
Progress in Artificial Intelligence (2019) 8:343–358
https://doi.org/10.1007/s13748-019-00184-0

REGULAR PAPER

A chaotic salp swarm algorithm based on quadratic integrate and fire
neural model for function optimization

Santosh Kumar Majhi1 · Abhilash Mishra1 · Rosy Pradhan2

Received: 6 October 2018 / Accepted: 7 April 2019 / Published online: 19 April 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Real-world problems generally do not possess mathematical features such as differentiability and convexity and thus require
non-traditional approaches to find optimal solutions. SSA is a meta-heuristic optimization algorithm based on the swimming
behaviour of salps. Though a novel idea, it suffers from a slow convergence rate to the optimal solution, due to lack of diversity
in salp population. In order to improve its performance, chaotic oscillations generated from quadratic integrate and fire model
have been augmented to SSA. This improves the balance between exploration and exploitation, generating diversity in the salp
population, thus avoiding local entrapment. CSSA has been tested against twenty-two bench mark functions. Its performance
has been comparedwith existing standard optimization algorithms, namely particle swarm optimization, ant–lion optimization
and salp swarm algorithm. Statistical tests have been carried out to prove the superiority of chaotic salp swarm algorithm over
the other three algorithms. Finally, chaotic SSA is applied on three engineering problems to demonstrate its practicability in
real-life applications.

Keywords Salp swarm algorithm · Chaotic map · LIF model · Optimization

1 Introduction

In recent times, meta-heuristic techniques have become
very popular. At a time when engineering problems are
engulfed in the midst of gargantuan complexity, meta-
heuristic approaches have offered a safe haven by providing
reliable, computationally fast and efficient methods for gen-
erating solutions. One of the reasons for this enormous
demand for the use of meta-heuristic approaches is that they
provide a simple black-box approach, whereby the problem
of interest is defined only in terms of inputs and outputs.
No special care needs to be taken to fit the problem to
the meta-heuristic algorithm for generating solutions. Also,
these approaches handle the case of constrained optimization
problems quite elegantly.Constraint optimization problems
are problems in which the target function is minimized or
maximized based on constraints. Constraints define the fea-

B Santosh Kumar Majhi
smajhi_cse@vssut.ac.in

1 Department of Computer Science and Engineering, Veer
Surendra Sai University of Technology, Burla, Odisha, India

2 Department of Electrical Engineering, Veer Surendra Sai
University of Technology, Burla, Odisha, India

sible domain space wherein the solution has to be looked
for [1]. While conventional deterministic approaches suf-
fer from increased complexity, meta-heuristic approaches
are not affected by the same. On top of that, accuracy of
the solution generated is quite high and is obtained within
a very reasonable amount of time. Again, in this case, the
problem of local minima entrapment also is not present.
Local minima entrapment refers to the entrapment of the
algorithm in a local minimum solution. This prevents the
algorithm from finding out the global optimum solution in
the search domain. Therefore, it is not difficult to see why
this class of techniques has won hearts of researchers from
various domains of engineering and sciences. Meta-heuristic
approaches belong to the family of stochastic optimization
techniques as they take random operators into account during
optimization.

In the broadest sense, stochastic optimization algorithms
can be based on inspiration of an algorithm and the num-
ber of random solutions generated in each step of opti-
mization process [2,3]. The first category includes swarm
intelligence-based algorithms [4], evolutionary algorithms
[5] and physics-based algorithms [6]. The second cate-
gory can be divided into two sub-categories, namely (1)
individual-based algorithms and (2) population-based algo-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-019-00184-0&domain=pdf

344 Progress in Artificial Intelligence (2019) 8:343–358

rithms [3]. In individual-based algorithms, a single random
solution is chosen and is iteratively improved so as to obtain
an optimal solution. These algorithms are faster as they have
lesser computational costs and fewer function evaluations.
Popular algorithms of these categories include tabu search
[7], hill climbing [8], iterated local search [9] and simu-
lated annealing [10]. One of themajor disadvantages of these
algorithms is that they are susceptible to premature conver-
gence. This prevents them from attaining global optimum
solutions. Premature convergence occurs when the algorithm
gets trapped in a local minimum and is unable to find the
global minima.

The population-based algorithms start with an initial set of
candidate solutions, expressed as−→y ={−→y1 ,

−→y2 ,
−→y3 , . . . ,

−→yn },
where n denotes the number of candidate solutions. Each
solution is evaluated against a fitness function. The algo-
rithm then proceeds to obtain better solutions with higher
fitness values by modifying or updating or combining the
candidate solutions. The new obtained solutions are again
tested with the fitness function. The process continues until
a solution with desirable accuracy is obtained. One of the
major advantages of these algorithms over individual-based
approach is that they are not susceptible to premature conver-
gence. Since many particles are computed at a time, chances
of getting trapped into a local optimum is minimum. Two
popular sub-categories of population-based algorithms are
evolutionary computing and swarm intelligence.

Evolutionary category of meta-heuristic algorithms that
start out with a set of randomly chosen solutions and better
solutions is generated from the chosen set. These algorithms
mimic the Darwinian theory of evolution, whereby weaker
solutions are eliminated. Some of the prominent exam-
ples include genetic algorithm [12], differential evolution
[13], evolutionary Programming [14], evolutionary strategy
[16], human evolutionary model [38], evolutionary mem-
brane algorithm [39] and asexual reproduction optimization
[40].

