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Abstract
This study aims to enhance the condition monitoring of external ball bearings using the raw data provided by Paderborn
University which provided sufficient data for motor current signal MCS. Three classes of bearings have been used: healthy
bearings, bearings with an inner race defect, and bearings with outer race defect. Online data at different operating conditions,
bearings, and faults extent of artificial and real damages have been chosen to provide the generalization and robustness of
the model. After proper preprocessing to the raw data of vibration and MCS, time, frequency, and time–frequency domain
features have been extracted. Then, optimal features have been selected using genetic algorithm. Artificial neural network
with optimized structure using genetic algorithm has been implemented. A comparison between the performance of vibration
and motor current signal has been presented. Moreover, our results are compared to previous work by using the same raw data.
Results showed the potential of motor current signal in bearing fault diagnosis with high classification accuracy. Moreover, the
results showed the possibility to provide a promised diagnostic model that can diagnose bearings of real faults with different
fault severities using MCS.

Keywords Bearing damage detection · Machine fault diagnostic · Vibration · Motor current signal · Machine learning
algorithm · Neural networks · Genetic algorithm

1 Introduction

There is no doubt that the proper maintenance management
system contributes significantly in increasing the company
profits and prevents huge losses. Condition monitoring (CM)
and predictive maintenance are an essential aspects for
improving a sufficient maintenance management system, for
instance; a case study for a paper mill at Swedish showed that
preventing unplanned stoppage for a year will increase the
profits by 0.975 million USD [1]. CM is essential to avoid
harmful consequences and reduce financial loss and that’s
why it has been attracting the interest of researchers for the
last few decades [2].

Machine failure occurs due to many reasons, such as sta-
tor faults, rotor faults, or bearing faults [3]. Statistics, in the
industrial world, showed that up to two-thirds of motor fail-
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ures in the electromechanical drive systems are initiated in
the bearings due to rolling bearing damages [4].

Data-driven bearing fault diagnostic passes through three
main steps to give a final decision regarding the state of the
bearing as per ISO 13374, which are data acquisition (DA),
data manipulation (DM), and state detection (SD). In the first
step, raw data are to be collected from the system. These data
could be any signal that carries the signature of the fault, for
instance, vibration signal, acoustic emission, or motor cur-
rent signal (MCS). In the second step, the acquired signal
is processed to gain helpful information about the bearing
under monitoring. This step could be named data analysis
or signal processing step. It starts with signal preprocessing,
feature extraction and selection. A variety of data process-
ing techniques have been used by researchers, namely time
domain analysis [5–7], frequency domain analysis [8, 9], and
time–frequency domain analysis [10]. Soualhi et al. [11] pre-
sented an excellent survey for signal processing techniques
that could be used in condition monitoring for bearings and
gearboxes. The third step is the decision-making, where the
selected features of the previous step may be analyzed to
decide whether the bearing is faulty or not, or could be intro-
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duced to diagnosticmodelwhich in turn classifies the bearing
as healthy or faulty bearing [12].

In the last two decades, the emergence of the science of
artificial intelligence (AI) in bearing condition monitoring
and fault diagnostic provided automated algorithms capable
to give final diagnostic decision or even to diagnose and clas-
sify the different types of bearing faults. This has contributed
effectively in minimizing time, effort, and cost in the fault
diagnostic process. Many AI techniques have been used by
researchers in bearing fault detection such as pattern recog-
nition, fuzzy logic [13], expert system [13], neural network
(NN) [6, 7, 14, 15], neuro-fuzzy system [8], genetic algo-
rithm (GA) [6, 15], support vector machine (SVM) [7, 16],
and many others.

Paper [14], to the knowledge of the author, was the first
who employed artificial neural network (ANN) to diagnose
rolling element bearing defects using the frequency spectrum
of vibration signal with recirculation neural network. Their
technique enhanced traditional vibration analysis and pro-
vided an automated system to monitor and diagnose bearing
rolling element defects.

