 46.5119 20,201.1074 2.41E−05 74.5242 1.5062 0.54408 0.000224
Aver 34.165 0.00039875 20.8553 7012.3351 2.54E−06 10.3218 0.87557 0.28524 0.00015043
Stdd 12.9069 0.00066162 11.5099 8236.5063 7.59E−06 23.3306 0.41897 0.15791 2.99E−05

7 Best 0.029668 0.099 0.25216 0.14864 0.081967 0.12042 0.00074658 0.00013975 2.29E−05
Worst 0.068514 24.2649 0.50086 35.0882 0.3628 7.4237 0.0051373 0.0087893 0.00044815
Aver 0.044213 6.8317 0.37721 7.7682 0.18583 1.6134 0.0022485 0.0024748 0.00019148
Stdd 0.012955 9.0343 0.092499 10.6399 0.082081 2.2478 0.0012851 0.0029317 0.00015532
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In the GWO algorithm, there is a hierarchy of wolves 
based on the solution quality. One of the responsibilities 
of this hierarchy is focusing on the high-quality solutions 
found so far. In this way, the exploitation ability of the 
algorithm will improve. About the WOA, it has different 
motion operators for the whales. The helix-shaped move-
ment and the movement around the current best solution 
participate in the exploitation phase. Besides, the roulette 
wheel operator, which forces the whales to move toward 
high-quality solutions, improves the exploitation operation. 
Integration of the above operators and movements in the 
hybrid CGWW algorithm results in high performance for 
the exploitation best solutions to find the global optimum. 
The best, worst, average, and standard deviation results 
in Table 5 indicate that the proposed CGWW algorithm 
obtained the minimums for the F1, F2, F3, F4, and F7 func-
tions. About the F5, the minimum of best solution belongs 
to the PSO algorithm, but for other evaluation parameters, 
the CGWW has found the minimum. About the F6, the 
proposed algorithm does not have an acceptable perfor-
mance where the best answer belongs to the AEFA, and 
the minimum of worst, average, and standard deviation are 
obtained by the SSA. Therefore the CGWW has a high 
capability for finding the global optimum solution of the 

unimodal functions and presents a high performance in the 
exploitation phase with extra precision.

4.3.2  Results for solving the multimodal benchmark 
evaluation functions

The second group of test functions, named multimodal (F8 
to F13), have one global optimum and many local optima. 
By increasing the problem dimensions, the number of local 
optima increases exponentially in the multimodal func-
tions. These functions can evaluate the strength of optimi-
zation algorithms to escape from local optima. Therefore, 
the multimodal functions can estimate the power of the 
optimization algorithms in the exploration phase. Table 6 
presents the execution results of the compared algorithms 
for the multimodal benchmark functions. The results indi-
cate that the CGWW algorithm could find the best solu-
tions on 5 out of 6 multimodal benchmark functions. The 
exploration power of the CGWW algorithm comes from 
its several features. First of all, the GWO algorithm has 
remarkable proficiency in exploring the search space and 
avoiding local optima as a part of the CGWW. Secondly, the 
WOA, which has various moving strategies, can avoid local 
optima by its random movement in most cases and explore 
the search space thoroughly. Thirdly, the chaotic maps are 

Table 6  Results of compared algorithms on the multimodal benchmark functions

F GA PSO ABC MFO SSA AEFA GWO WOA CGWW 

8 Best −11,344.4073 −6943.301 −5268.4464 −10,226.6115 −8207.2115 −2676.0121 −6921.0634 −12,569.4474 −12,556.914
Worst −9724.438 −3598.6637 −4546.3108 −7267.5241 −6580.2456 −1821.8973 −4937.1445 −8481.8849 −6574.1193
Aver −10,492.8704 −6138.2173 −4996.9335 −8407.9911 −7518.2401 −2196.1506 −5933.1667 −10,454.4268 −9441.969
Stdd 418.6733 956.0528 235.1372 895.6639 595.7159 315.5463 567.0973 1904.6725 2124.3916

9 Best 19.893 79.8104 215.1665 115.4351 29.8487 29.5316 5.68E−14 0 0
Worst 53.2736 197.7717 253.3559 221.1784 65.6671 51.7466 8.494 0 0
Aver 37.6934 139.6562 236.6185 177.8986 43.5791 38.2044 2.648 0 0
Stdd 11.8384 39.4131 12.467 39.0635 12.3453 7.6203 3.0897 0 0