The second category of meta-heuristic algorithms, i.e.
swarm intelligence algorithms, is inspired by the collective
behaviour of a group of creatures, such as ants, birds, grey
wolves and whales. In a swarm, each creature keeps track of
its own position, as well as the position of its neighbours. The
whole group cooperates with each other to find resources,
protects itself from enemies and sustains itself in the long
run. Moving along the same train of thought, swarm intelli-
gence algorithms use intelligence of individual elements of
the swarm to compute themost optimal solution in the search
space. Advantages of using swarm intelligence algorithms
can be stated as follows. First, there are only a few parameters
to adjust, compared to evolutionary algorithms. Second, dur-
ing the course of iteration, information regarding the search
space is not lost. Third, there are comparatively lesser oper-
ators to adjust. Fourth, implementation is quite easy. Some

of the most popular examples of these algorithms include
particle swarm optimization [31], whale optimization [42],
grey wolf optimization [25], ant colony optimization [30],
artificial bee colony algorithm [11], firefly algorithm [32],
cuckoo search algorithm [28], democratic particle swarm
optimization [29], Dolphin Echolocation [41], ant–lion opti-
mization [57], cuckoo optimization algorithm [34], fruit fly
optimization algorithm [35], bat algorithm [36], moth-flame
optimization algorithm [47], mushroom reproduction opti-
mization (MRO) [48], butterfly optimization algorithm [49],
Andean Condor Algorithm [51].

A third category of meta-heuristic algorithms is based on
the principles of physics operating in the universe. Exam-
ples of this category include gravitational search algorithm
[23], charged system search [24], ray optimization [26], col-
liding body optimization [54], blackhole optimization algo-
rithm [55], big-bang big crunch algorithm [27], gravitational
local search [17], central force optimization [18], artificial
chemical reaction optimization algorithm [19],small world
optimization algorithm [20], galaxy-based search algorithm
[21], curved space optimization [22].

To further improve the performance of these existing
algorithms, chaotic behaviour can be incorporated. Chaotic
behaviour is generally displayed by nonlinear dynamic sys-
tems which are highly sensitive to initial conditions. These
systems display chaotic behaviour by performing infinite
unstable periodic motions across a range of permissible
values [33]. Chaotic behaviour has been augmented in algo-
rithms like genetic algorithms [52], harmonic search [56],
PSO [43], ABC [44], FA [45], BOA [53], GWO [33].

In the presented work, we propose a chaotic salp swarm
algorithm driven by 1D poincaremap of quadratic leaky inte-
grate and fire model for generating chaotic oscillations. To
our knowledge, our work is the first to empower a meta-
heuristic algorithm with a neural model. This new approach
opens the immense possibilities for developing awhole spec-
trum of algorithms based on neural models.

The rest of the section is divided as follows: In Sect. 2,
a background study has been presented. In Sect. 2.1, an
overview of salp swarm optimization algorithm has been pre-
sented. In Sect. 2.2, an overview of quadratic integrate and
fire model has been presented. In Sect. 2.3, an overview of
chaos theory and chaos maps has been presented. In Sect. 3,
the chaotic SSA(CSSA) algorithm has been described. Sec-
tion 4 contains results and discussions regarding CSSA,
which includes benchmark function testing and statistical
testing. Section 5 presents the application of CSSA on three
real-life engineering problems, namely gear train design
problem, cantilever beam design problem and welded beam
design problem. Section 6 presents the conclusion and future
scope of the algorithm.

123

Progress in Artificial Intelligence (2019) 8:343–358 345

2 Background

In this section, an overview of salp swarm algorithm,
quadratic integrate and fire neural model and chaos theory
and chaos maps has been presented.

2.1 Overview of salp swarm algorithm

Salp swarm optimization algorithm [37] is a recently devel-
oped algorithm based on the swarm behaviour of the salps.
Salps are deep sea creatures belonging to the family of Salp-
idae. Like many deep sea creatures, they have transparent
barrel-shaped body and propagate by pumpingwater through
their body to move forward. Salps form a chain structure
called salp chain. The swarm coordination between salps in
the chain helps them to perform better coordination in move-
ment and foraging.

Salp chains have two types of population groups: leader
and followers. The leader is at the front of the salp chain. It
leads the group and is responsible for maintaining a balance
between the exploration and exploitation ratio. Followers fol-
low each other and the leader. The position of the salps is
defined in n-dimensional search space, where n is the num-
ber of variables in the given optimization problem. The food
source is denoted as F, which is the swarm’s target.

The position of the leader is defined as:

f (x) =
{
Fi + c1((ubi − lb j)c2 + lb j), if c3 ≥ 0;
Fi − c1((ubi − lb j)c2 + lb j), if c3 < 0; (1)

where x1j is the position of the first salp in the j th dimension,
Fj is the position of the food in the jth dimension and ub j

and lb j are the upper and lower bounds in the j th dimension.
c1,c2,c3 are random numbers. Also,

c1 = 2e
−

(
4l
L

)2
(2)

l is the current iteration, and L is the maximum number of
iterations. c2, c3 are random numbers generated from [0, 1].

The position of the followers is given by:

xij = 1

2

(
xij + xi−1

j

)
(3)

where i ≥ 2 and xij is the i th follower salp in the j th dimen-
sion. Algorithm for salp optimization is shown in Fig. 1.

