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Abstract

Real-time data analysis is becoming increasingly important in Big Data environments for addressing data stream issues.
To this end, several technological frameworks have been developed, both open-source and proprietary, for the analysis of
streaming data. This paper analyzes some open-source technological frameworks available for data streams, detailing their
main characteristics. The objective is to facilitate decisions on which framework to use, meeting the needs of data mining
methods for data streams. In this sense, there are important factors affecting the choice about which framework is most suitable
for this purpose. Some of these factors are the existence of data mining libraries, the available documentation, the maturity of
the platform, fault tolerance and processing guarantees, among others. Another decisive factor when choosing a data stream
framework is its performance. For this reason, two comparisons have been made: a performance and latency comparison
between Spark Streaming, Spark Structured Streaming, Storm, Flink and Samza following the Yahoo Streaming Benchmark
methodology, and a comparison between Spark Streaming and Flink with a clustering algorithm for data streaming called
streaming K-means.
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1 Introduction A data stream is a continuous flow of data generated from

one or more sources that arrives online at the system [3].

Data mining has traditionally focused on the analysis of static
stored datasets, in which all data are available, their order is
not important, and they are processed using the batch mode
[1]. However, every day there are more and more sources that
generate huge amounts of data on a continuous basis, in a big
data context. In order to process these data, it is necessary to
use the streaming mode [2], in which data are processed as
soon as they reach the system, without being stored.
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Today, it is essential to use specific frameworks that facilitate

the processing of data streams, so many of these frameworks

have appeared. Figure 1 summarizes the necessary phases

for the analysis of data streams [4]:

(a) Data ingestion. In this first phase, a framework is used
to collect data generated continuously by one or more
data sources. It is also necessary that the data are in the
appropriate format so that they can be used in the next
phase; thus, it is necessary to perform pre-processing
tasks, such as structure modifications, filtering columns,
and elimination of anomalous values.

(b) Data processing. Once the data are in the right format,
the processing phase is launched. In this one, data mining
algorithms are used to analyze the resulting stream and to
extract knowledge. To improve performance, it is essen-
tial to choose a framework that allows distributed pro-
cessing. The framework that best suits the requirements
and needs for the problem to be solved should be chosen
from among the available technological frameworks.

(c) Analysis and evaluation. This last phase is optional and
is responsible for displaying the results obtained in the
previous phase using some type of real-time visualiza-
tion framework.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-020-00210-6&domain=pdf
http://orcid.org/0000-0001-8746-1077

Progress in Artificial Intelligence (2020) 9:239-261

Analysis
and
Source2 evaluation
% Data Data v
Ingestion Processing

Fig. 1 General structure of stream analysis

Most of the available frameworks focus on one of these
phases, although there are some that cover two or even all
three phases. This paper analyzes technological frameworks
for both data ingestion and data processing, since they are
the most determinant phases when processing data streams
in streaming mode.

An important aspect of this type of technological frame-
works is to consider whether the framework is open-source or
proprietary. There are currently a wide variety of proprietary
frameworks that offer advantages such as increased support
and the ability to implement solutions very quickly. However,
nowadays, open-source frameworks are increasingly used
[5], because they allow the creation of more efficient solu-
tions without implementation restrictions, and facilitate the
access to the entire research community. Therefore, this paper
mainly focuses on open-source frameworks, even though the
main features of some of the most commonly used propri-
etary frameworks are described.

There is another important aspect to bear in mind with
regard to technological frameworks for data streams. When
analyzing the data of a data stream, it is not only important
to ingest the data to the system but also to extract knowl-
edge, usually by applying a machine learning algorithm. For
this reason, the availability of machine learning libraries is an
important factor when choosing a framework for the data pro-
cessing phase. Therefore, this work analyzes which machine
learning libraries can be used by different data stream frame-
works, and the list of algorithms implemented in each of
these libraries.

A final aspect to consider when choosing a processing
framework, both in batch and in streaming mode, is the
performance of the framework. For this reason, this paper
includes a performance comparison between the different
technological frameworks. This is achieved by comparing
the performance of technological frameworks following the
methodology of the Yahoo Streaming Benchmark [6], but
also with a specific comparison of machine leaning algo-
rithms for data streams.

In summary, the objective of this paper is to analyze open-
source technological frameworks that perform the ingestion
and processing phases, providing information that facili-
tates the choice of the most appropriate framework to be
used depending on the objective to be achieved. The paper
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is organized as follows: In Sect. 2, important concepts
regarding processing data streams are introduced. Section 3
describes some important properties of data stream techno-
logical frameworks, and Sect. 4 shows several comparisons
of these frameworks. In Sect. 5, the most important tech-
nological frameworks for data ingestion phase are analyzed,
while in Sect. 6 the technological frameworks for the process-
ing phase are analyzed. Section 7 analyzes machine learning
libraries to be used with the data stream frameworks, showing
alist of the algorithms available in each library. Sections 8 and
9 introduce performance comparisons of both the different
technological frameworks and machine learning algorithms.
Finally, Sect. 10 describes the conclusions obtained.

2 Processing data streams: basic concepts

A data stream is a continuous flow of data generated from
one or more sources that arrives online at the system [3]. For
a dataset to be considered as a data stream, it must contain
the following features:

— Data are continuously generated, usually at high speed.

— Distribution of data may change over time. This fact,
known as concept drift, is detailed later. It is important
to detect these drifts in order to adapt the models to them
as soon as possible [7].

— The size of the stream is theoretically infinite, so it cannot
be completely stored in memory for processing. These
data are usually discarded once processed.

— The order in which the data arrive at the system cannot
be controlled, and must be maintained for processing.

Therefore, each instance in the stream is only processed
once, and then, discarded or archived. But there exist different
ways to process the data stream:

1. Processing each instance as soon as it reaches the system,
one by one.

2. Grouping data in chunks and processing each chunk of
data, using a data structure called window.

When a window is used, only data within the window are
considered. There are two basic types of windows [8]:

— Sequence-based window It stores a number of elements.
Two subtypes of sequence-based windows can be found,
as shown in Fig. 2:

— Landmark Window It is a window of variable size,
which stores all the elements of a stream, from the
first to the last. Figure 2a shows how it works. When
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Fig.2 Sequence-based windows in data stream processing

new data arrive, the size of the window is increased
to include them. Old data are not discarded.

— Sliding Window In this case, the window has a fixed
size, so both the size and the sliding of the window
must be specified. This type of sequence-based win-
dow stores the number of specified elements, and
slides when it is full. This window acts like a FIFO
(first in, first out) data structure in which new data
replace old data, as shown in Fig. 2b.

— Time-based window In this type of window, time duration
and sliding must be defined. It stores all the data arriving
at the system within the specified period, and updates its
content each sliding time. Figure 3 shows an example of
a time window with 3 s of time duration and 2 s of time
slide. Let us assume that one example may or may not
arrive at the system each second. It stores data from the
previous 3s, processes all the data in this window and
slides 2s.

Two scenarios can be found when dealing with data
streams [9]: the stationary scenario, where all data are
generated by a single probability distribution; and the non-
stationary one, where the distribution generating data can
change over time, producing the phenomenon known as con-
cept drift [T]. This concept is defined next in a more formal
way. Let us suppose that a stream is a sequence of states S =
{S1,82, ..., ...} where §; is generated by a distribution D;.
In a stationary context, this sequence of states is generated
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Fig.3 Time-based window in data stream processing
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Fig.4 Two main types of concept drift in data stream mining

by the same distribution, so D; 1 = D;. In a non-stationary
context, a concept drift can occur, thus changing the distri-
bution that generates data. When a concept drift appears on
a stream, the current model needs to be updated according
to the new concept [10]. The evidence of the occurrence of a
concept drift is somehow reflected in the data of the stream
[2].