10 Best 1.844 0.0050213 3.1874 3.0792 1.5017 0.0054556 7.55E−14 8.88E−16 8.88E−16
Worst 2.9187 1.6476 5.1843 19.9531 3.4042 2.4077 1.15E−13 7.99E−15 8.88E−16
Aver 2.6348 0.37188 4.0129 17.2683 2.1807 1.3801 9.11E−14 5.15E−15 8.88E−16
Stdd 0.38085 0.5832 0.53952 5.0937 0.61096 0.67805 1.37E−14 2.80E−15 0

11 Best 1.1626 9.21E−07 1.2644 0.66634 0.0003893 6.5506 0 0 0
Worst 1.5046 0.019699 1.935 91.0322 0.023885 15.1046 0.020587 0.41795 0
Aver 1.3537 0.0059311 1.5692 9.9442 0.013011 10.6147 0.0052174 0.041795 0
Stdd 0.10395 0.0069755 0.18663 28.4919 0.0091304 2.4228 0.0087235 0.13217 0

12 Best 0.016931 2.70E−07 25,343.4171 4.5307 3.25 1.9855 0.026159 0.0084505 8.39E−06
Worst 0.81983 0.00036585 788,912.7727 199.7127 12.711 6.53 0.12311 0.045092 4.19E−05
Aver 0.31876 5.46E−05 210,414.1492 25.6359 7.1681 3.9173 0.061956 0.018617 2.10E−05
Stdd 0.31438 0.00011728 233,428.9647 61.1931 2.6647 1.3389 0.032775 0.011753 1.01E−05

13 Best 0.83187 1.26E−05 46,024.7852 5.4385 0.0063786 15.4749 0.29919 0.31085 0.0001618
Worst 3.7114 0.011522 1,111,359.569 83.4894 35.0118 55.7666 1.0973 0.92355 0.011175
Aver 1.8032 0.0056008 634,054.9312 28.2289 15.2215 30.3806 0.66445 0.60965 0.0024956
Stdd 0.87863 0.0058451 374,347.4635 23.4247 12.4785 12.2515 0.27943 0.2471 0.0045749
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applied in the initialization phase and during the iterations 
of the hybrid algorithm for solving the stagnation problem 
of search agents. So, the proposed algorithm is prevented 
from getting stuck in local optima, and its exploration abil-
ity is improved. The obtained results in Table 6 indicate 
that the CGWW algorithm finds the minimum values for the 
F9, F10, and F11. For the F8 function, the minimum value 
for the best solution is found by the proposed algorithm. 

But, the minimum value of worst and average solutions is 
obtained by the GA. For F12 and F13 problems, the CGWW 
algorithm finds the minimum for the average, worst, and 
standard deviation. But, the minimum of the best answer is 
found by the PSO algorithm. Therefore, the CGWW pre-
sents a high performance in the exploration phase and can 
explore the search space to obtain more promising areas and 

Table 7  Results of compared algorithms on the composite benchmark functions

F GA PSO ABC MFO SSA AEFA GWO WOA CGWW 

14 Best 0.998 0.998 0.998 0.998 0.998 1.0107 0.998 0.998 0.998
Worst 5.9288 7.874 1.0053 5.9288 0.998 10.7763 12.6705 10.7632 0.998
Aver 1.9877 3.2674 0.99883 2.5767 0.998 4.4665 5.5902 2.7682 0.998
Stdd 1.5427 2.4552 0.0022993 2.3335 1.66E−16 3.3362 4.9911 2.9771 0

15 Best 0.00062025 0.00065566 0.00062008 0.00080801 0.00061086 0.0015347 0.00030752 0.00032392 0.00030755
Worst 0.020714 0.0083337 0.00086265 0.0083337 0.020365 0.019672 0.0015948 0.0022519 0.00053222
Aver 0.0039725 0.001771 0.00075548 0.0021187 0.0049533 0.010245 0.00049982 0.00081913 0.00037017
Stdd 0.0065172 0.0023313 8.95E−05 0.002201 0.0081286 0.0061943 0.00039149 0.00061805 8.63E−05