2.2 Overview on quadratic integrate and fire neural
model

Neurons are the basic buildingblocks of the brain and the cen-
tral nervous system.There are about 86billion neuronswithin
the nervous system to communicate with rest of the body.

They are usually classified into three broad types: sensory
neurons, motor neurons and interneurons. The fundamental
function of a neuron is to convert an incoming stimuli into a
train of electrical events called as spikes. Spikes are sudden
upsurges in membrane potential when the membrane poten-
tial reaches a specific value, called threshold voltage. Some
popular models for replicating the firing behaviour of neu-
rons are leaky integrate and fire model [69], modified leaky
integrate and fire model [68], Hodgkin–Huxley model [69],
compartment model [69].

Quadratic integrate andfiremodel [69] is a variant of leaky
integrate and fire model. Compared to traditional leaky inte-
grate and fire model, quadratic integrate and fire model can
provide a better replication of dynamic behaviour of biolog-
ical neurons. QIF model can be represented as

dy

dt
= y2 + a + y (7)

dy

dt
= b − y

τ(y)
(8)

and spike rules are:

{
x(t+) = q, if x(t) = h;
y(t+) = cy(t) + p, if x(t) = h; (9)

and t+ = limε→0,ε>0(t + ε). h is the peak of the spike, q is
the reset value, p, c, b describe the adaptive current and c ≥
0. τ(x) defines the voltage-dependent adaptive time constant
and is defined as τ(x) = τ/x , where τ is a constant.

2.2.1 Chaotic behaviour in QIF model

Considering the poincare section: S = {(x, y)|x = h},
chaotic behaviour is displayed in QIF model if the param-
eters follow the following 6 conditions [46]:

(cQ + H)2 − (Q2 − H2 + L)(c2 − 1) ≥ 0 (10)

l ≥ 0 (11)

c > 1 (12)

H > f (yz) = yA > y∗; (13)

f (yA) = yB < y1 (14)

yk �= Q

c
(15)

where
L = (2a + h2 + q2 − b),
H = (a + h2) ,
Q = (p − a − q2),
yz = −Q

c ,
yA = f (yz),

y∗ =
√

(cQ+H)2−(Q2−H2+L)(c2−1)−(cQ+H)

c2−1

123

346 Progress in Artificial Intelligence (2019) 8:343–358

Fig. 1 Algorithm for SSA [3]

a, q, b, p, h, c are parameters as defined in the previous
section. The poincare map for quadratic integrate and fire
model is given by:

yi+1 = f (yi) = H −
√

(cyi + Q)2 + L (16)

2.3 Chaos theory and chaotic maps

In its most general form, a chaos is a deterministic, random-
like method found in nonlinear, dynamic system, which is
non-periodic, bounded and-nonconverging. Mathematically,
chaos is the randomness of a simple deterministic dynamical
system and chaotic system may be considered as a source

of randomness [50]. Chaos is apparently random, but pos-
sesses an element of regularity. It is due to this regularity that
chaotic variables can be used to perform searches at higher
speeds compared to pure stochastic searches. In addition, a
change in only a few variables and an alteration in initial
state is required to obtain an entirely different sequence. So,
chaotic maps have been used in number of meta-heuristic
search algorithms. Some popular chaotic maps are included
in Table 1. Some popular chaotic algorithm includes chaotic
krill herd optimization algorithm [63], chaotic grasshop-
per optimization algorithm [64], chaotic whale optimization
algorithm [65], chaotic grey wolf optimization algorithm
[66], chaotic bee colony algorithm [67].

123

Progress in Artificial Intelligence (2019) 8:343–358 347

Table 1 Examples of chaotic maps

Function Chaotic map

Chebyshev map xk+1 = cos(k cos−1(xk))

Circle map xk+1 = xk+b−(P−2π) sin(2πxk)/mod(1)

Gauss map
l =

{
0 xk = 0

1
xkmod(1) otherwise

1
xkmod(1) = 1

xk
−

[
1
xk

]

Iterative map xk+1 = sin(Pπ
xk

)

Logistic map xk+1 = Pxk(1 − xk)

Sine map xk+1 = a
4 sin(πxk), where P ∈ (0, 4)

Singer map xk+1 = P(7.86xk − 23.31x2k + 28.75x3k
− 13.302875x4k), where P ∈ (0.9, 1.08)

3 Proposed quadratic integrate and fire
model-driven salp swarm optimization

In the proposed work, SSA [37] is forged with chaotic oscil-
lations arising from quadratic integrate and fire model [61].
This helps SSA to avoid local optimum solutions. Also,
ergodicity and non-repetition properties of chaos ensure that
overall searches are done at faster rate compared to stochas-
tic searches. The proposed algorithm is shown in Fig. 2. In
the first step, the salp population is initialized with random
values. QIF model parameters are initialized as well. After
this, fitness of each search agent is calculated. The position
of leader salp is updated, and the positions of follower salps
are calculated by augmenting the chaotic map value. The
chaotic map sequence is then updated, and position of salps
is adjusted based on upper and lower bounds. This process
continues till the termination condition is not fulfilled. The
chaotic map value helps to avoid local minima entrapment
and ensures faster convergence.