Two main types of concept drift can be identified accord-
ing to its influence on the decision boundaries of a model, as
shown in Fig. 4 [10]:

— Virtual concept drift The concept drift does not affect
decision boundaries of the model, so the model cannot
detect it.

— Real concept drift The concept drift can be detected
because it affects decision boundaries of the model, and
the model can be updated to adapt to the new concept.
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(d) Recurring

In addition to the above, different types of concept drift
can be identified, but according to the ratio of changes, as
can be seen in Fig. 5 [10]:

— Sudden The old concept is rapidly replaced by the new

concept.

Gradual The current concept is a mixture of both the old

and the new concept. Gradually, the new concept replaces

the old one until it disappears and only the new concept

remains.

Incremental The new concept slowly replaces the old

concept.

Recurring The current concept is replaced by a concept

that already appeared in the past.

— Blips The current concept is stable except in random sit-
uations in which a concept drift appears.

— Noise The concept has insignificant variations that should
be filtered out.

— Mixed This is a combination of two or more concept drift

types.

In this context, it is also important to consider that machine
learning algorithms dealing with data streams should take
concept drift into account. To do so, these algorithms need
to include an adaptation method to allow the model to be
updated. Two types of adaptation methods can be distin-
guished [8]:

— Blind methods The model is updated when a certain spec-
ified time passes or a number of data arrive at the system.
No detection method is used to detect the concept drift.
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In this case, a fixed-size window is usually implemented,
updating the model with new data periodically.

Informed methods A detection method is used for the
concept drift detection. Here, the model is only updated
when a concept drift is detected. In this case, it is usual
to use a drift detection method based on the error of the
model, which can be fully or partially updated.

There is another key factor for the streaming algorithms:
the forgetting mechanism. A forgetting mechanism is used
to specify how quickly old data should be discarded in order
to generate new models. Two types of forgetting mechanism
can be considered [8]:

— Abrupt forgetting (or partial memory) Here, a type of
window is used to store a set of data, and only data inside
the window is used to generate the model.

Gradual forgetting (or full memory) In this approach all
data are taken into account to update the model, but more
importance is given to new data. To do this, a weight is
associated to each instance according to its age, so that
new data have more weight than the old ones.

3 Data streaming technological framework
properties

Nowadays, many big data processing technological frame-
works for data stream analysis facilitate the implementation
of streaming algorithms. The most important open-source
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technological frameworks for data streams are summarized
in Table 1. In addition, Table 2 shows a list of proprietary
streaming frameworks collected by Gartner [5,11].

Before describing the frameworks, and in order to be able
to make a comparison, it is necessary to introduce some fea-
tures that will determine their behavior and performance.

— The first of these features is the one known as processing
mode. There are two processing modes: traditional mode
(or batch mode) and streaming mode. In the traditional
mode, a set of stored and static data that are analyzed as a
whole is used, while in the streaming mode data reach the
system over time, being analyzed as they arrive. Within
the streaming processing mode, data can be analyzed one
by one or in small groups called micro-batches. Each
micro-batch is a time window that stores data from a
given time interval.

— The next feature to consider is the processing guar-
antee. This refers to the number of times a instance
can be processed. Although in theory each instance is
processed only once in the data stream context, in prac-
tice this could not occur because data have to be sent
between machines and problems can appear, producing
unprocessed or duplicated data. There are three types of
processing guarantees:

— At most once Data can be processed once or not at all.
Unprocessed data can appear.

— At least once Data can be processed one or more
times. There will never be any unprocessed data, but
duplicated data can appear.

— Exactly once Data will be processed only once. This
type is the best processing guarantee that a processing
framework can have. It does not produce duplicate or
unprocessed data.

Table 1 Open-source
technological frameworks for
data streams

Frameworks

Apache Apex
Apache Beam
Apache Flink
Apache Flume
Apache Gearpump
Apache Ignite
Apache Kafka
Apache Nifi
Apache S4
Apache Samza
Apache Spark
Apache Storm
Elastic Logstash

Table 2 Proprietary technological frameworks for data streams

Frameworks

Alooma

Attunity

Amazon Kinesis

Google Cloud Dataflow
Confluent Platform

dA Platform

Unified Analytics Platform

Data Stream Manager

Data Beaming

Esper Enterprise Edition

EVAM

Interstage Big Data Complex Event Processing Server
Hitachi Streaming Data Platform (HSDP)
Hortonworks DataFlow (HDF)
IBM Streams

StreamAnalytix

Big Data Streaming

Azure Stream Analytics

Nexla

Oracle Stream Analytics

Spring Cloud Data Flow (SCDF)
RB Light

SAP Event Stream Processor
APPAMA Streaming Analytics
s-Server

Streamlio

Striim

Talend Data Streams

TIBCO BusinessEvents

VIA Analytics Platform

WSO02 Complex Event Processor (WSO2 CEP)
3Forge AMI

ActiveViam In-Memory Analytical Platform
First Derivatives kdb+

Inetco Systems Analytics
Interana

Logtrust

Maana Knowledge Platform
OneMarketData OneTick
Unscrambl Brain

Splunk Enterprise; Cloud
Amazon QuickSight

Arcadia Data Enterprise
Datameer Enterprise
Information Builders WebFocus
Microsoft Power BI

RapidMiner Platform

TIBCO Spotfire

Zoomdata Server; Fusion

@ Springer



244

Progress in Artificial Intelligence (2020) 9:239-261

— Finally, it is necessary to consider the possibility of using
stateless or stateful processing. In stateless processing, a
node processes each instance without depending on pre-
vious results and does not store any state after processing
it. On the contrary, with stateful processing the state of
the node is modified after processing the data, on the basis
of previous results.

4 Previous data stream technological
frameworks reviews

Over the last years, some comparisons between some of the
most popular processing frameworks have been made, both
for the batch and streaming modes:

— In a recent paper [12], the performance of Spark and
Flink with different algorithms for batch processing is
shown. According to the results of the experiments, this
work shows that Spark performs better than Flink in batch
processing.

— In [13] a comparison between Spark, Storm and Samza
is shown. This comparison consists in a system that
obtains data from speed sensors, filters invalid speed val-
ues (between 0 and 90) and stores correct data, measuring
different metrics like throughput and system resource
usage. In this comparison, Spark shows better throughput
than Storm and Samza.

— Another methodology for comparing data stream tech-
nological frameworks, called StreamBench, was imple-
mentedin [14,15]. This benchmark evaluates the through-
put and latency of technological frameworks by running
different programs and performing operations over the
stream. In [15] seven programs are run in order to com-
pare Spark and Storm. The results show that Spark has a
better throughput than Storm, but Storm has lower latency
in non-complex processing scenarios. This is because
Storm processes data one by one (real streaming), while
Spark processes data in micro-batches. In [14] only three
processing programs are used to compare Spark, Storm
and Flink. In this case, Flink obtained the best throughput
and latency results.

— In other studies [6,16—18] a streaming processing bench-
mark called Yahoo Streaming Benchmark is used, which
evaluates the latency and throughput of technological
frameworks. This benchmark was developed by Yahoo
Inc. [6] to compare the performance of Storm with respect
to Spark and Flink. In [17] the same comparison was per-
formed with Spark and Storm. Another comparison with
this benchmark is [18], but this adds an analysis over the
usage of system resources. In a more recent study [6],
this benchmark was implemented with more streaming
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frameworks (Spark, Storm, Flink and Apex), using the
current versions.

Recently, a review of technological frameworks in both
batch and streaming mode was carried out [19]. According
to this study, the most widely used processing framework
is Apache Spark. Studies analyzing the use of big data
frameworks and big data analytic techniques in different
application areas are described below. In [20] a machine
learning approach called SCARFF, which deals with imbal-
ance, non-stationary and feedback latency is presented. This
algorithm was designed for credit card fraud detection and
implemented with Kafka and Spark. In [21] a real-time
remote health status prediction system is developed using
Spark. This system extracts user tweets from Twitter with
their health attributes, predicts user’s health status, and the
user is directly messaged at that instant to take appropri-
ate action. In [22] scalable distributed clustering algorithms
based on the micro-clustering paradigm are developed using
Storm. In addition, two distributed architectures for execut-
ing the algorithms in parallel are implemented. In [23] an
efficient algorithm for mining maximal frequent patterns over
dynamic data streams is implemented using Spark.