On the other hand, Paper [15] used the genetic algorithm
(GA) in order to choose the optimal input features to ANN,
where choosing the best features is considered as a challenge
in neural network; too many features result in long compu-
tational time and sometimes with lower performance results
than using less features with optimal performance. In their
study, the performance of six selected features was better
than the performance of full features set by 13%.

Paper [6] studied the effect of the number of input features,
and the signal preprocessing prior to the feature extraction
process on the training performance of theANNand its effec-
tiveness in diagnosing bearing defects. Time domain features
were extracted from segments of vibration signal which in
turn was acquired from two bearings: one healthy and the
other of outer race defect. Features were then presented to
ANN of two hidden layers and two outputs of two bearing
health classes. Their study showed the importance of the type
of features on the ANN performance and also the substantial
effect of a small number of features on ANN computation
time and testing time. The main drawback of using ANN in
machine fault diagnostics is the difficulty to be generalized
for other machines and should be retrained using new signals
once the machine is changed.

Paper [7] designed a classifier using two machine learn-
ing algorithms ANN and SVM where time domain features
were extracted from vibration signal. Five types of bear-
ings were classified: healthy bearing, outer race crack, inner
race rough surface, ball with corrosion pitting, and combined
defects. Generally, the study showed the potential application
of machine learning algorithms in early diagnosis of bearing
defect.

Paper [8] used the frequency domain of vibration signal in
bi-classifier approach to classify bearing faults,where several
neuro-fuzzy systems were used in cascade. The first system
classifies the bearings into healthy or faulty bearing. The
second system classifies the faulty bearings into a ball or
race defect. Results showed that neuro-fuzzy systems with
only two outputs have better performance. However, it was
difficult to distinguish between inner and outer race defects
due to the similarity in the vibration spectral.

Mostly, researchers relied on the vibration signals in bear-
ing fault diagnostic, but not that many used the MCS. As the
vibration signal proved its ability and reliability to detect the
bearing damage over decades, the MCS still has restrictions
[17]. For instance, the accelerometer or vibration detector is
placed directly on the bearing under study to reduce nearby
noise that may affect the vibration signal, while the transfer
of the defect signature over drive train and motor compo-
nents may affect the MCS by increasing the chance to get
lost or masked by a noise and suffering from disturbances
[18]. Also, the diversity and intensity of the available vibra-
tion datamake the studies easier, while the lack of availability
of MCS limits further research [19, 20]. Nevertheless, vibra-
tion analysis has a drawback since the location of the bearing
in the machine is not always easily accessible. On the other
hand, vibration analysis is relatively expensive compared to
MCS since no sensors installation and wiring are needed.
MCS can be acquired directly from the frequency invert-
ers. Paper [17] provided a systematic data set of disciplinary
bearings of real faults and artificially induced faults. The data
were recorded synchronously for vibration and MCS under
different operation conditions.

This work contributes by proving the feasibility of using
the data acquired for MCS to be used for bearing fault diag-
nostic with high performance accuracy. In addition, the use
of bearings with different types of faults provided robust and
reliable bearing fault diagnostic model by using ANN and
genetic algorithm based on the vibration and MCS data pro-
vided by [17].

2 Bearing defects

Many criteria have been used to classify bearing faults by
researchers based on research needs. One popular criterion
is the bearing damage location, where the bearing faults are
classified into inner ring fault, outer ring fault, rolling ele-
ment fault, and race fault [21]. Another criterion based on the
damage combination classifies the bearing damages into sin-
gle point defect which include the four damages mentioned
previously, and generalized roughness or distributed dam-
ages, where the damage of the bearing is not apparent to the
unaided eye, or can’t be characterized by a unique frequency
[22]. In this work, a classification model has been presented

123



Progress in Artificial Intelligence (2020) 9:341–350 343

to diagnose bearings whether it’s healthy or of single point
defect, mainly inner race defect and outer race defect.