4 Results and discussion

In this section, two experiments have been performed to
prove that CSSA performs better than the standard meta-
heuristic algorithms. For comparison purposes, we have
chosen three standard nature-inspired heuristic algorithms,
namely PSO, ALO and SSA. The experiment can be divided
into two broad categories: (1) testing against benchmark
functions and (2) statistical testing. In the first test, all the
four algorithms are tested against a set of 22 benchmark func-
tions. The best-case performance, worst-case performance,
average-case performance and standard deviation of each
algorithm are compared with those of CSSA. Relevant con-
clusions are drawn based on these parameters.

Sincemeta-heuristic algorithms are probabilistic in nature,
comparison based on mean and standard deviation is not suf-

ficient. So, statistical testing methods are used to prove the
hypothesis that CSSA performs better than the other three
algorithms. Friedman test was used for this purpose in the
presented work. Further, Holms test was employed to show
thatCSSAperforms the best.All simulationswere performed
on a Intel(R) Core(TM) i7-5500U CPU with a clock rate of
2.40GHz. Finally, an asymptotic complexity analysis of the
algorithm has been performed.

4.1 Test against standard benchmark functions

CSSA, SSA, PSO, ALO were tested against a set of bench-
mark functions. The details of the benchmark functions are
stated in appendix A. Maximum number of iterations used
for all the algorithms is 1000. The details of the performance
of all thementioned algorithms are shown inTable 2. It can be
observed that CSSAhas clearly surpassed the performance of
all other algorithms based on the best-case and average-case
parameters. The standard deviation is also minimum, indi-
cating that the algorithm is stable near the global optimum.
CSSA performs better than other algorithms in functions F1,
F2, F3, F4, F5, F6, F8, F9, F10, F12, F13, F15, F19, F20, F21,
F22 in terms of average fitness values. In F7, its performance
is equivalent to SSA, and in functions F16 and F17, all algo-
rithms perform equally. In F11, CSSA performs worse than
all other algorithms.Also, in terms of best-case values, CSSA
performs better than other algorithms in F1, F2, F3, F4, F5,
F6, F7, F9, F10, F11, F12, F13, F15, F21. It performs equiv-
alent to SSA in F8 and F15. In F18, F19, F20, F22, CSSA,
SSA and ALO perform equivalently. In F14, F16, F18, all
algorithms perform equivalently. Further, standard deviation
is minimum for most cases in CSSA, when compared with
other algorithms.

The convergence graphs of the functions with respect to
the functions are shown in Fig. 3. The convergence graphs
have been drawn with respect to the best-case performances
obtained from the benchmark functions. It can be clearly seen
that CSSA has outperformed all other algorithms in most
of the benchmark functions. These improved results can be
attributed to the enhanced balance between exploration and
exploitation ratio obtained from integrating chaotic oscilla-
tions.

4.2 Statistical measures for performance evaluation

Statistical techniques are used to prove the significant differ-
ences between results of optimization algorithms. Friedman
test has been used in our work. Friedman test is a nonpara-
metric test which is used to find differences among groups

123

348 Progress in Artificial Intelligence (2019) 8:343–358

Fig. 2 Algorithm for chaotic
SSA

for ordinal dependent variables [60]. The null hypothesis is
stated as:

H0 : All the optimization algorithms are equivalent

The confidence level α is taken as 0.05. Ranks are assigned
based on the value of the best-case results obtained in the test
functions. The ranks are assigned from 1 to 4. The average
rank is calculated as:

R j = Sum of total ranks obtained by jth algorithm

Total number of functions.
(20)

Friedman statistics is represented as:

FF = (N − 1)X2
F

N (k − 1) − X2
F

(21)

where

X2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ (22)