5 Frameworks for data ingestion

Before processing the data, it is usually necessary to ingest
them, as they are often generated by different simultaneous
sources, so it is necessary to unify them in order to have a
single input channel for the processing. The objective of this
section is to analyze and compare different frameworks for
performing these tasks, highlighting their main characteris-
tics. In particular, this section analyzes Apache Kafka, Flume
and Nifi.

5.1 Apache Kafka

Apache Kafka! is a distributed streaming framework that
allows data to be ingested from different sources with a
publication/subscription methodology [24] (the producer
publishes the data and the consumer subscribes to receive
them). To do this, the Kafka cluster must define a set of iden-
tifiers for buffers where publications and subscriptions are
made, named fopics.

In Fig. 6 a general scheme of the Kafka methodology
can be seen. Each producer is an application that can pub-
lish messages on one or more topics. On the other hand,
each consumer is another application that can subscribe to
one or more topics in order to receive data published under

! https://kafka.apache.org/.
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Fig.6 General scheme of Apache Kafka

these topics. Kafka has a dynamic structure, so new produc-
ers/consumers can appear and existing producers/consumers
can stop without restarting the Kafka system.

In Kafka the data are called Records, which are key-
value pairs in text format, where the key is usually some
type of timestamp and the value is a string in a specific
format (usually JSON). For each topic, the Kafka cluster
maintains an ordered and immutable sequence of Records,
called partition, where each publication is maintained for a
validity period, called retention period, and deleted when
this period ends. Each partition has a sequential numeric
identifier, called offset, which uniquely identifies each record
within a partition. The consumer is responsible for control-
ling the offset value himself, so different consumers may be
receiving data from different buffer positions (normally the
offset of all consumers advances in a similar way).

In addition to ingesting data from different sources, Kafka
also allows pre-processing. There are two options for car-
rying out pre-processing in Kafka: at the producer or by
implementing a consumer-producer. The first option would
consist in a program that transforms the data before sending
them to the processing system; the second would be an appli-
cation that listens to a topic, collects everything that comes
to that topic to transform it and finally sends the result to a
different topic.

Some points to highlight about Kafka are:

— Itis integrated into all the processing frameworks which
we will analyze later in Sect. 6.

— It is necessary to implement both a producer and a con-
sumer program. If a streaming processing framework has
compatibility with Kafka, the consumer is usually imple-
mented in it. For this reason, in most situations only
producers have to be implemented.

— Extensive documentation and information regarding many
solved problems are available for developers, which
accelerates the development of data ingestion solutions
and error correction.

— It allows data replication. Data are stored in partitions
that can be replicated to provide fault tolerance.

— It allows data distribution, so these partitions can be
distributed over different servers of the cluster. Each
partition has a leader server and zero or more follower
servers.

=

e,

Agent

Fig.7 General scheme of Apache Flume

— It has no native monitoring utility, but there are some
third-party applications that do this, such as Burrow from
LinkedIn.

— Kafka allows many consumers to obtain data at different
reading speeds, thanks to the concept of offset.

— Kafka also allows to perform processing tasks, although
its performance, in this case, is worse than the processing
frameworks seen in Sect. 6.

Kafka allows to pre-process, replicate and distribute the
data. In addition, it has a large amount of documentation and
its publish/subscribe policy gives it a more general purpose
than the rest of the ingestion frameworks analyzed, since it
does not have a pre-established number of producers and
consumers. For this reason, new producers and consumers
interacting with Kafka may appear during the execution.

5.2 Apache Flume

Apache Flume? is a distributed service that efficiently
ingests, aggregates and moves data streams. It has a sim-
ple and flexible architecture based on streaming data flows.
It is based on an agent composed of 3 components (Fig. 7)
[25]: Source, Channel and Sink.

An agent can contain one or more Sources, which ingest
data from an external source (such as a web server) and store
them in one or more Channels with a specific format. When a
new event arrives at a Source, it is stored in the corresponding
Channel. A Channel is a passive buffer that stores the events
received from the Source until they are consumed by the
Sink. This is necessary because, in general, the reading and
writing speed are different, so it acts as a temporary data
buffer. Flume has different types of Channels, depending on
the type of storage used. Afterwards, the Sink is responsible
for removing an event from the Channel and storing it in
the destination file system. Source and Sink are executed
asynchronously with events organized in Channels, so that
until a instance is not stored in the destination file system it

2 https://flume.apache.org/.
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is not deleted from the Channel. A Sink can send events to
one or more destinations.

These components are configured in a file containing the
parameters corresponding to each one. Each component must
have a name, a type and a set of specific properties depending
on the type.

Flume can be easily integrated with Apache Hadoop. For
this reason, the main use of Flume is to move large amounts
of data from one or more source systems to an HDFS system,
although it can be another target system, such as HBase.

This framework also allows data pre-processing. There
are two options for pre-processing in Flume: at the Source or
at the Sink. In the first case, the Source obtains data from the
external system, performs the pre-processing and sends the
result to the Channel. In the second case, the Sink obtains data
from the Channel, pre-processes them and sends the result to
the destination system.

The characteristics of Flume are summarized below:

— Among the technological frameworks analyzed in Sect. 6,
only Flume is integrated into Spark Streaming.

— In Kafka new producers and consumers may appear dur-
ing execution without the need to specify it to the system.
This does not happen in Flume, since it is necessary
to preset the origin and destination sources and these
will not change during the execution. This feature makes
Kafka a more general purpose framework than Flume.

— It can be used with Kafka as a Channel (Flafka), so it
would be no longer necessary to implement the producer
and the consumer.

— Although in Fig. 7 only one element of each type appears,
an agent can have multiple elements of each type.

— Flume allows to use file-based Channels and memory-
based Channels. Fault tolerance is provided with file-
based Channels, since the data are stored on disk and can
be recovered in the case of error. This does not happen
with memory-based Channels.

— Only one Sink can be associated with a Channel.

Flume allows data pre-processing, but does not allow data
replication. It has compatibility only with Spark Streaming
and is not as general-purpose as Kafka. Different types of
Channels can be used, both memory-based and file-based,
providing fault tolerance only in the latter. For these reasons,
itis usually employed to transport large amounts of data from
one system to another.

5.3 Apache Nifi

Apache Nifi® is a technological framework that allows
data to migrate from one file system to another. Data can

3 https://nifi.apache.org/.
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be processed by a sequence of operations to transform
them before being sent to the destination. It has a web
user interface to facilitate real-time visualization and the
creation/configuration of nodes called processor, which per-
forms operations on the data [26]. In Fig. 8 an example of an
application in the web user interface is shown.

The pre-processing is carried out by the processors,
which allows creating, deleting, modifying or inspecting
data (called FlowFiles), and includes a content and a set of
attributes that act as metadata. When defining the application,
the data will be modified by different processors. Each pro-
cessor will perform a different operation to pre-process the
data and finally send them to the destination. Nifi has many
implemented processors, including Flume and Kafka proces-
sors. The connection between processors is established by a
queue.

The main features of Nifi are:

— Among the technological frameworks analyzed in Sect. 6,
only Nifi is integrated into Flink.

— It has a web interface that facilitates definition of the
application and the configuration of each of its elements.

— It allows transformations on the data, such as the con-
version of data/formats, the delegation of functionalities
and union and data broadcasting operations.

— It can be used with Kafka, so that it is not necessary to
implement the producer and the consumer.

— It allows users to monitor the flow status in real time,
identifying possible errors.