In a single point defect faulty bearing, once the bearing
runs over the crack or flaw of the fault, the bearing responds
by an impulse or “ringing” frequencydecays in a short period,
this frequency usually above 5 kHz [23]. Moreover, each ele-
ment in the bearing, inner ring, outer ring, ball, and train has
its own characteristic frequency, Eqs. (1)–(4), which depends
on the bearing geometrical parameters, and once a fault is
present in one element, the induced impulse increases the
energy of the acceleration spectrum at the corresponding
faulty element characteristic frequency [24].
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where n is the number of balls, N is the shaft rotation fre-
quency (Hz), bd is the ball diameter (mm), PD is the pitch
diameter (mm), and ∅ is the contact angle in radians.

On the other hand, any fault in the bearing will affect the
motor supply current. In [25], a study for the relationship
between the vibration and current frequencies due to bearing
defects was presented. It stated that the presence of bearing
defect produces a slight change in shaft rotation. This influ-
ences the air gap producing air gap eccentricity which will
cause a variation in the air gap flux density, which in turn will
influence the stator current by generating a stator current at
frequencies given by:

fbng � | fe ± m. fv|, (5)

where fbng is the generated predictable frequency (Hz), fe
is the electrical supply frequency (Hz), m is an integer 1, 2,
3 …, and fv is the vibration characteristic frequency of the
corresponding bearing defect (Hz).

3 Data collection

In this work, the data provided by Paderborn University,
which are available online [26], were chosen for this study
due to its variety of bearing damages, validity, comprehen-
sive data-driven using machine learning, and having both
vibration and MCS. As mentioned earlier one of the goals

of this work is to make the MCS applicable for condition
monitoring of bearing damage due to its financial feasibility.
To generate the systematic data for different healthy bearings
or faulty bearings of different severities, a test rig of Fig. 1
was designed at the Chair of Design and Drive Technology,
Paderborn University. The test rig was operated to gener-
ate the measurement data for electrical motor current and
bearing vibration using current transducer and accelerome-
ter respectively. The data were acquired for 4 s and sampled
usingADC at 64 kHz. For more details about the experiment,
please refer to [17].

The test rig was operated for several times, each time with
different bearings; all bearings used in this experiment to
derive systematic data were ball bearings with eight rolling
elements of type 6203 with nearly same geometrical sizes.
Healthy and faulty bearings were used. Faulty bearings are
of inner ring fault and outer ring fault, real and artificially
induced damages which added more reliable and robustness
to the diagnostic model. To differentiate between differ-
ent bearings in measurement records, healthy bearings are
denoted by a code starting with “K0,” inner ring faulty bear-
ings start by the letters “KI,” while the outer ring bearings
start with “KA.” A summary of the bearings selected in this
study with the fault method generation is shown in Table 1.

Artificially induced damages in bearing fault studies are
introduced manually in the laboratories by different meth-
ods. Inner race, outer race, and even cage defects could be
produced.

Some researchers based their research on outer race only
[27], as the outer ring faults are easier to be detected than
inner ring faults because the outer ring is the stationary part
of the bearing while the inner ring is the rotating part [28].
Other researchers did their work based on artificial damages
only without involving real damages [13, 18]. What makes
the data of [17] distinct is its inclusion on outer, inner, real,
and artificial damages even with different severities, extent,
and combination of damages.