123

Progress in Artificial Intelligence (2019) 8:343–358 349

Ta
bl
e
2

R
es
ul
ts
fr
om

te
st
s
ag
ai
ns
tb

en
ch
m
ar
k
fu
nc
tio

ns

Fu
nc
tio

ns
C
SS

A
SS

A
A
L
O

PS
O

B
es
tc
as
e

W
or
st
ca
se

A
ve
ra
ge

ca
se

SD
B
es
tc
as
e

W
or
st
ca
se

A
ve
ra
ge

ca
se

SD
B
es
tc
as
e

W
or
st
ca
se

A
ve
ra
ge

ca
se

SD
B
es
tc
as
e

W
or
st
ca
se

A
ve
ra
ge

ca
se

SD

F1
1.
64

E
−5

2
4.
81

E
−5

0
1.
74

E
−5

0
1.
34

E
−5

0
7.
34

E
−9

3.
73

E
−8

1.
81

E
−8

7.
91

E
−9

1.
91

E
−5

8.
82

E
−5

5.
84

E
−5

2.
52

E
−5

1.
81

E
−9

2.
44

E
−6

4.
5
E
−7

7.
42

E
−7

F2
2.
53

E
−2

3
1.
42

E
−1

5
1.
77

E
−1

6
4.
49

E
−1

6
5.
89

E
−6

2.
8
E
−3

2.
88

E
−4

8.
86

E
−4

1.
08

E
−5

1.
48

E
0

1.
93
8
E
−1

4.
7
E
−1

6.
66

E
−1

2
2.
2
E
−3

2.
36

E
−4

6.
8
E
−4

F3
2.
04

E
−1

4
7.
79

E
−1

0
1.
54

E
−1

0
2.
56

E
−1

0
7.
10

E
−1

0
2.
10

E
−8

5.
5
E
−9

6.
82

E
−9

2.
18

E
−6

1.
53

E
−2

1.
7
E
−3

4.
8
E
−4

1.
7
E
−9

1.
01

E
−8

5.
03

E
−9

3.
79

E
−9

F4
1.
15

E
−9

1.
00
9
E
−6

1.
4
E
−7

3.
11

E
−7

1.
29

E
−5

2.
00
9
E
−5

1.
6
E
−5

2.
8
E
−6

4.
8
E
−5

1.
3
E
−3

5.
85

E
−4

4.
18

E
−4

1.
10
8
E
−5

2.
24

E
−5

1.
75

E
−5

3.
77

E
−6

F5
2.
02

E
0

11
4.
14

E
0

19
.5
5
E
0

34
.0
4
E
0

3.
32
43

E
0

1.
12

E
3

29
9.
03

E
0

41
8.
37

E
0

4.
58

E
0

1.
04

E
3

18
6.
77

E
0

38
4.
96

E
0

4.
84

E
0

25
1.
85

E
0

85
.9
7
E
0

10
9.
12

E
0

F6
0

4.
56

E
−3

1
6.
74

E
−3

2
1.
41
29

E
−3

1
4.
4
E
−1

0
1.
00
8
E
−9

6.
9
E
−1

0
1.
6
E
−1

0
1.
97

E
−9

6.
02
5
E
−9

3.
44

E
−9

1.
45

E
−9

3.
5
E
−1

0
1.
53

E
−9

7.
8
E
−1

0
3.
19

E
−1

0

F7
7.
05

E
−4

5.
9
E
−3

3.
4
E
−3

1.
9
E
−3

1.
5
E
−3

1.
69

E
−2

8.
1
E
−3

5.
3
E
−3

4.
2
E
−3

5.
28

E
−2

2.
32

E
−2

1.
45

E
−2

4.
5
E
−3

1.
48

E
−2

7.
9
E
−2

3.
4
E
−3

F8
−3

.8
3
E
3

−2
.2
0
E
3

−2
.8

E
3

25
6.
27

E
0

−3
.3
8
E
3

−2
.2
8
E
3

−2
.7

E
3

37
0.
07

E
0

−2
.9

E
3

−1
.9
2
E
3

−2
.2

E
3

31
2.
07

E
0

−2
.8

E
3

−1
.6
6
E
3

−2
.2
8
E
3

38
1.
62

E
0

F9
1.
11

E
−8

2.
18

E
−8

1.
74

E
−8

3.
4
E
−9

7.
34

E
−9

3.
73

E
−8

1.
81

E
−8

7.
91

E
−9

1.
91

E
−5

8.
82

E
−5

5.
84

E
−5

2.
5
E
−5

1.
81

E
−9

2.
44

E
−6

4.
50
4
E
−7

7.
4
E
−7

F1
0

4.
4
E
−1

5
7.
9
E
−1

5
5.
5
E
−1

5
1.
71

E
−1

5
7.
72

E
−6

2.
31

E
0

0.
79
2
E
0

0.
89
35

E
0

2.
6
E
−5

1.
64

E
0

0.
39

E
0

0.
65
09

E
0

7.
3
E
−6

2.
31
6
E
0

0.
59
76

E
0

0.
97
5
E
0

F1
1

0
0.
51
87

0
0.
16
45

0.
07
63

0.
44
05

0.
22
07

0.
12
65

0.
11
07

0.
31
77

0.
00
44

0.
07
53

0.
11
82

0.
36
92

0.
24
24

0.
09
20

F1
2

0.
03
69

0.
29

0.
14
99

0.
08
09

0.
15
25

0.
57
58

0.
27
09

0.
15
05

0.
04
93

0.
50
95

0.
23
46

0.
15
25

0.
06
40

0.
37

0.
18
50

0.
10
80

F1
3

1.
30

E
−3

2
4.
6
E
−3

1
8.
06

E
−3

2
3.
5
E
−3

3.
4
E
−1

1
1.
1
E
−2

2.
2
E
−3

4.
6
E
−3

3.
66

E
−1

0
1.
1
E
−2

2.
2
E
−3

4.
6
E
−3

4.
66

E
−1

1
1.
1
E
−2

1.
1
E
−3

1.
47

E
−3

1

F1
4

99
.8
0
E
−2

99
.8
0
E
−2

99
.8
0
E
−2

1.
9
E
−1

6
99
.8
0
E
−2

99
.8
0
E
−2

99
.8
0
E
−2

2.
5
E
−1

6
99
.8
0
E
−2

1.
99
20

E
0

2.
08
28

E
0

2.
14

E
0

99
.8
0
E
−2

11
.7
18

E
0

2.
87
37

E
0

2.
29

E
0

F1
5

7.
46

E
−4

1.
1
E
−3

9.
5
E
−4

9.
15

E
−5

7.
32

E
−4

1.
6
E
−3

1.
1
E
−3

3.
35

E
−4

7.
08

E
−4

2.
04

E
−2

4.
8
E
−3

8.
2
E
−3

6.
49

E
−4

2.
04

E
−2

2.
8
E
−3

6.
2
E
−3

F1
6

−1
.0
31
6

−1
.0
31
6

−1
.0
31
6

1.
04

E
−1

6
−1

.0
31
6

−1
.0
31
6

−1
.0
31
6

.8
.1
5

∗1
01
4

−1
.0
31
6

−1
.0
31
6

−1
.0
31
6

5.
86

E
−1

4
−1