— It allows users to send data to multiple destinations at the
same time.

— Nifi does not allow data replication. If a node goes down,
the flow can be directed to another node, but the data in
the queue of the failing node is maintained until the node
goes up again.
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Table 3 Summary of characteristics of ingestion frameworks
Characteristics Frameworks
Katka Flume Nifi
Analyzed version 2.1.0 (11/2018) 1.9.0 (01/2019) 1.8.0 (10/2018)
Pre-processing Yes Yes Yes
Processing Yes™* No No
Delivery guarantee At least one At least one At least one
Fault tolerance Yes Yes* Yes
Programming languages Java Java Java
Monitoring utility No* No Yes
Platforms Windows Linux MacOS Windows Linux MacOS Windows Linux MacOS
Documentation Very large Large Large
Data replication Yes No No
Data abstraction Record Event FlowFile
Processing frameworks integration All Spark streaming Flink

See information in the corresponding section describing the framework

— Like Flume, Nifi is responsible for obtaining data from
the source. This is a difference with respect to Apache
Kafka, where the producer is responsible for depositing
the data. This makes Kafka more general-purpose.

Nifi allows data pre-processing but does not allow data
replication. It only has compatibility with Flink and it is not
as general-purpose as Kafka. It has a graphical interface that
facilitates the definition of the application and allows moni-
toring of the flow in real time, so it is usually used when it is
necessary to move data from one site to another and monitor
the data streams.

5.4 Summary of frameworks for data ingestion

In this section three technological frameworks for data inges-
tion have been analyzed, providing their properties. In Table 3
a summary with the characteristics of the different data
ingestion frameworks explained in this paper is shown. All
these frameworks are multi-platform and allow data pre-
processing, but only Kafka can carry out processing tasks,
albeit at low performance (it is better to perform process-
ing with a processing framework). The three technological
frameworks have the same delivery guarantee, at least once,
so data can have duplicates. With respect to fault tolerance,
this is supported by the three technological frameworks, but
in Flume is it only supported when using a file channel.
Kafka and Flume do not have a monitoring utility, but Kafka
has external third-party utilities which perform this function,
like Burrow of LinkedIn. Only Kafka supports data replica-
tion and has a dynamic structure, so it is more dynamic and
general-purpose than other ingestion frameworks.

For the data ingestion phase Kafka is the most widely
used by the research community, because the system offers

many advantages over other ingestion frameworks, like data
replication, and a more dynamic structure. Being the most
used technological framework, it has compatibility with all
the processing frameworks seen in Sect. 6 and, for this reason,
has much more documentation than the remaining ingestion
frameworks.

In order to install these technological frameworks it is
necessary to have Java version 8 or higher installed, since
they only allow Java to be used as a programming lan-
guage. In addition, these three ingestion frameworks are
multi-platform, so they can be installed in Windows, Linux
or MacOS. Additionally, Kafka needs to use Zookeeper and
Flume needs the Hadoop Distributed File System (HDFS).
ZooKeeper is a centralized service for maintaining config-
uration information, naming, providing distributed synchro-
nization, and providing group services.

6 Frameworks for data processing

When data are ingested into the system, it is necessary to
use a processing framework to process the data and discover
knowledge within them by applying a machine learning algo-
rithm. In this section, Apache Spark (streaming mode and
structured streaming mode), Storm, Flink, Samza, Apex and
Beam are analyzed and compared, highlighting their main
characteristics.

6.1 Apache Spark

Apache Spark is an open-source unified analytics engine for
big data processing that allows distributed processing to split
computing over different machines and reduce the execution
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time when the amount of data is enormous. Spark has differ-
ent built-in modules that offer some algorithms and utilities
to facilitate new implementations:

— Streaming This allows to process data streams that can
arrive from different types of sources.

— SOL It is a module for structured data processing. The
interfaces provided by Spark SQL have more information
about both the data and the computation being performed.
This additional information allows to perform extra opti-
mizations.

— MLLIB This is the machine learning library from Spark
that includes several types of machine learning algo-
rithms and data structures and utilities to make practical
machine learning scalable and easy.

— GraphX This module is a component for graphs and
graph-parallel computation.

In the next two subsubsections, streaming modes used in
this paper are explained along with their main features.

6.1.1 Apache Spark Streaming

Apache Spark has different operating modes. One of these
modes is Apache Spark Streaming®, an extension of Spark’s
core that allows scalable, high-performance and fault-tolerant
processing of data streams. Data arrive through one or more
input streams that can be processed using some transforma-
tions implemented by Spark Streaming. Later, processed data
can be transferred to a file system or a database.

Spark Streaming works as follows [27] (Fig. 9 shows the
general scheme): the user defines a time interval, called batch
interval. For example, let us suppose that the batch inter-
val is 2s. When the Spark Streaming application starts, all
data received each 2 seconds is stored in a different RDD
(data from seconds O to 2 on RDDO, data from seconds 2 to
4 on RDDI, etc). This sequence of RDDs is abstracted in
another data structure called Discretized Stream or DStream.
Afterwards, each RDD from DStream is processed by Spark
Engine through an algorithm, generating an output RDD for
each input RDD.

When programming in Spark Streaming, a read-only
abstraction called RDD (Resilient Distributed Dataset) is
used. RDD is a set of data partitioned between distributed

4 https://Spark.apache.org/streaming/.
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nodes of a cluster that can be processed in parallel. It sup-
ports two types of operations: transformations and actions.
When a transformation is performed, a new RDD is gen-
erated with the changes made and the original one remains
unchanged. When an action is executed, the value of per-
forming a calculation on an RDD is returned.

Some of the main features about Spark Streaming are:

— It allows users to perform data processing in traditional
mode (static dataset or batch) or in streaming mode
(an adaptation of the batch mode, in which the stream
is divided into micro-batches), based on the RDD or
DStream abstraction.

— It allows the use of time windows. A window size and
a sliding (a multiple of the batch interval) have to be
defined. This is a window that contains some RDDs and
processes all data from these RDDs as a whole.

— The latency (time that data have to wait from when they
arrive in the system until they are processed) is greater
than in other technological frameworks, since it does not
perform continuous processing of the data. Spark Stream-
ing always has to wait for the time of a micro-batch.

— There are several compatible machine learning libraries,
such as MLLIB, with many algorithms already imple-
mented. These algorithms are shown in Sect. 7.

Spark Streaming is useful in those cases where it is nec-
essary to process data in batch mode or streaming mode,
using micro-batches. In addition, it is notable the existence
of machine learning libraries, its extensive documentation
and its active community.

6.1.2 Apache spark structured streaming

Another Spark mode is Apache Spark Structured Streaming®,
built on the Spark SQL engine, which allows users to pro-
cess a stream in a similar way to the batch mode over static
data. Structured Streaming allows users to make queries that
are resolved incrementally, updating the final result which is
stored in an output table according to the output mode used,
which specifies how the output table will be updated [28].
There are three output modes in Spark Structured Stream-
ing:

— Append mode: This is the default mode, in which only
the new tuples that have appeared since the last update
are added to the output table. This mode is only supported
by those queries where the existing tuples in the output
table are not modified (only new tuples are added).

> https://spark.apache.org/docs/latest/structured-streaming-
programming-guide.html.
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— Complete mode: All the results are added to the output
table in each update. This mode is supported by aggre-
gation queries.

— Update mode: It only updates those tuples whose value
has been modified since the last update.

In the streaming mode there is an unlimited input table to
which data are added as they arrive at the stream (Fig. 10). On
this table, the incremental queries are realized. These queries
process the data in micro-batches as low as 100 millisec-
onds, although from the version 2.3 of Spark a new mode,
called Continuous processing, has been introduced. It allows
latencies below 1 millisecond with processing guarantees of
at least once. However, it is an experimental mode still in
development.