Vibration and phase current measurements were recorded
on different operating conditions. Four operating conditions
were used to provide various data denoted by S0, S1, S2, and
S3. Each operating condition has three operating parameters,
namely rotational speed, load torque, and radial force. Each
time one of three operating parameters was changed. Table
2 shows the different operating conditions used to record the
data with setting name, for each time one operator condition
is changed. The last column of the table shows setting names
which were used to save the data as MATLAB files. Twenty
measurements each of 4 s length, sampled at 64 kHz, were
recorded for each operation condition. And as mentioned
earlier, a total of 29 bearings have been used in this work.
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Fig. 1 Modules of Paderborn
test rig for bearing data
acquisition (1) electric motor,
(2) torque measurement shaft,
(3) rolling bearing module, (4)
flywheel, and (5) load motor
[17]

Table 1 Summary for the number of bearings used in this study

Category Generating Amount

Inner ring fault (IR) Real 6

Artificial 5

Outer ring fault (OR) Real 5

Artificial 7

Healthy bearing 6

Total 29

4 Signal preprocessing

The idea of preprocessing is to facilitate the neural network
training using different steps applied to the raw data, like
signal filtration, normalization, and feature extraction. These
steps are important in input data preparation to the neural
network (NN), so it becomes easier to NN to extract relevant
information [29].

In this work, the data are sampled at 64 kSa/s for 4 s,
while the shaft is operated at speeds of 1500 or 900 rpm
which means 25, and 15 Hz, respectively. In comparison
with the literature, the data used here are of long duration and
high frequency. However, many researchers in the literature
divided the raw signal into many segments either to increase
the number of extracted features or to divide the same signal
into training and testing data due to lack of raw signals [8,
27]. In this work, due to the diversity and availability of dif-
ferent bearings of different faults, severities, and generation
method including real and artificial, also each bearing has a
20 measurement, no need to divide the same raw signal into
training and testing data. Bearings of artificial damages were
used for training, whereas those of real damages were used

for testing. The raw signal was denoised first and then seg-
mented, and the features were extracted from one segment
for each measurement; the features were normalized next,
and suitable features have been chosen by using GA.

4.1 Signal segmentation

The signal has been segmented after denoising the raw data
using discrete wavelet transform (DWT). Our data have in
each single measurement a total of 256 k sample recorded
during the 4 s, while each shaft rotation cycle duration is
40mswhen rotating at 1500 rpm and about 70mswhen rotat-
ing at 900 rpm. This means that the data were recorded for
100 and 60 shaft cycles for the two shaft speeds, respectively.
Raw data have been segmented into five shaft cycles. In other
words, 12,800 samples have been considered for measure-
ments of 1500 rpm and 21,333 samples have been considered
for measurements of 900 rpm shaft speed. One segment of
each measurement has been considered for feature extrac-
tion. Segmentation is important to reduce the computation
time by eliminating redundant data.

4.2 Feature extraction

The examination of wide range of features was proved to
be useful in bearing fault diagnostic, where the feature
value depends on the bearing fault type and its severity. For
instance, time domain features are very useful when bearing
fault signal is highly impulsive. However, it becomes inef-
fective when the fault is of high severity or when the bearing
is overloaded. On the contrary, frequency domain parameters
are more effective to detect bearing faults due to overload or
faults with high severities. Based on a review, it was stated

Table 2 Different operating
conditions with setting names No Rotational speed (rpm) Load torque (Nm) Radial force (N) Setting name

S0 1500 .7 1000 N15_M07_F10

S1 900 .7 1000 N09_M07_F10

S2 1500 .1 1000 N15_M01_F10

S3 1500 .7 400 N15_M07_F04
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that no exclusive parameters could be used to detect bearing
faults; instead, multi-parameter tests were recommended to
be used in bearing fault detection [30].

Moreover, because the characteristic frequencies of local-
ized defects are of low energy, it could be easily masked by
the vibration of another structural component. This makes
detecting bearing defects using frequency spectrum some-
times challenging. Therefore, non-stationary signal analysis,
wavelet transform (WT), provided a great solution to over-
come the non-stationary nature of faulty bearings signals
[31]. Nonstationary term refers to frequency changing with
time.