.0
31
6

−1
.0
31
6

−1
.0
31
6

1.
79

E
−1

5

F1
7

3
3

3
1.
2
E
−1

5
3

3
3

7.
98

E
−1

4
3

3
3

6.
44

E
−1

3
3

3
3

1.
33

E
−1

3

F1
8

−3
.8
62
6

−3
.8
62
6

−3
.8
62
8

9.
36

E
−1

6
−3

.8
62
6

−3
.9
14

−3
.8
64
7

1.
58

E
−1

3
−3

.8
62
6

−3
.8
74

−3
.8
63
5

9.
04

E
−1

4
−3

.7
29
1

−4
.2
4

−3
.4
03
6

0.
38

F1
9

−3
.3
2

−3
.2
84

−3
.2
98
2

0.
05
01

−3
.3
2

−3
.2
21
4

−3
.2
48
3

0.
06
34

−3
.3
2

−3
.2
51
4

−3
.2
74
3

0.
06
15

−2
.7
17

−1
.1
89
4

−1
.9
05
7

0.
50
9

F2
0

−1
0.
15
32

−2
.6
82
9

−6
.6
3

3.
16
7

−1
0.
15
32

−2
.6
30
5

−5
.3
8

3.
42
8

−1
0.
15
32

−2
.6
30
5

−5
.3
40
8

1.
85

−3
.1
62
9

−1
.5
28
8

−2
.5
23
2

0.
46
5

F2
1

−1
0.
49

−4
.7
83
2

−9
.8
41
0

1.
77

−1
0.
40

−2
.7
51
9

−8
.5
83
0

3.
00
09

−1
0.
40

−1
.8
37
6

−7
.1
55
9

3.
53

−4
.2
4

−1
.0
70
6

−2
.9
12
1

1.
04
1

F2
2

−1
0.
53

−2
.8
7

−8
.4
29

3.
4

−1
0.
53

−2
.4
21

−7
.5
8

2.
91

−1
0.
53

−5
.1
28

−8
.3
7

2.
78

−3
.6
05

−2
.1
06

−2
.8
3

0.
39
18

123

350 Progress in Artificial Intelligence (2019) 8:343–358

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3 Convergence curves

Here N is the number of test functions, and k is the number
of algorithms used. The Friedman statistic FF is distributed
according to theF-distributionwith (k−1) and (k−1) (N−1)
degree of freedom. For 4 algorithms and 22 test functions,
the degree of freedom is from 3 to 63. Therefore, the critical
value ofF(3,63) for α for α = 0.05 is 2.75. If FF value is less
than the critical value, then the null hypothesis is accepted,
otherwise it is rejected. Clearly, the value of FF = 6.833 is

greater than the critical value. Therefore, the null hypothesis
is rejected. This implies there exists some difference between
the algorithms (Table 3).

Since the null hypothesis is rejected, Holm’s test is per-
formed. It determineswhether performance ofCSSA is better
than the other algorithms.
H0 : The pair algorithms being compared are different

123

Progress in Artificial Intelligence (2019) 8:343–358 351

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v)

Fig. 3 continued

z value is computed as

z = Ri − R j

SE
(23)

where

SE =
√
k(k + 1)

6N
(24)

Here, CSSA is the control algorithm. After computing the
z value, probability, p is computed from the normal distri-

bution. If the computed p value is less than
(

α
k−i

)
, then

the hypothesis is rejected, else it is accepted. The results
of Holm’s test are shown in Table 4.

Since the all the other algorithms are rejected, it is proved
that CSSA performs better than the other algorithms.

123

352 Progress in Artificial Intelligence (2019) 8:343–358

Table 3 Average ranking of
algorithms based on the
evaluations from benchmark
functions

Function CSSA SSA ALO PSO

F1 1.74 × 10−50 (1) 1.81 × 10−8 (2) 5.84 × 10−5(4) 4.5 × 10−7(3)

F2 1.77 × 10−16 (1) 2.88 × 10−4 (3) 0.1938 (4) 2.36 × 10−4 (2)

F3 1.54 × 10−10 (1) 5.5 × 10−9(3) 0.0017 (4) 5.03 × 10−9(2)

F4 1.4 × 10−7(1) 1.6 × 10−5(2) 5.85 × 10−4(4) 1.75 × 10−5(3)

F5 19.55 (1) 299.03 (4) 186.77 (3) 85.97 (2)

F6 6.74 × 10−32 (1) 6.9 × 10−10 (2) 3.44 × 10−9 (4) 7.8 × 10−10(2)

F7 0.0034 (1.5) 0.0053 (2) 0.0145 (4) 0.0034 (1.5)

F8 −2.8 × 103 (1) −2.7 × 103 (2) −2.2 × 103 (4) −2.28 × 103(3)

F9 1.74 × 10−8(1) 1.81 × 10−8 (2) 5.84 × 10−5 (4) 4.504 × 10−7 (3)

F10 5.5 × 10−15 (1) 0.792 (4) 0.39 (2) 0.5976 (3)

F11 0.1902 (4) 0.1265 (3) 0.0753 (1) 0.0920 (2)

F12 0.1499(1) 0.2709 (4) 0.2346 (3) 0.185 (2)

F13 8.06 × 10−32(1) 0.0022(3.5) 0.0022 (3.5) 0.0011(2)

F14 0.9980(1.5) 0.9980(1.5) 2.0828 (3) 2.8737 (4)