The abstraction used when programming in Spark Struc-
tured Streaming is Dataset/DataFrame. A Dataset is a
distributed data collection, which provides the benefits of
RDDs along with those of Spark SQL and that can be manip-
ulated using transformations. A DataFrame is a Dataset
organized in columns, similar to a table in the relational
database model.

Some points to highlight about Spark Structured Stream-
ing are:

— It allows processing in batch mode and streaming mode,
on the basis on the Dataset/DataFrame abstraction.

— Depending on the type of query made, append mode,
complete mode or update mode can be used.

— In this model, Spark is responsible for maintaining and
updating the tables with the new data, while in other mod-
els the user is responsible.

— Itallows the user to use time windows like Spark Stream-
ing, with the difference that here the batch interval does
not have to be specified. If the batch interval is not speci-
fied, Spark Structured Streaming performs the processing
as soon as possible.

— Along with the time windows watermarks can be used,
which set a limit for data arriving late, based on a times-

a__'c ¢

Bolt

¢

Fig. 11 General scheme of Apache Storm

tamp field. If an instance arrives late and does not exceed
the watermark, it will be accepted to be processed on its
corresponding time instant, not on the arrival instant.

— No libraries with data mining algorithms are available for
Spark Structured Streaming.

Spark Structured Streaming is useful in those cases related
to queries to databases, thanks to its incremental queries
over the input data. In addition, the use of watermarks with
time windows can be a factor for choosing this technological
framework.

6.2 Apache storm

Apache Storm® is a real-time distributed computing system
that processes the input data one by one. A stream in Storm
is an unlimited sequence of data, in which each instance is
a Tuple that contains an immutable ordered set of key-value
pairs.

In Storm the flow will go through a series of nodes with
each one performing a data processing task. An example of
an application of Storm can be seen in Fig. 11. There are two
types of nodes in a Storm application [29]:

— Spout This regulates the input data to the system. This
node reads data from an external source and stores them
in a queue, to introduce data in the system according to
the desired input speed. A node can generate more than
one stream.

— Bolt Tt performs operations over data. Optionally, addi-
tional tuples can be generated.

Storm has two operating modes: normal mode (processes
the data one by one) and another mode that uses a higher-
level abstraction called Trident (processes the data by micro-
batches). This second mode offers processing guarantees of
exactly once, although it increases the latency because the
system has to wait to collect a micro-batch.

© http://storm.apache.org/.
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The main features of Storm are:

— It only allows data processing in streaming mode, one by
one or in micro-batches (with Trident).

— Storm does not guarantee that data will be processed in
order.

— It allows the use of both time windows and watermarks.

— Storm executes nodes as tasks, which allows users to exe-
cute the function of a node in parallel in order to distribute
the work using multiple machines. This is useful when
there are some tasks in the application which take longer
to compute.

— Storm does not have high-level functionalities imple-
mented, so all the functionalities of the nodes have to
be programmed, which can be a drawback.

— There is currently no library with data mining algorithms,
although there is a library under development called
SAMOA”. Current algorithms are included in Table 5.

Storm is useful in those cases where the tasks are dis-
tributed by nodes and the data have to be processed one by
one with at least once processing guarantees.

6.3 Apache Flink

Apache Flink? is a processing framework for distributed data
streaming applications that allows the user to process the data
one by one or by micro-batches. It also allows processing in
traditional (or batch) mode, with a static dataset.

In Flink (Fig. 12) there are 3 types of nodes [30]:

— Source It regulates the input data to the system, similar
to Spout nodes in Storm.

— Operator It performs transformations on the input data
and generates output data, similar to Bolt nodes in Storm.

— Sink It deposits the results in the destination.

The core data structure of Flink is DataStream. When a
data stream arrives at the system it is in DataStream state,

7 https://samoa.incubator.apache.org.

8 https://flink.apache.org/.
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and this state changes after each operation. Depending on
the current state of the stream, a node could perform some
transformations or others. The possible states are [14]:

— DataStream It is the core structure of Flink data stream
APL

— KeyedStream It represents a data stream where elements
are grouped by a key.

— WindowedStream It represents a data stream where ele-
ments are organized into groups by key, and each group
is windowed.

— ConnectedStream It is a way to share states between two
tuple-at-a-time operations. It can be thought of as execut-
ing two map (or flatMap) operations on the same object.

Flink is very powerful in terms of window usage, since
it allows a great variety. Windows can be count-based or
time-based. Within a window it is also possible to distinguish
between events of different types. There are different types of
windows already implemented, but Flink even allows users
to implement a custom window if it is necessary.

The following points can be highlighted about Flink:

— It allows users to process data in streaming or in tradi-
tional mode. In addition, processing the data one by one
or in micro-batches can be chosen.

— Like Storm, nodes are executed as tasks, which allows the
execution of a node in parallel using multiple machines.

— Flink has an API that allows programming at a higher
level, while in Storm all the functionality of the nodes
has to be programmed. This is an important difference
with respect to Storm.

— To provide fault-tolerance Flink uses Checkpoints, which
give the summation of the flow at a specific moment.
These checkpoints are taken with a frequency called
checkpoint intervals.

— Flink implements a wide variety of windows, which also
allow the use of watermarks to accept a delay in the input
data. This is an advantage with respect to the other tech-
nological frameworks.

Flink is useful when data have to be processed one by
one or in micro-batches, with exactly once processing guar-
antees, and both for traditional and streaming mode. Flink
is very similar to Storm, but it provides features that have
to be implemented in Storm. In addition, the possibility
of using time-based windows together with watermarks or
count-based windows can be an important factor for choos-
ing this framework.
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6.4 Apache Samza

Apache Samza” is a distributed streaming processing frame-
work that uses Kafka and YARN [31], which is the improved
version of Apache Hadoop!”. Samza offers many function-
alities similar to Storm and processes data streams using
predefined Tasks, which perform operations on the data
stream. A Samza application is a data flow that consists of
consumers who obtain data that are processed by a graph of
Jobs, where each Job contains one or more Tasks. In Samza,
each Job is an entity that can be deployed, started or stopped
immediately [32]. An example with one Job that contains
two Tasks can be seen in Fig. 13.

A stream can have multiple producers writing datainit and
multiple consumers that read data from it. A stream can be
divided into multiple partitions, so the number of consumers
can be adjusted to the processing for scaling how these data
are processed. Each partition is an immutable and ordered
sequence of data, so when new data are written they are added
to the end of a partition.

In Samza, each Task contains a key-value store used to
store the state. Changes in this store are replicated to the
other machines in the cluster to allow tasks to be recovered
quickly in case of failure. It also offers the possibility of
remotely storing the status.

Samza also presents the following characteristics:

— It guarantees that messages are processed in order.
— It uses single-thread processes.
— Each Task processes the data of an input stream partition.

9 http://samza.apache.org/.
10" https://hadoop.apache.org/.
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Fig. 14 General scheme of Apache Apex

— It provides fault-tolerance by incremental checkpointing,
storing the status of each task to facilitate system recovery
in case of failure.

— No library with data mining algorithms is available,
although in the future it will be able to use SAMOA algo-
rithms. Current algorithms are included in Table 5.

Samza is useful in cases where data have to be processed
one by one. Samza has been implemented over Kafka, so the
data will be stored in partitions and ensures that they will be
processed in order.

6.5 Apache Apex

Apache Apex!'! is a native processing platform based on
YARN [31]. Apex provides a simple API, which allows users
to write generic and reusable code.

In Apex there are nodes called Operators, which take one
or more input streams, perform a computation and emit one
or more output streams. In Apex there are three types of
nodes (Fig. 14), which have a similar functionality to those of
the previous technological frameworks [33]: Input Operator,
Generic Operator and Output Operator.

The core of the Apex platform is complemented by
Malhar, alibrary of logical functions and connectors. It pro-
vides access to different file systems, message systems and
databases. In addition, the library has some demos that illus-
trate the capabilities and characteristics of the operators.