Because in this work, the data were collected for multi-
disciplinary bearings, faults, severities, and operation con-
ditions, the features were extracted in different domains
including time, frequency, and time–frequency domains.
Eleven time domain features were extracted using statisti-
cal operations on processed signals, which are peak value,
RMS, variance, max value, crest factor, skewness, kurto-
sis, Shannon entropy, clearance factor, impulse factor, shape
factor, and peak-to-peak value. Two frequency domain fea-
tures were extracted from frequency spectrum by performing
fast Fourier transform (FFT) analysis on time domain sig-
nal, peak value of FFT, and power spectral density of FFT.
Wavelet packet decomposition (WPD) has been employed to
extract the time–frequency domain features. WPD decom-
poses the signal into multiple levels. Each level has twice
as many signals as the previous one, which means each sig-
nal is decomposed into two signals. Starting from the first
signal, two signals are generated from it: one comes from
filtering the signal using low-pass filter and called approxi-
mation signal (A). The second comes fromfiltering the signal
using high-pass filter and called detailed signal (D) [32]; in
our case, the time domain signal was decomposed into three
levels using bior3.7 wavelets. Then, the energy of approxi-
mate coefficient 3 (cA3) and detailed coefficients (cD) 1, 2
and 3 have been obtained. A total of 17 features have been
extracted. More explanation and formulas of the features are
presented in [33].

4.3 Normalization

InmultilayerNN, a sigmoid activation function is used for the
hidden layers. Sigmoid functions become saturated when the
inputs become larger than 3 by nature as it is an exponential
function [29]. Furthermore, some features span a rangemuch
wider than other features, which means some feature vectors
have tiny numberswhile other vectorsmay have larger values
of two orders of magnitude. For these reasons, a normaliza-
tion process is performed for input data vectors. All features
have been normalized to span the space 0 to 1. Only skew-

ness was normalized to span the space - 1 to 1. Equation (6)
was used for normalization.

Pn � P − Pmin

Pmax − Pmin (6)

where Pn is the resulting normalized input vector. P repre-
sents the non-normalized input vector. Pmin is a vector of
minimum values of each element of the input vector, while
Pmax is a vector represents the maximum values of each ele-
ment of the input vector of input data set.

5 Methodology

Once the best features are selected by forward selection pro-
cess (i.e., testing each feature individually and then making
combinations from those features to have best performance)
to train the ANN, if two features acting individually poor, but
when used together they may give a much better result than
the twobest features achieved through forward selection [15].
Besides, many authors discussed and proved the importance
of feature selection in bearing fault diagnostic [6, 15]; the
full feature set was tested first in this work showing very low
performance accuracy comparing to the results with feature
selection. Testing with complete feature set didn’t exceed
60% performance accuracy. This makes the GA an excellent
choice for feature selection process. Many authors discussed
the importance of using GA for feature selection process as
shown in [27, 34]. Moreover, the tuning of ANN hidden lay-
ers is also a coherent challenge in ANN, where it depends
only on trial and error. Trying manually hundreds of trials
to find the best network structure is not timely feasible. GA
was used to overcome this challenge, where generations of
individuals could be tested; each individual consists of com-
bination of the number of neurons in the two hidden layers.
Depending on the number of individuals within the gener-
ation and maximum number of generations, hundreds and
even thousands of NNs could be trained and saved each time
with different NN structure. Then, the best performance NN
could be chosen for the classification model [27].

In this work, hybrid system of ANN and GA is imple-
mented to simulate the classification model, where the GA
was used twice, first time for feature selection and second
time to tune the ANN structure. Features were used as inputs
to the classificationmodel, while a target matrix representing
three different classes was prepared to be used as an output.
Data of artificial damages were used for training, and data of
real damages were used to test the trained ANN.
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5.1 Artificial neural network

Two-hidden-layer NNwas used to perform the pattern recog-
nition for our classification problem. The number of hidden
layers was selected based on trial and error, where the neural
network was trained on 2, 3, and 4 hidden layers. For 3 and
4 layers the training process took a very long computational
time without performance improvement, taking into account
the computational time of genetic algorithm during this train-
ing trials to tune the number of neurons in the hidden layers
also increasing vastly. This was compatible with what is pre-
sented in the literature where two hidden layers were chosen
[6].