16 Best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Worst −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Aver −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Stdd 7.25E−08 1.05E−16 2.21E−07 0 1.27E−14 0 3.54E−08 2.82E−10 1.16E−08

17 Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Worst 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39791 0.39789
Aver 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.3979 0.39789
Stdd 1.50E−07 0 1.18E−09 0 8.32E−15 0 3.97E−07 9.01E−06 1.49E−06

18 Best 3 3 3 3 3 3 3 3 3
Worst 3 3 3 3 3 3 3.0001 3.0002 3
Aver 3 3 3 3 3 3 3 3 3
Stdd 6.95E−06 1.36E−15 4.55E−06 1.63E−15 5.44E−14 1.57E−15 2.79E−05 6.29E−05 5.93E−06

19 Best −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8627 −3.8628
Worst −3.8628 −3.8613 −3.8628 −3.8628 −3.8628 −3.8626 −3.8556 −3.8049 −3.8628
Aver −3.8628 −3.8625 −3.8628 −3.8628 −3.8628 −3.8627 −3.8617 −3.8552 −3.8628
Stdd 2.90E−08 0.00048677 7.49E−10 9.36E−16 1.72E−12 7.37E−05 0.0023177 0.017911 9.00E−16

20 Best −3.322 −3.322 −3.322 −3.322 −3.322 −3.322 −3.322 −3.3216 −3.322
Worst −3.2031 −3.1345 −3.322 −3.2031 −3.1337 −3.2029 −3.1375 −3.147 −3.322
Aver −3.2863 −3.2484 −3.322 −3.2507 −3.238 −3.3101 −3.2794 −3.2717 −3.322
Stdd 0.057431 0.081061 9.39E−07 0.061396 0.074563 0.037656 0.07079 0.072752 4.68E−16

21 Best −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1525 −10.1487 −10.151
Worst −2.6305 −2.6829 −9.4575 −2.6305 −2.6305 −5.0552 −3.0846 −5.0549 −5.0552
Aver −5.1605 −7.7346 −10.0532 −6.1441 −7.9069 −5.565 −8.9398 −9.6296 −9.5831
Stdd 3.5258 3.1961 0.2234 3.5765 3.617 1.6121 2.5986 1.6074 1.5922

22 Best −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −10.4022 −10.3975 −10.4024
Worst −2.7519 −1.8376 −10.4029 −2.7519 −2.7659 −5.0877 −2.5854 −3.7215 −10.3079
Aver −7.1027 −7.2922 −10.4029 −7.5384 −9.1118 −8.2768 −9.6195 −6.5257 −10.385
Stdd 3.5227 3.4171 1.09E−05 3.7121 2.7783 2.7448 2.4715 2.6683 0.030991

23 Best −10.5364 −10.5364 −10.5363 −10.5364 −10.5364 −10.5364 −10.5356 −10.5322 −10.5364
Worst −2.4217 −2.4217 −5.124 −2.4217 −5.1756 −2.4273 −10.533 −2.411 −10.5364
Aver −6.7109 −7.8413 −9.9263 −7.6114 −10.0003 −9.3083 −10.5343 −7.8163 −10.5364
Stdd 4.0507 3.5984 1.6892 3.852 1.6952 2.7503 0.00096393 3.5949 1.53E−05
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Fig. 3  Convergence curves of compared optimization algorithms
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Fig. 3  (continued)
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the global optimum for most of the multimodal benchmark 
functions by avoiding all local optima.