Some Apex characteristics are presented below:

— The data are processed one by one, although it also sup-
ports micro-batch processing using time windows.

— It provides fault tolerance by the use of checkpoints.
When a node goes down, its recovery is instantaneous,
since it uses a Heartbeat mechanism. This mechanism
checks periodically the state of nodes and tries to raise it
in the case of detecting a fallen node.

I https://apex.apache.org/.
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— Malhar is a support library for application development.
Developers have to implement any unimplemented func-
tionality in order to use it.

— Itdoes not provide a library with data mining algorithms,
although in the future it will be able to use SAMOA
algorithms. Current algorithms are included in Table 5.

Apex is useful when the data have to be processed one by
one with exactly once processing guarantees, and reusable
code will be used. It also has compatibility with the Malhar
library, which can be an important factor in choosing this
technological framework.

6.6 Apache Beam

Apache Beam!? is a streaming processing framework that
allows users to define a processing independent of the data
processing system (called runner) used. It allows users to
change the runner using the same implemented processing.
The following runners can be used in Beam [34]: Apache
Apex, Apache Flink, Apache Spark, Apache Gearpump and
Google Cloud Dataflow. A general scheme of Beam can be
seen in Fig. 15.
Some points to highlight regarding Apache Beam are:

— The processing guarantee depends on the runner used to
process the data, since each one offers its own guarantees.

— Both Java and Python can be used as the programming
language, although there is also a Scala API in a GitHub
project!3.

— The latency varies depending on the runner used.

Beam is useful for testing the processing with different
runners in order to see which one suits better.

6.7 Summary of frameworks for data processing
In this section, seven technological frameworks for data pro-
cessing are analyzed, presenting their characteristics and the

differences between them. In Table 4 a summary with the

12 https://beam.apache.org/.
13 https://github.com/spotify/scio.
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characteristics of the different data processing frameworks
analyzed in this paper is shown. Each technological frame-
work uses its own notation for the nodes, but the idea is
similar (they have one node to introduce the data into the
system and another one to perform operations and, option-
ally, send the results to a given destination).

All these technological frameworks have a monitoring
utility to manage the system, offer fault tolerance and are
multi-platform. With respect to the processing guarantee,
Spark, Flink, Apex and Storm (with Trident) offer exactly
once processing guarantees, and Storm (without Trident) and
Samza offer at least once processing guarantees. There is a
variety of programming languages to use in all these techno-
logical frameworks, except in Samza and Apex, which only
allow programming in Java. When a framework processes
data, Spark, Storm (with Trident) and Flink can use a micro-
batch model, and Storm (without Trident), Flink, Samza,
Apex and Beam can use a one-by-one model (true streaming).
Only Flink and Storm allow the use of both models. Lastly,
machine learning libraries are another important factor in a
processing framework. Spark and Flink are the technological
frameworks with more implemented algorithms of this paper,
but Spark has more than Flink in both batch and streaming
modes.

For the data processing phase, Spark is the most widely
used by the research community because it allows stateless
and stateful processing and has a very complete documenta-
tion, as well as a machine learning library (MLLIB) with a
large number of implemented algorithms. In addition, Spark
allows data processing in batch and streaming modes and
has other developed components like Spark SQL that can be
integrated in applications.

To be able to install these technological frameworks
it is necessary to use one of the programming languages
supported by each framework. This is shown in Table 4.
However, a specific version of the different languages has
to be used:

Java: 8 or higher.

— Scala: 2.11 or higher.
Python: 2.7/3.4 or higher.
R: 3.1 or higher.

— GO: 1.10 or higher.

In addition, it is necessary to install Zookeeper and use
one of the operating systems supported by each technological
framework, as shown in Table 4.

7 Machine learning libraries

One of the most important factors when choosing a tech-
nological framework for data processing is the existence of
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machine learning libraries with implemented algorithms and
methods that facilitate the use of the framework. Currently,
there are not many data mining algorithms for streaming data
implemented in these libraries. In this paper the following
machine learning libraries are analyzed:

MLLIB (MLL) [35] is the scalable machine learning

library of Apache Spark that is included in the Spark

project, so it is tested and updated with each new Spark
version. It provides many useful algorithms and func-
tions, such as statistical calculation and normalization.

— StreamDM (SDM) [36] is an open source library devel-
oped by the Huawei Noah’s Ark Lab to perform stream-
ing data mining using Apache Spark Streaming.

— FlinkML (FML) [30] is the machine learning library of
Apache Flink, which provides scalable machine learn-
ing algorithms, an intuitive API and tools that help to
minimize the use of these algorithms.

— SAMOA (SAM) [37] is a distributed streaming machine
learning framework that contains an abstraction for
programming distributed streaming machine learning
algorithms. The idea of this framework is to implement
distributed streaming machine learning algorithms with-
out having to know the processing engine that executes
them. It is currently in incubation.

— Amidst Toolbox (AMT) [38] is a scalable, probabilistic

machine learning library developed in Java, with a special

focus on data streaming. It is a library that can be used
with Spark and Flink, but currently Spark’s link is in
development.

Table 5 shows the available algorithms implemented by
the machine learning libraries analyzed in this paper. As can
be seen, there are 20 algorithms in MLLIB, 9 in streamDM,
6 in FlinkML, 6 in SAMOA and 14 in Amidst Toolbox. Not
all algorithms are for streaming processing. Currently, there
are not many streaming algorithms implemented in these
libraries, so more streaming algorithms must be implemented
for technological frameworks.

8 Comparison of technological frameworks
for data processing

In this section the different technological frameworks for
data stream processing analyzed in Sect. 6 are compared,
with a streaming processing benchmark used in other studies
[6,16-18] called Yahoo Streaming Benchmark, which eval-
uates latency and throughput. Latency is the time that an
instance remains in the system from when it arrives until it
is processed. For its part, throughput measures the number
of instances that are processed per unit of time (usually sec-
onds). In this paper the comparison is increased by adding

@ Springer

Table 5 Available algorithms

Algorithms

el
2o
=z
=»
=z >

SVM

Logistic regression

X
X

X

Linear regression
Streaming logistic regression
Streaming linear regression
DecisionTree
RandomForest
Gradient boosted trees
NaiveBayes

Isotonic regression
ALS

K-means

Gaussian mixture

PIC

LDA

Bisecting K-means
Streaming K-means
FPGrowth
Association rules
PrefixSpan

Multilayer perceptron
k-NN

SGD

SOS

Perceptron

X X X X X X X X X X X X X X X X X X X X X X
X

CluStream
StreamKM-++

Hoeffding decision trees

X X X X X

OnlineBagging
AMRules
OnlineBoosting

Adaptive bagging

X X X X X X

Distributed stream clustering
TAN

AODE/HODE

Dynamic NB

Gaussian discriminant analysis
LCM

Bayesian linear regression
FactorAnalysis
DynamicLCM

HMM

KF

SwitchingKF

X X X X X X X X X X X
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Fig. 16 General scheme of Yahoo Streaming Benchmark

Samza to the comparison and updating versions of technolog-
ical frameworks: Spark (2.4.0), Storm (1.2.2), Flink (1.7.1)
and Samza (1.0.0). In addition, a different configuration of
nodes is used (this is detailed in the following subsection).
In this section each experimentation is detailed and then
the results obtained from each experimentation are analyzed.

8.1 Experiment design

The Yahoo Streaming Benchmark [6], that was developed in
2016 by Yahoo Inc, is used for the comparison. The source
code is available in [39]. It simulates a simple advertisement
application that has 100 campaigns, 10 ads per campaign and
uses a time window of 1 second. Ads arrive at the system
and the objective is to count the number of relevant events of
each campaign on each time window, measuring the latency
of input data for different throughputs. Each ad has seven
fields:

— user_id: Id of the user.