F15 9.5 × 10−4 (1) 0.0011 (2) 0.0048 (4) 0.0028 (3)

F16 −1.0316 (2.5) −1.0316 (2.5) −1.0316 (2.5) −1.0316 (2.5)

F17 3 (2.5) 3 (2.5) 3 (2.5) 3 (2.5)

F18 −3.8626 (3) −3.8647 (1) −3.8635 (2) −3.4036 (4)

F19 −3.2982 (1) −3.2483 (3) −3.2743 (2) −1.9057 (4)

F20 −6.63 (1) −5.38 (2) −5.3408 (3) −2.5232 (4)

F21 −9.8410 (1) −8.5830 (2) −7.1559 (3) −2.9121 (4)

F22 −8.429 (1) −7.58 (3) −8.37 (2) −2.83 (4)

Average rank (Rj) 1.409 2.545 3.1136 2.8409

Bold values indicate the rank of the algorithm

Table 4 Holms test

i Algorithm z-score P value α
k−i Hypothesis

1 ALO −4.382 0.000006 0.0166 Rejected

2 PSO −3.6809 0.000116 0.025 Rejected

3 SSA −2.92 0.00175 0.05 Rejected

4.3 Asymptotic complexity analysis of CSSA

In this section, an asymptotic analysis of running time of
CSSA has been presented. Asymptotic analysis is concerned
with the change in running time of an algorithm based on the
input size [62]. It does not involve actual experimentation
to find the running time of an algorithm. It is based on a
theoretical analysis where running time of an algorithm is
represented as a function of input size.

There are five asymptotic notations used during the anal-
ysis, namely θ , O , ω, o, �, which are as follows:
For a given function g(n),
θ(g(n)) = { f (n) : There exist positive constants c1, c2,
and no such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥
n0}

O(g(n)) = { f (n) : There exist positive constants c and no
such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}
� = (g(n)) = { f (n) : There exist positive constants c and
no such that 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}
o(g(n)) = { f (n) : For any positive constant c > 0,
there exists a constant no > 0 such that 0 ≤ f (n) <

cg(n) for all n ≥ n0}
ω(g(n)) = { f (n) : For any positive constant c > 0,
there exists a constant no > 0 such that 0 ≤ cg(n) <

f (n) for all n ≥ n0}
Major contributing factors for complexity analysis of

CSSA include number of iterations involved, number of
salps, chaotic map generation and updations. Initializing the
position of the salps in step 1 has complexity O(n). Simi-
larly, chaotic map calculation has complexity O(n). Now, for
each iteration, fitness calculation has a complexity of O(n).
Updation of c1 has complexity O(1). Also, position update
for each iteration has complexity O(n). Now, involving the
total number of iterations in the analysis, it can be concluded
that asymptotic complexity of CSSA is O(n2). Thus, CSSA
is a polynomially bound algorithm.

123

Progress in Artificial Intelligence (2019) 8:343–358 353

Fig. 4 Structure of gear train design

5 Applications in engineering problems

In this section, CSSA algorithm has been applied to three
engineering problems, namely gear train design problem,
cantiliver problem and welded beam design problem. A brief
descriptionof the three problemshas beenprovided, followed
by results from simulation with SSA and CSSA.

5.1 Gear train design problem

This problem has been formulated to find theminimum num-
ber of tooth for four gears of a train in order to reduce the
cost of gear ratio [59]. It can be depicted as shown in Fig. 4. It
has four decision variables, namely ηA(x1), ηB(x2), ηC (x3)
and ηD(x4).

The minimization function can be described as:

Min F(x) =
(

1

6.931
− x3x2

x1x4

)2

(25)

where 12 ≤ xi ≤ 60 and i = 1, 2, 3, 4.
The results obtained for the minimization problem from

SSA and CSSA are depicted in Table 5. Clearly, CSSA has
outperformed all other algorithms.

5.2 Cantilever beam

This problem is formulated to minimize the weight of the
cantilever beam [59]. The beam consists of hollow elements
of square cross section, where the thickness of the elements
is constant. The right end of the beam is rigidly supported,
and a load is applied on the free end. Figure 5 shows the
described configuration.

The minimization problem can be shown as:

MinF(x) = 0.06224(x1 + x2 + x3 + x4 + x5) (26)

subject to the constraints:

g(x) = 61

x31
+ 37

x32
+ 19

x33
+ 7

x34
+ 1

x35
≤ 1 (27)

Table 5 Gear design problem Algorithms/parameters CSSA SSA ALO PSO

x1 43 43 49 33

x2 19 16 19 14

x3 16 19 16 17

x4 49 49 43 50

Optimum solution 2.70085 × 10−12 2.7009 × 10−12 2.7009 × 10−12 1.362 × 10−9

Bold values indicate the result of the proposed CSSA method

Fig. 5 Cantilever beam design
problem

Table 6 Cantilever problem Algorithms/parameters CSSA SSA ALO PSO

x1 6.018768 2.147964 6.01812 6.0100

x2 5.314328 5.071173 5.31142 5.3000

x3 4.491048 4.432640 4.48836 4.4900

x4 3.501587 3.705005 3.49751 3.4900

x5 2.147964 2.1543473 2.158329 2.1500

Optimum solution 1.33652 1.33983 1.33995 1.3400

Bold values indicate the result of the proposed CSSA method

123

354 Progress in Artificial Intelligence (2019) 8:343–358

Fig. 6 Structure of welded beam design problem

where 0.01 ≤ xi ≤ 100, i = 1, 2, . . . , 5
The results obtained fromCSSAhave been comparedwith

PSO, ALO, SSA and are depicted in Table 6.
CSSA was able to obtain the most optimal value for the

objective function F.