4.3.3  Results for solving the composite benchmark 
evaluation functions

The third group of test functions, named composite (F14 
to F23), have fewer local optima and dimensions than the 
multimodal group. For solving the composite benchmark 
functions, which is an exceptionally challenging job, the 
optimization algorithms should establish a balance between 
the exploration and exploitation operations. Table 7 presents 
the execution results of the compared algorithms on the 
composite benchmark functions. According to the obtained 
results, the CGWW algorithm can find the best solutions on 
8 out of 10 composite benchmark functions. The GWO and 
WOA algorithms have acceptable performance for balanc-
ing the exploration and exploitation operations. The hybrid 
CGWW algorithm inherits this skill from both algorithms. 
The chaotic maps and roulette wheel operator also rein-
force the hybrid algorithm to perform the exploration and 
exploitation phases more accurately. Therefore, the hybrid 
algorithm focuses on the exploration and does the long and 
sudden movements in the early iterations. Then the proposed 
algorithm considers short and gradual movements to per-
form the exploitation in the last repetitions. For the F14, 
F15, F19, F20, and F23 composite benchmark functions, 
the CGWW algorithm finds the minimum best, worst, aver-
age, and standard deviation. The compared algorithms have 
similar behavior for finding the minimum best, worst, and 
average values for the F16, F17, and F18 functions. But, 
about the standard deviation value, the PSO is better than 
the other algorithms. Finally, the ABC is superior to the 
others on the F21 and F22 functions in finding the minimum 
value for the best, worst, average, and standard deviations. 
The results of Table 7 confirm that the CGWW is capable 
of solving complicated optimization problems because the 
search spaces of the composite test functions are very similar 
to the search space of real-world problems. Therefore, the 
CGWW presents a high performance to balance the explo-
ration and exploitation phases to solve problems having a 
complicated search space.

4.4  Convergence analysis of proposed algorithm

In this section, the convergence speed of the proposed algo-
rithm is compared with the other optimization methods. The 
purpose of convergence analysis is to demonstrate the explo-
ration and exploitation mechanisms of the CGWW algo-
rithm. The convergence curves of GA, PSO, ABC, MFO, 
GWO, WOA, SSA, AEFA, and CGWW algorithms are dem-
onstrated for some of the benchmark test functions in Fig. 3. 
a and b. For each iteration of the mentioned algorithms, the 

average of the best solution’s value for 100 times of execu-
tions is plotted as the convergence curve in Fig. 3a and b. 
The search agents investigate the promising areas of the 
search space during the iterations of the CGWW and per-
form the exploitation operations. These search agents move 
with a high velocity in the beginning steps and then gradu-
ally converge at a lower speed to a near-optimal solution. 
Figure 3 demonstrates that the convergence performance of 
the CGWW algorithm For F1, F2, F6, F7, F12, and F13 
benchmark functions is much better than other algorithms. 
The convergence curve of the proposed algorithm is very 
similar to the WOA and GWO for the F5. Competition 
between the WOA and CGWW is very intense but, after 
iteration 65, the CGWW is the winner. The same conditions 
exist about the F21 function between the ABC and CGWW 
algorithms. For the F18, the GWO algorithm has the best 
convergence curve between the others. Finally, for the F22 
and F23, the ABC algorithm has the best performance about 
the convergence curve. The investigation results imply that 
the CGWW presents the fastest convergence for most of the 
benchmark functions. For the remaining benchmarks, the 
obtained results of the CGWW are competitive with those 
of the other compared meta-heuristic optimization methods.

4.5  Results of the proposed algorithm 
and the Literature

In this section, the results of the CGWW are compared with 
the existing ones in the literature. The experimental condi-
tions in the literature are applied for the execution process of 
the proposed algorithm. Table 8 presents the adopted results 
from [3, 25] for the WOA, PSO, DE, and GWO, along with 
the results of the CGWW, using the same experimental con-
ditions, for solving 23 benchmark test functions. The number 
of iterations and search agents for all the algorithms are con-
sidered 500 and 30, respectively. The results in Table 8 indi-
cate that the CGWW algorithm could find the best solutions 
in 14 out of 23 benchmark functions. The results of applying 
the GA, ABC, SBO, and ALO algorithms for solving 13 uni-
modal and multimodal benchmark functions, extracted from 
[12], are also presented in Table 9. According to experi-
mental conditions in [12], the number of iterations for the 
proposed algorithm is assumed to be 1000. The results in 
Table 9 indicates that the CGWW algorithm could find the 
best solutions in 12 out of 13 benchmark functions. The 
results of Tables 8 and 9 show that the CGWW algorithm 
presents a remarkable performance for solving unimodal, 
multimodal, and composite benchmarks by establishing a 
proper balance between the exploration and exploitation 
stages of the proposed algorithms.
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Table 8  Results of the CGWW 
algorithm in comparison with 
the results in [3, 25]