— page_id: Access page to ad.

— ad_id: Id of the ad.

— ad_type: Type of ad. This field can be banner, modal,
sponsored-search, mail or mobile.

— event_type: Type of event, which can be view, click or
purchase.

— event_time: Timestamp when event was generated.

— ip_address: IP address from access.

Figure 16 shows the flow of operations in this benchmark:

1. Read Kafka events Get events of the input stream.

2. Extract the JSON information Data arrive in JSON for-
mat, so in this step data are converted into the objects
we are working with, extracting the information from the
fields.

3. Filter irrelevant events Through the input, stream events
with different values of event type can be received. This
step filters events and only those with view value are
kept.

4. Transform/Project fields On each instance there are a
series of values and fields. In this step the fields that
interest us are projected. These are ad_id and event_time.

5. Join In Redis there is a table that includes the cam-
paign_id that each ad _id has. In this step the data
from the Redis table are obtained and joined to the
events.

6. Time window aggregation In this benchmark time win-
dows are used, so in this step the number of campaigns
within each window are counted.

7. Store results Finally, the results obtained are sent to
Redis.

In comparison [6] Spark Streaming (1.5.1), Storm (0.11.0)
and Flink (0.10.1) were compared. In 2018 another compar-
ison with Yahoo Streaming Benchmark [16] was performed.
It makes the same comparison but updating the version of
technological frameworks from the previous comparison:
Spark Streaming (2.3.0), Storm (1.2.1) and Flink (1.5.0),
and adding Spark Structured Streaming (2.3.0) and Kafka
Streams (1.1.0). The source is available in [40].

In our benchmark, different executions are run in Spark
Streaming (2.4.0), Spark Structured Streaming (2.4.0), Storm
(1.2.2), Flink (1.7.1) and Samza (1.0.0) with different rates
for each one, from 4000 to 88000 Transactions Per Second
(TPS). The final event latency of each processed window is
calculated as follows:

final_event_latency

= (window_last_event_updated — window_start) — window_duration

ey

In experiments, ten homogeneously configured nodes
were used, each one with 64-bit Ubuntu 16.04 LTS as Opera-
tive System, Intel Core i5 750 processor at 2.67 GHz (4 cores
per node), 4GB of memory RAM at 1066 MHz and con-
nections of 1 GB/s. All the nodes were connected through a
gigabit Ethernet switch.

The architecture of the benchmark can be seen in Fig. 17,
in which 2 nodes are for Kafka Producers, 1 node is for
Apache Zookeeper, 1 node is for Kafka broker, 1 node is for
Redis and 5 nodes are for Stream Processors. In each Stream
Processor Spark, Storm, Flink and Samza were installed.
Apex is not included in this benchmark because it uses soft-
ware from DataTorrent and the web supporting this library
has closed.
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Fig. 17 Benchmark architecture for experiments

8.2 Analysis of results

Now, the results obtained are commented for each streaming
processing framework. In these results, the latency obtained
for each experiment can be seen. The objective of this exper-
iment is to find a bottleneck in the latency, which would
indicate that the technological framework receives more data
than it can process by time unit.

Latency can be more or less constant if the processing time
is lower than the time window, or increases linearly or even
exponentially, because data have to wait for the processing
to finish. An increment in latency indicates that the system
receives more data than it can process. Depending on the
amount of data received per second, latency increase linearly
or exponentially. When latency increases exponentially, this
indicates that there is a bottleneck. With these experiments,
the latency of each streaming processing framework for each
TPS is analyzed and we find out the TPS at which the bottle-
neck appears.

Table 6 shows a summary of the individual experiments
carried out on each processing framework analyzed. The first
row shows the TPS needed to produce a bottleneck (latency
increases exponentially). The last two rows show values in
seconds of the lowest and highest latency for each techno-
logical framework, respectively.

Each graph in Fig. 18 shows the evolution of latency by
the percentage of completed examples for the different tech-
nological frameworks analyzed.

In Fig. 18a it can be seen that Spark Streaming has a
latency under 10s between 8 K TPS and 80K TPS and
that the latency increases linearly. In 88 K TPS there is a
bottleneck, because the latency increases exponentially and

reaches around 55s. Thus, the results obtained show that
Spark Streaming has a good performance bellow 80 K TPS.

The second streaming processing framework analyzed
was Structured Streaming, whose results are shown in
Fig. 18b. Between 8 K TPS and 80 K TPS, latency was under
24 s and for 88 K TPS it reached 33 s of latency. This indi-
cates that a bottleneck appears after 80 K TPS, but the latency
is lower than in Spark Streaming for 88 K TPS. For this rea-
son, Spark Structured Streaming has better performance than
Spark Streaming and Samza for higher TPS.

In Fig. 18c it can be seen that latencies of Storm are much
higher than other streaming processing frameworks in all
TPS. This is the technological framework in which the bot-
tleneck has appeared earliest. From the results, obtained it
can be deduced that Storm is not good for the streaming
problem proposed in Yahoo Streaming Benchmark.

For Flink the best latencies of the benchmark for all TPS
was obtained. In Fig. 18d it can be seen that between 8 K TPS
and 80K TPS the latency has a more or less linear increase,
with latencies of between 4s and around 5s. At 88K TPS
the bottleneck appears, but the latency is of around 10s, the
lowest latency of all streaming processing frameworks.

The results for Samza are shown in Fig. 18e, where it
can be observed that the latency is under 10s from 8 K TPS
to 4§ K TPS. Between 48 K TPS and 72K TPS the latency
reaches around 20s, and for TPS greater than 72 K, latency
increases exponentially, reaching 400s in the case of 88K
TPS. These results show that Samza has a good performance
when TPS is low.

Lastly, the results of Spark Streaming (spark_dstream),
Spark Structured Streaming (spark_dataset), Flink and Samza
are compared in Fig. 18f, using the same scale on axis to bet-
ter evaluate the performance. Storm is not included in this
comparison because a very low performance was obtained
with respect to the other streaming processing frameworks.

Spark Streaming has a better latency than Spark Structured
Streaming for 80 K TPS or lower, but for more than 80 K TPS
Spark Structured Streaming maintains a good performance
while Spark Streaming increases exponentially. Samza has a
good performance until 64 K TPS, but after this latency has
an exponential increase for high TPS. Flink’s latency is more
or less constant at around 5s for all TPS, until higher TPS,
where it starts to increase faster, but always slower than the
other streaming processing frameworks.

Table 6 Summary of

experiments Spark streaming Spark structured streaming Storm Flink Samza
Bottleneck (TPS) 88K 88K 16K 88K 72K
Lowest latency (S) 4 12.5 25 4 4
Highest latency (S) 58 32.5 550 10 400
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According to our results Flink has a better behavior in
this benchmark than the other technological frameworks for
streaming processing, because it has the lowest latency for
all TPS.

9 Comparison of machine learning
algorithms for data stream

In this section, a new comparison with a machine learn-
ing algorithm over some technological frameworks for data
stream processing seen in Sect. 6 is performed.

In the experiments, Apache Kafka was used for data
ingestion because, as was shown in Sect. 5, it has compat-
ibility with all the technological frameworks seen in this
paper and is the most used in the literature. For their part,
Apache Spark and Apache Flink were used for data process-
ing, because Flink had the best performance in the previous
comparison and Spark was the second. Although Spark
Structured Streaming mode was the second best framework,
Spark Streaming mode was used for experiments, because
Spark Structured Streaming does not have a machine learn-
ing library with streaming algorithms, but Spark Streaming
has MLLIB, which includes some streaming algorithms.

In the experiments, the training time of the processing
frameworks was measured using a machine learning algo-
rithm from MLLIB called streaming K-means.