The number of neurons in each layer was determined by
the GA as described in the next section.

Our problem is to diagnose the bearing through its signal
and classify it either as healthy bearing, inner ring-defected
bearing, or outer ring-defected bearing. Inputs used are the
selected features and extracted from the processed vibration
signal or MCS. The number of inputs is equal to the number
of selected features. Three outputs were used to represent
the three classes. For each class one output is set to 1 and
the other two are 0 s. In such pattern recognition problems, a
SoftMax output layer is used, such that one output will be set
to one and all others are zero. This could be achieved using
a probability distribution function as an activation function
for the output layer [29].

5.2 Genetic algorithm

In this work, GA has been applied twice, first time to select
the optimal features from a complete extracted feature set
and the second time to tune the neuron number of the hidden
layers of the ANN.

5.3 Chromosome representation

For feature selection, the chromosome (X ) is encoded by the
number of the selected features (N ) from the feature set of
(R) features. So, the chromosome string consists of N real
numbers (Xi ; i � 1 : N ) and each real number of Xi is
bounded by the range (1 ≤ Xi ≤ R).

For ANN training, the chromosome (X ) is encoded by
the number of neurons of each hidden layer, supposing (N )
hidden layers. So, the chromosome string consists of N real
numbers (Xi ; i � 1 : N ) and each real number of Xi is
bounded by Smin and Smax, where Smin and Smax are the
lower and upper bounds of neurons for each of the hidden
layer.

Smin ≤ Xi ≤ Smax (7)

Smin and Smax are 2 and 20, respectively. The resulted NN
structure, i.e., number of neurons in each layer, was different
for each operating condition.

5.4 Initial population, fitness function,
and termination

The population is the number of individuals in each genera-
tionwhich consists of population size of rows andN columns
of problem variables [35]. An initial population has to be
defined to the GA in order to start the optimization process.
Random generation method is used in this work as it is an
integer problem [35], where a population size of 20 individu-
als was generated based on the chromosome selection limits
discussed earlier.

Next generations were produced continuously by selec-
tion, mutation, and crossover operations to the parents. Each
individual is assessed by the fitness function. Generations
will be produced continuously until a stopping criterion is
satisfied. Themost common termination criterion is themax-
imum number of generations, which is used in this work such
that the GA is set to produce a maximum number of 51 gen-
erations.

The fitness function, aka objective function, is used to
assess the performance of an individual compared to other
individuals, called the fitness score. The individual fitness
score determines which individuals will be selected to pro-
duce the next generation. Herein, the performance of ANN
to classify the testing data correctly was used as a fitness
function. The less misclassification samples result in higher
fitness index.

5.5 Genetic operators

Twogenetic operators have been applied in thiswork, namely
mutation and crossover. Crossover operation combines two
parents to produce a child of next generation.Many crossover
operators could be used based on the type of chromosome and
application of GA. Many types of crossover operators were
reviewed to be helpful for researchers [36]. In this work, as
our problem is of integer constraints problem, then Laplace
crossover has been implemented [37]. It is worth mentioning
that crossover operation should ensure that new generations
satisfying the bounds and constraints.

On the other hand, mutation operation makes random
changes in the individuals of the population to create chil-
dren. This provides genetic diversity to search within the
solution space [35]. Furthermore, mutation enables the opti-
mization process to avoid local minima values. Because
our problem is an integer problem, i.e., both features vec-
tor and number of neurons are integers only, then selecting
the mutation function should be done carefully, as the muta-
tion may result in a population not necessarily satisfying the
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Table 3 List of data used for testing and training

Class Class name Training Testing

1 Healthy K001 K004

K002 K005

K003 K006

2 IR KI01 KI04

KI03 KI14

KI05 KI16

KI07 KI17

KI08 KI18

KI21

3 OR KA01 KA04

KA03 KA15

KA05 KA16

KA06 KA22

KA08 KA30

constraints and the bounds. Herein, the power mutation is
adopted [37, 38]. For generations reproduction, 5% of the
generation are selected as an elite children, which will be
survived as they are the fittest, 80% of the rest of the new
generation are generated by crossover operation from the pre-
vious generation, and the remaining individuals are mutation
children.