Function 
number

DE PSO GWO WOA CGWW 

1 Aver 8.2E−14 0.000136 6.59E−28 1.41E−30 7.65E−155
Stdd 5.9E−14 0.000202 6.34E−05 4.91E−30 2.42E−154

2 Aver 1.5E−09 0.042144 7.18E−17 1.06E−21 1.46E−87
Stdd 9.9E−10 0.045421 0.029014 2.39E−21 4.63E−87

3 Aver 6.8E−11 70.12562 3.29E−06 5.39E−07 2.39E−32
Stdd 7.4E−11 22.11924 79.14958 2.93E−06 7.56E−32

4 Aver 0 1.086481 5.61E−07 0.072581 4.50E−89
Stdd 0 0.317039 1.315088 0.39747 1.42E−88

5 Aver 0 96.71832 26.81258 27.86558 23.7855
Stdd 0 60.11559 69.90499 0.763626 8.2609

6 Aver 0 0.000102 0.816579 3.116266 0.00015043
Stdd 0 8.28E−05 0.000126 0.532429 2.99E−05

7 Aver 0.00463 0.122854 0.002213 0.001425 0.00096686
Stdd 0.0012 0.044957 0.100286 0.001149 0.00083983

8 Aver −11,080.1 −4841.29 −6123.1 −5080.76 −12,502.2565
Stdd 574.7 1152.814 −4087.44 695.7968 144.8139

9 Aver 69.2 46.70423 0.310521 0 0
Stdd 38.8 11.62938 47.35612 0 0

10 Aver 9.7E−08 0.276015 1.06E−13 7.4043 8.88E−16
Stdd 4.2E−08 0.50901 0.077835 9.897572 0

11 Aver 0 0.009215 0.004485 0.000289 0
Stdd 0 0.007724 0.006659 0.001586 0

12 Aver 7.9E−15 0.006917 0.053438 0.339676 2.25E−05
Stdd 8E−15 0.026301 0.020734 0.214864 8.16E−06

13 Aver 5.1E−14 0.006675 0.654464 1.889015 0.0024956
Stdd 4.8E−14 0.008907 0.004474 0.266088 0.0045749

14 Aver 0.998004 3.627168 4.042493 2.111973 0.998
Stdd 3.3E−16 2.560828 4.252799 2.498594 9.84E−11

15 Aver 4.5E−14 0.000577 0.000337 0.000572 0.00037017
Stdd 0.00033 0.000222 0.000625 0.000324 9.63E−05

16 Aver −1.03163 −1.03163 −1.03163 −1.03163 −1.0316
Stdd 3.1E−13 6.25E−16 −1.03163 4.2E−07 3.62E−08

17 Aver 0.397887 0.397887 0.397889 0.397914 0.39789
Stdd 9.9E−09 0 0.397887 2.7E−05 6.97E−07

18 Aver 3 3 3.000028 3 3
Stdd 2E−15 1.33E−15 3 4.22E−15 5.93E−06

19 Aver N/A −3.86278 −3.86263 −3.85616 −3.8625
Stdd N/A 2.58E−15 −3.86278 0.002706 0.00048677

20 Aver N/A −3.26634 −3.28654 −2.98105 −3.3101
Stdd N/A 0.060516 −3.25056 0.376653 0.037656

21 Aver −10.1532 −6.8651 −10.1514 −7.04918 −10.1204
Stdd 0.0000025 3.019644 −9.14015 3.629551 0.080657

22 aver −10.4029 −8.45653 −10.4015 −8.18178 −10.375
Stdd 3.9E−07 3.087094 −8.58441 3.829202 0.071551

23 Aver −10.5364 −9.95291 −10.5343 −9.34238 −10.5352
Stdd 1.9E−07 1.782786 −8.55899 2.414737 0.0014377
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4.6  Application of the proposed algorithm 
for intrusion detection