Flink has no implementation for streaming K-means, so in
this study a new implementation of this algorithm for Flink
was performed. This implementation for Flink is the same
algorithm as Spark, but uses sequential windows instead of
time windows. In Spark, this algorithm updates the model at
each batch interval time, but in Flink the model is updated
every certain number of examples. The Flink implementa-
tion has an update frequency, so at each certain number of
instances, the model is updated. It is updated in the same
form in both implementations.

Four datasets with different sizes were used to train the
algorithm. There were two real and two synthetic datasets.
The main characteristics of these datasets are described
below:

— The Covtype dataset is a real dataset that contains
581,012 instances and 54 integer attributes and models
the forest cover type prediction problem from carto-
graphic variables.

— The Power dataset is another real dataset that contains
2,049,280 instances (after removing instances with miss-
ing values) and 7 floating-point attributes and measures
electric power consumption in one household at a one-
minute sampling rate over a period of almost four years.

— The SEA dataset is a synthetic dataset generated by MOA
[41] that contains 5,000,000 instances and 3 floating-
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Fig. 19 Machine learning benchmark architecture

point attributes, where only two are relevant attributes:
x; € [0, 10], where i = 1,2, 3. The target concept is
X1 + x0 < B, where 8 € {7,8,9,9.5}. We have used
B =28.

— The RBF dataset is another synthetic dataset generated
by MOA [41] that contains 10,000,000 instances and
20 floating-point attributes. This generator first creates a
fixed number of random centroids and, for each instance
to generate, it selects a centroid and generates an instance
inside this centroid.

For the experiments, a cluster configuration with eight
nodes was used. In one node, Apache Zookeeper was used
to state management of the other nodes in the cluster. In
another node, a Kafka producer was implemented to send
data to Kafka broker. Apache Kafka was installed in another
node to receive messages from the source and store them.
Finally, five nodes with Apache Spark or Flink (one master
and four slaves) were used to process input data stream with
the streaming K-means algorithm. In Fig. 19 a scheme of the
system used is shown. To run each experiment, first a cluster
with the number of desired slaves (1, 2, 3 or 4) was created.
Once the cluster was running, the Spark or Flink submit com-
mand was executed to send the jar file to master and a wait of
around 20s was needed for the streaming application to run
in all slaves. After that, Kafka producer was run to send one
dataset to a topic and the streaming application processed
these data.

Table 7 shows the mean in seconds of 10 executions for
Spark and Flink. In the different experiments, the number
of worker nodes was changed, increasing this number one
by one from 1 to 4. The results show that Flink has a better
performance in this comparison than Spark in Power, SEA
and RBF datasets, using more or less half the time. Training
time decreases with the increment on the number of workers
in the cluster. For example, let us suppose that with one node
the training time is 40 seconds. If the number of workers
increases to 2, this time will be 20s and, with 4 workers, it
will be 10s. But as can be seen in Table 7, some values did
not decrease as they should. This is because the send time
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Table7 Results of streaming K-means

Dataset Workers Spark streaming time (s) Flink time (s)
Covtype 1 13.6313 18.2095
2 8.4619 10.6988
3 6.3911 7.9011
4 6.1384 6.4233
Power 1 21.4361 12.7472
2 11.8503 8.5622
3 7.6643 7.442
4 7.1309 6.758
SEA 1 59.6979 29.172
2 32.1117 22.8102
3 23.7461 19.6678
4 20.7679 18.7681
RBF 1 676.6879 320.9581
2 360.5873 248.321
3 269.9693 197.9395
4 237.5595 185.5117

Bold value is the best obtained time (in seconds) for each experiment

Table 8 Results of streaming K-means on covtype dataset

Dataset Workers Spark Streaming time (s) Flink time (s)
Covtype 1 13.6313 18.2095
2 8.4619 10.6988
3 6.3911 7.9011
4 6.1384 6.4233
Covtype2 1 113.1811 130.3124
2 60.5999 68.94
3 43.8494 47.64275
4 38.3538 37.88
Covtype3 1 177.081 134.2934
2 96.6267 71.6498
3 73.1975 53.5453
4 62.7564 50.6911

Bold value is the best obtained time (in seconds) for each experiment

limits the processing time. The Covtype and Power datasets
do not show a good decrease because there are few data. In
SEA dataset this decrease can be seen in Spark, and in the
RBF dataset both Spark and Flink show this decrease.

For Covtype, Spark performs better than Flink, so another
experiment with this dataset was performed in order to learn
the reason why. In this second experiment, another two
datasets were used. One dataset (called Covtype2) is the
same dataset as Covtype, but has eight times its content.
This dataset starts with a copy of Covtype and, when the
data send ends, another copy is sent, up to eight times. The
resulting dataset contains 4,648,096 instances and 54 integer
attributes. The other dataset (called Covtype3) is the same

dataset as Covtype2, but zeros are replaced by a decimal
value. This dataset contains 4,648,096 instances and 54 inte-
ger and real attributes.

The results of the second experiment can be seen in
Table 8. The experiment was the same as the previous one,
with the mean of 10 executions. In Covtype2, Spark per-
formed better than Flink in all experiments except when
the number of workers was 4, so the reason why Spark is
better is not the number of instances in the dataset. When
seeing data from Covtype, it can be observed that it con-
tains many zeros, so in the third dataset zeros were replaced
with a decimal value. In Covtype3, Flink performed better
than Spark in all experiments, so this shows that Spark uses
a more efficient data structure. Spark uses a data structure
called Vector instead of Array, which is more efficient in
processing instances with a lot of zeros in their attributes.
Our implementation of streaming K-means for Flink uses
Array, so it is less efficient than Spark in these cases.

Both Spark and Flink scaled well according to the number
of workers in the cluster but, in general, Flink showed a better
performance with respect to Spark, except over datasets with
many zeros, as the previous comparison of Sect. 8 shows.
These results show that the implementation details and data
structures chosen are important factors to take in account in
order to guarantee good efficiency of algorithms.

10 Conclusions

There are many open source and proprietary streaming
technological frameworks that can be used for distributed
machine learning. This paper analyzes some technological
frameworks for data ingestion and data processing phases.

For data ingestion, Kafka, Flume and Nifi were analyzed.
Each one has their strengths and weaknesses, but the anal-
ysis shows that the best of them is Apache Kafka, because
it is a technological framework widely used by the research
community that offers advantages over the other ingestion
frameworks, like the concept of topic, data replication, gen-
eral purpose and the high compatibility with the processing
frameworks.

For data processing, Spark Streaming, Spark Structured
Streaming, Storm, Flink, Samza, Apex and Beam were ana-
lyzed. The main characteristics about each one were shown
and two comparisons were performed to compare the perfor-
mance of technological frameworks. In the first comparison,
the latency of data in a cluster of 10 nodes was analyzed
for Spark Streaming, Spark Structured Streaming, Storm
(without Trident), Flink and Samza in a benchmark called
Yahoo Streaming Benchmark. The results of this comparison
show that Flink has better behavior than the other stream-
ing processing frameworks for this benchmark. The second
comparison evaluates the performance of Spark Streaming
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and Flink with a streaming machine learning algorithm run-
ning in a cluster of eight nodes. Spark Streaming has the
streaming K-means algorithm implemented in MLLIB, but
Flink does not have a version of this algorithm implemented,
so a new version of this algorithm with sequential windows
was performed for this comparison. In this case the train-
ing time of the streaming K-means algorithm was measured
over 4 datasets of different sizes, and the results of this com-
parison show that Flink is faster than Spark in datasets that
do not contain a lot of zeros in attributes of data, because
Spark uses a data structure called Vector instead of Array.
The performance of a processing framework depends on its
implementation, its data structures and the problem to solve,
among other reasons.

With respect to machine learning algorithms for the
streaming mode, at this moment there are not many stream-
ing algorithms implemented in these libraries. Spark is the
technological framework that has more streaming algorithms
implemented of all the analyzed frameworks analyzed. For
this reason, the implementation of more open-source libraries
for machine learning on data stream is necessary.
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