6 Results and discussion

The model was run for vibration data first four times, each
time for one operation condition. Each run on each opera-
tion condition is completely independent of the others. This
means optimal features and NN structure are different for
each operation setting. Then same procedure is repeated for
MCS data. After that, the model was run for selected data to
compare the results of the model with other studies using the
same raw data.

6.1 Training and testing using vibration data

The model was tested for the four operation conditions; S0,
S1, S2, and S3 using vibration data in order to investigate
the effect of different operating conditions on classification
model and feature selection. The data used for training and
testing are listed in Table 3.

Based on Table 3, three healthy bearings were selected for
testing, which means 60 examples, as each bearing includes
20 measurements as discussed in the data section 0. Also, 6
bearings were chosen as IR, which means 120 samples, 100
sample presented the OR as well. Same data partitioning of

Table 4 Confusion matrices for classification model trained with arti-
ficial damages and tested with real damages using vibration data for
different operating conditions

Target H IR OR All (%)

Output H IR OR H IR OR H IR OR

S0 60 0 0 0 113 7 22 14 64 84.6

S1 59 1 0 4 113 3 1 2 97 96.1

S2 51 0 0 7 113 0 2 0 98 93.6

S3 56 4 0 17 101 2 0 3 97 90.7

Table 5 Confusion matrices for classification model trained with artifi-
cial damages and tested with real damages usingMCS data for different
operating conditions

Target H IR OR All (%)

Output H IR OR H IR OR H IR OR

S0 43 1 16 0 120 0 4 0 96 92.5

S1 54 2 4 2 95 23 0 1 99 88.6

S2 41 0 19 0 120 0 8 1 91 90.0

S3 94 3 8 6 110 4 2 1 97 91.4

Table 3 was used for the four operating conditions S0, S1, S2,
and S3.

By using the SoftMax output layer in neural network, all
inputs will have a classification. This implies that the mis-
classification happening in certain data will be classified to
one of the other two classes. Table 4 shows the correct clas-
sified samples and misclassification occurred while testing
the classification model for the selected data.

It is clearly shown fromTable 4 that the best overall classi-
fication result usingvibration signal is for operating condition
S1, where it reached 96.1%. Also it is the best to classify the
faulty as faulty (regardless IR or OR) where 5 faulty samples
only out of 220 were classified as healthy.While the best true
positive result is for operating condition S0, that is all healthy
samples were classified correctly as healthy.

6.2 Training and testing usingMCS

Same procedure of vibration data was repeated using MCS,
where the MCS features of same data set were trained and
tested using the same classification model for all the four
operating conditions S0, S1, S2, and S3. Table 5 shows the
confusion matrices for each operating condition. From the
table, it is clearly shown that the best performance of MCS
was using the data of operating condition S0 with a classifi-
cation accuracy of 92.5%.
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Table 6 List of data sets used for comparison with work of paper [17]

Class Class name Training Testing

1 Healthy K002 K002

2 IR KI14

KA01 KI21

KA05 KI17

KA07 KI18

KI16

3 OR KA22

KI01 KA04

KI05 KA15

KI07 KA30

KA16

6.3 Comparison between vibration andMCS

Although the MCS showed good results for bearing fault
detection, but still the vibration signal showed better results.
Moreover, one important parameter has to be considered
in such classification models, that is the misclassification
occurred between healthy and faulty bearings in general.
False positive are healthy samples classified as faulty, while
false negatives are faulty samples classified as healthy.
Comparing vibration and MCS results in overall samples
classification performance for different operating conditions;
vibration signal always shows better false positives even
when the overall performance for the operating condition
is less accurate; i.e., it is better to classify the healthy bear-
ings as healthy not faulty. This is important in reality because
it will result in an incorrect maintenance decision to change
the healthy bearings in the electromechanical systems, as it
is diagnosed as faulty, which means a financial loss.