4.6.1  Feature selection and intrusion detection systems

Intrusion detection systems are classified into two main 
groups of anomaly detection and misuse or signature−based 
detection [72, 86]. Anomaly detection systems build profiles 
of normal network events. Network events that do not match 
with these profiles are classified as attacks. In misuse detec-
tion systems, attacks are detected based on their signatures 
and according to known attack methods. These systems can-
not identify new network attacks because they decide based 
on the previously known attack types. But anomaly detection 
systems can detect new attacks if they do not conform to nor-
mal profiles. But the drawback of these systems is more false 
alarms due to the failure to identify previously unknown 
normal events. Hybrid models of the anomaly and misuse 
detection provide the ability to detect attacks more efficiently 
[86]. Due to the existing large number of features in each 
network event in intrusion detection systems, feature reduc-
tion is a significant problem to speed up attack detection. For 
feature selection, by removing related and duplicate features, 
an optimal subset of features is selected that represents the 

entire dataset. The optimal set of features is used to construct 
a classifier with high detection accuracy. The job function of 
a classifier is to classify network events and identify normal 
events from the attacks. Several classifiers are applied in 
intrusion detection systems. In this experiment, the proposed 
CGWW algorithm is used to select the optimal set from 
the set of available features for network intrusion detection. 
Other mentioned optimization algorithms are compared in 
this experiment with the proposed CGWW algorithm for 
solving the feature selection problem.

One of the simplest and most widely used forms of Bayes-
ian networks is the Naive Bayesian network (NBN). NBN is 
a data mining tool used in various fields, such as a classifier 
in intrusion detection systems. The reason for the simplic-
ity of this classifier is the independence of its constituent 
features from each other[87]. The focus of this experiment is 
more on the feature selection step of the intrusion detection 
systems. Therefore the NBN is applied to use the selected 
features in the previous step as a simple classifier.

4.6.2  The NSL KDD99 dataset

The NSL KDD99 is adopted as the intrusion detection 
dataset in the feature selection experiments. It is an updated 

Table 9  Results of CGWW 
algorithm in comparison with 
the results in [12]

Function 
number

ABC GA SBO ALO CGWW 

1 Aver 4.44 0.146 0.00337 4.60E−7 0
Stdd 3.2672 0.089 0.0016 4.60E−7 0

2 Aver 9.68E + 1 0.077 0.0146 34.56 2.84E−194
Stdd 22.600 0.014 0.0037 47.42 0

3 Aver 5.93E + 4 1.85E + 3 2.09E + 2 2.67E + 2 2.0257E−36
Stdd 9.51E + 3 740.60 55.33 116.84 6.1568E−36

4 Aver 55.84 2.06 0.262 7.84 1.0941E−177
Stdd 4.68 0.25 0.0395 3.94 0

5 Aver 1.25E + 6 99.89 85.44 273.75 21.1825
Stdd 7.33E + 5 39.65 67.39 443.74 9.7944

6 Aver 3.505 0.132 0.0028 6.69E−7 3.5702E−05
Stdd 2.168 0.071 0.0012 4.30E−7 1.6529E−05

7 Aver 0.377 0.036 0.0037 0.0465 0.00040644
Stdd 0.1147 0.010 8.116E−4 0.0183 0.00046511

8 Aver −6.30E + 3 −6.19e + 3 −8.83E + 3 −5.48E + 3 −12,560.8569
Stdd 978.86 1.178e + 3 290.09 57.89 20.9493

9 Aver 2.24E + 2 1.30e + 2 16.96 69.58 0
Stdd 13.93 67.64 3.315 25.53 0

10 Aver 3.014 0.078 0.0134 1.79 8.88E−16
Stdd 0.684 0.021 0.0025 0.918 0

11 Aver 0.958 0.16 0.0082 0.010 0
Stdd 0.138 0.061 0.0059 0.0095 0

12 Aver 3.15E + 6 7.89E−4 1.89E−5 8.65 5.862E−06
Stdd 1.46E + 6 9.49E−4 3.39E−5 3.495 1.7076E−06

13 Aver 4.41E + 6 0.004 6.57E−6 1.16E−2 8.67E−05
Stdd 2.27E + 6 0.004 5.74E−6 0.013 4.63E−05
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version of the KDD99 dataset which most of the defects 
are fixed [88]. There are no duplicate records in the train 
and test set of NSL KDD99. This dataset contains 125,973 
and 22,544 records for train and test sets, respectively. Each 
record in the NSL KDD dataset includes 41 features, which 
have three types of nominal, binary, and numeric. There are 
normal and anomaly records in the dataset. Anomaly records 
are categorized according to Table 10.

4.6.3  Evaluation criteria and fitness function for the feature 
selection problem

In this experiment, three evaluation criteria are used to 
compare different optimization algorithms for feature selec-
tion [89]. The first criterion is Detection Rate (DR), which 
refers to the percentage of the anomaly events which are 
correctly classified. The second criterion is False Positive 

Rate percentage (FPR) which relates to the normal network 
events identified as attacks. The Accuracy Rate (AR) is the 
third criterion which is the percentage of correctly classified 
events. The DR and AR are expected to be high, but low 
values are awaited for the FPR. The DR and FPR are two 
inconsistent objectives for the feature selection problem, so, 
similar to the presented approach in [72], a weighted sum 
value of the DR and FPR is applied as the fitness function for 
this experiment. However, the number of selected features 
and AR are the objectives of the proposed approach of [72]. 
The fitness function to evaluate the feature subsets, obtained 
with optimization algorithms, is presented in Eq. (25).

Because the DR value is more important to identify the 
attacks, we assumed m = 0.7, n = 0.3. Another important 
measure to deal with the feature selection problem is the 
number of selected features subset. For the simplicity of the 
problem, we assumed the number of features to be k = 5, 10, 
15, and 20. But the best way to consider all measures for 
solving the problem is by applying a multi-objective algo-
rithm with an objective function for selected features count.

4.6.4  Solution representation

For the feature selection problem, each search agent of all 
the algorithms contains a solution. This solution is in an 
array form consists of 41 floating-point numbers for 41 fea-
tures. Each number in the array represents the importance of 
the related feature in the feature set. After some iterations of 
each algorithm, the k most significant features in candidate 

(25)Fitness of each subset = m ∗ DR + n ∗ (1 − FPR)

Table 10  Different types of 
attacks in NSL KDD99

Class of attack Description Attack name in the train and test set

DOS Denial of Service Teardrop, Smurf, and Neptune
Probe Probing attack Satan, Portsweep, and Saint
U2R User to Root Rootkit, Buffer_overflow, and Loadmodule
R2L Remote to Local Xsnoop, Httptunnel, and Password

Table 11  The intrusion 
detection and false-positive rate 
of compared algorithms for 
k = 5, 10, 15 and 20

Algorithm k = 5 k = 10 k = 15 k = 20

DR FPR DR FPR DR FPR DR FPR

CGWW 95.7999 27.5049 94.9505 22.6032 92.3946 17.4029 90.8829 22.7886
GA 95.3479 27.1857 94.6077 22.9431 89.9088 16.3732 90.1582 24.6525
PSO 95.231 27.3195 89.5893 16.3114 82.4982 14.7565 89.3634 17.6192
GWO 92.0284 17.0116 94.3427 26.2692 88.5763 18.1032 89.7062 22.0781
ABC 91.9504 16.9807 94.1791 20.4716 93.3453 17.1764 94.6544 22.0781
SSA 88.8958 13.356 89.6205 21.1101 88.74 17.7737 93.8284 25.7234
AEFA 86.449 13.2942 85.4438 20.5231 87.688 24.6113 83.3476 16.1981
WOA 91.9504 16.9807 90.5868 16.9807 88.9737 21.2131 87.3841 20.8115

Table 12  The accuracy rate of compared algorithms for k = 5, 10, 15 
and 20

Algorithm AR for 
k = 5

AR for 
k = 10

AR for 
k = 15

AR for k = 20

CGWW 85.7612 87.3891 88.1742 84.9938
GA 85.6414 87.0476 87.2028 83.7784
PSO 85.5172 87.0476 83.6808 86.3556
GWO 88.1343 85.464 85.6991 84.6301
ABC 88.1033 87.8682 88.813 87.4468
SSA 87.9258 84.9982 85.9342 85.4063
AEFA 86.5596 82.8735 82.39 83.5433
WOA 88.1033 87.327 84.5857 83.8538
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solutions are selected to perform classification over the 
test set. For example, consider the solution represented in 
Eq. (26) for ten numbers related to ten features. If k = 5, the 
features 3, 4, 6, 8, and 10 have the five highest values in the 
array, so they are selected for the classification.