6.4 Comparison with other studies

The classification model has been implemented on the same
data set used by [17] where a certain group of data set was
used in their work to train various machine learning (ML)
algorithms using features of artificial damages and tested
using features of real damages. Seven ML algorithms have
been used in their work. One of those algorithms was the
NN, which is the main ML classifier used in this work. The
comparison presented here is between the results of NN per-
formance of their study and theNNperformance of this study.
Table 6 shows the bearings used by [17] which is also used in
this work for comparison purpose. The data were extracted
from operating condition 0 only; S0.

Table 7 shows the comparison between the results of the
previous work and the results of this work for the same data
set. It is worthmentioning that the procedure of [17] is totally

Table 7 Classification accuracy comparison for selected bearings of
operating condition S0 (comparison between [17] results and this work
for same data set)

Method Classification accuracy

Vibration (%) MCS (%)

NN [17] 65.5 45.5

Ensemble 7 ML algorithms [17] 75 45.9

This work proposed method 94.1 95

different in feature selection and ML algorithm training.
Maximum separation distancemethodwas employed for fea-
ture selection, and ML algorithms were trained without any
tuning. However, in this work, GA optimization approach
used for feature selection. Moreover, the ANN was tuned by
GA as well. Table 7 also shows the ensemble of 7 classi-
fiers used by the study of [17]. Ensemble learning combines
several models of machine learning to provide a predictive
model with performance better than single model. Moreover,
[39] implemented the state of the art deep neural network
(DNN) using adversarial auto-encoder as a main structure of
the DNN. Hilbert–Huang transform (HHT) was adopted for
data preprocess; then, the low-frequency components of both
vibration and MCS were retained for analyzing. The current
and vibration signals fused to detect whether there is inner
ring fault, outer ring fault or no fault using the same partition-
ing of data set presented in [17] which is under comparison
in this section. Their model distinguished the fault type with
the accuracy of 85%.

7 Conclusion and future work

Machine learning algorithm of neural network has been
applied efficiently to classify three categories of bearings of
different health statuses: healthy bearings, inner ring fault,
and outer ring fault. GA has been applied to find optimal
features and optimize ANN structure. The results of this
work show that the MCS has a great potential to diagnose
the external bearing fault in electromechanical drive systems
with high classification accuracy performance. This led to the
possibility of providing a promising bearing fault diagnos-
tic model that can monitor the external bearings without any
additional costs for sensor installation which makes bearing
fault diagnostic systems financially feasible for industry.

The model has been tested for different operating condi-
tions using different bearings of real damages with different
severities. Most classification results exceeded 90% perfor-
mance for both vibration or MCS. This provides robustness
model can be used in reality to diagnose the status of the bear-
ing for one of the three classes treated in this work regardless
the severity of extent of the damage. This is considered to
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be superior to previous studies which were restricted to rel-
atively limited data set used in the study itself.

Even though the classificationmodel in this thesis showed
relatively good results, the author believes that better results
could be obtained by examining different CM techniques or
applying more efforts on signal processing to extract more
usable features, specially to decrease the percentages of false
positives and false negatives using MCS.

Moreover, in this work, the machine learning algorithm
model has been implemented for each operating condition
separately. More generalized model of cascaded NN or deep
learning algorithm could be presented to use the data of all
operating condition at once, so the model can recognize the
operating condition and bearing fault. Such model will be
much more general and compatible to the industry where the
faults are required to be recognized regardless the operating
condition.
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