4.6.5  Comparison of optimization algorithms for feature 
selection

The proposed CGWW algorithm is compared with the GA, 
PSO, GWO, ABC, SSA, and AEFA for solving the feature 
selection problem of intrusion detection systems. Table 11 
shows the DR and FPR values resulted from compared algo-
rithms for NSLKDD 99 dataset.

Table 11 shows that the CGWW presents better perfor-
mance than the other algorithms for k = 5 and k = 10. For 
k = 15, the DR value for CGWW is lower than ABC and 
higher than the others. For k = 20, the DR value for CGWW 
is lower than ABC and SSA and higher than the remaining 
algorithms. Table 11 shows that 10 is a reasonable number 
for the number of selected features. Table 11 also shows that 
the proposed CGWW algorithm has high FPR for k = 5 and 
k = 20. If the number of selected features is 10 and 15, the 
FPR value for the CGWW algorithm is lower than 2 and 4 
compared algorithms, respectively. Table 12 shows the AR 
values resulted from compared algorithms for the NSLKDD 
99 dataset.

Results in Table 12 presents that the proposed CGWW 
algorithm has better AR than 6 of the compared algorithms 
for k = 10 and 15 selected features. But for k = 5 and 20, 
the AR value of the CGWW algorithm is not so noticeable. 
According to the results of Tables 10, 11, and 12 the CGWW 
algorithm can find the second-best solutions in most cases 
for the feature selection problem in the intrusion detection 
systems.

The conducted experiments indicate that the proposed 
CGWW algorithm presents competitive performance com-
pared with the other optimization algorithms for solving the 
benchmark and real-world applications.

5  Conclusion

In the present paper, a chaotic and hybrid optimiza-
tion algorithm has been presented named CGWW. The 
CGWW algorithm has been developed by the composition 
of the GWO and improved WOA algorithms to utilize the 
strength points of both algorithms. Applying the chaotic 
maps instead of random generators in the initialization and 

(26)

A sample solution for 10 features

= [12.3, 15, 16.7, 32, 11, 87.9, 11.2, 17.2, 15.7, 42]

controlling parameters of the CGWW algorithm is also led 
to an improvement in the exploration mechanism. The main 
modification of the WOA is the utilization of the roulette 
wheel selection method to choose the search agents with 
better scores and consequently improve the exploitation 
mechanism of the CGWW. The second advantage of the 
proposed algorithm is its multi-swarm characteristic. A 
group of whales from WOA are cooperating with the gray 
wolves of GWO in the proposed algorithm to establish a 
more diverse population. For evaluating the proposed algo-
rithm, 23 benchmark problems are employed. Furthermore, 
the CGWW algorithm is evaluated in solving the feature 
selection problem in intrusion detection systems. The 
experimental results presented that the CGWW algorithm 
can offer remarkably competitive outcomes compared with 
the other optimization algorithms such as PSO, MFO, ABC, 
GA, SSA, SBO, ALO, AEFA, GWO, and WOA.

There are some limitations in comparing the CGWW with 
some of the new optimization approaches. For some algo-
rithms, the source code was inaccessible, or precise imple-
mentation was impossible. For the others, the investigated 
benchmark functions were different from those applied in 
this paper. Therefore, the CGWW algorithm may be com-
pared with other state-of-the-art meta-heuristics in future 
works. The proposed algorithm also has some disadvan-
tages. Firstly, it cannot find the optimum solution for one of 
the unimodal, one for multimodal, and two of the composite 
benchmark functions. Therefore, by more investigation on 
some parameters of the hybrid algorithm, obtaining bet-
ter results is possible. The first set of parameters are those 
for balancing exploration and exploration. The second one 
is the member count of sub-populations. Secondly, as the 
computational complexity of the CGWW algorithm indi-
cates, by adding the roulette wheel selection operator and 
sorting the total population of the hybrid algorithm to bal-
ance high-quality solutions between sub-populations, the 
running time of the algorithm increased. Using the chaotic 
maps consumes more computational time than the random 
generator. Nevertheless, the complexity order of the CGWW 
algorithm has no increase in comparison with other com-
pared meta-heuristics. As the last point, developing a binary 
and multi-objective version of the CGWW algorithm for 
solving practical optimization problems in different areas 
could be future works.
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