5.3 Welded beam design

In this problem, the cost of fabrication of welded beam is
to be minimized [59]. The structure consists of a beam A
and the weld for holding it onto member B. The schematic
diagram is shown in Fig. 6.

The minimization function can be defined as:

Min F(x) = 1.10471h2l + 0.04811tb(14 + l) (28)

subject to constraints:

g1(x) = τ(x) − τmax ≤ 0

g2(x) = τ(x) − τmax ≤ 0

g3(x) = h − b ≤ 0

g4(x) = 0.125 + h ≤ 0

g5(x) = δ(x) − 0.25 ≤ 0

g6(x) = P − Pc(x) ≤ 0

where

0.1 ≤ h ≤ 2.0,

0.1 ≤ l ≤ 10

0.1 ≤ t ≤ 10

0.1 ≤ b ≤ 2.0

G = 12 × 106 psi

E = 30 × 106 psi

P = 6000lb

L = 14in:

Also,

τ =
√

τ 21 + 2τ1τ2

(
l

2R

)
+ τ 22

tau1 = P√
2hl

tau2 = MR

J
M = P(L + 0.5)

J = 2

(
lh√
2

[
l2

12
+

(
h + t

2

)2
])

R = 1

2

√
l2 + (h + t)2

σ(x) = 6PL

bt2

δ(x) = 4PL3

Ebt3

Pc(x) = 4.013
√
EFt2b6

6L2

(
1 − t

2L

√
E

4G

)

where h = weld thickness, l = length of bar attached to the
weld, t = bar’s height, b = bar’s thickness, σ = bending
stress, τ = shear stress, Pc = buckling load on the bar
and side constraints, taumax = maximum stree on the beam
allowed = 13,600psi, σ = normal stress on the beam =
30,000 psi, Pc = bar buckling load, P = load = 6000lb,
τ = beam-end deflection, τ1 = primary stress, τ2 = sec-
ondary stress, M = moment of inertia, J = polar moment
of inertia.

The results from simulations with CSSA, SSA, PSO and
ALO are provided in Table 7.

Here, CSSA obtains the most optimal value for the objec-
tive function as compared to the other 3 algorithms.

6 Future scope and conclusion

Proposed chaotic SSA opens up a huge scope for the incor-
poration of neural models into the working mechanisms of
optimization algorithms to enhance their performance. Neu-
ral models are known to exhibit a variety of behaviours
which can be augmented with optimization algorithms
to improve their performance. More biologically realis-
tic models, such as Hodgkin–Huxley model, compartment
model, modified leaky integrate and fire model, can gener-
ate more complicated chaotic behaviours, which can further
aid in improving the convergence rate of the meta-heuristic
algorithms.

In the presented work, we have incorporated quadratic
integrate and fire model for improving the performance of
SSA. We used the chaotic oscillations generated from the

123

Progress in Artificial Intelligence (2019) 8:343–358 355

Table 7 Welded beam design Algorithms/parameters CSSA SSA ALO PSO

h 0.20100 0.18702 0.2442 0.24436895

l 6.86509 7.43593 6.2231 6.21860635

t 9.13492 9.03408 8.2915 8.29147256

b 0.20132 0.20584 0.2443 0.24436895

Optimum solution 2.152523 2.20512 2.38 2.3811

Bold values indicate the result of the proposed CSSA method

model to calculate the position of the follower salps. The
proposed chaotic SSA was compared with SSA, PSO and
ALO based on standard benchmark functions and statis-
tical tests, and it was proved that chaotic SSA performs
better than the other optimization algorithms. Asymptotic
complexity analysis was also presented to show that the
algorithm is polynomially bound. CSSA was also imple-
mented in three real-life engineering problems to demon-
strate its ability to solve complicated problems of practical
importance.

Appendix Benchmark functions

In this section, details of the function used in Table 2 have
been described.

• Function F1

– Mathematical expression:
∑n

i=1 x
2
i

– Lower bound: −100
– Upper bound: 100
– Dimensions: 30

• Function F2

– Mathematical expression:
∑n

i=1 |xi | + ∏n
i=1 |xi |

– Upper bound: -10
– Lower bound: 10
– Dimensions: 10

• Function F3

– Mathematical expression:
∑n

i=1

(∑i
j=1 x

j
)2

– Upper bound: -100
– Lower bound: 100
– Dimensions: 10

• Function F4

– Mathematical expression: maxi {|xi | , 1 ≤ i ≤ n}
– Upper bound: -100
– Lower bound: 100
– Dimensions: 10

• Function F5

– Mathematical expression:
∑n−1

i=1 [100(xi+1 − x2i)
2

+ (xi − 1)2]
– Upper bound: −30
– Lower bound: 30
– Dimensions: 10

• Function F6

– Mathematical expression:
∑n

i=1([xi + 0.5])2
– Upper bound: −100
– Lower bound: 100
– Dimensions: 10

• Function F7

– Mathematical expression:
∑n

i=1 i x
4
i + random[0, 1)

– Upper bound: −1.28
– Lower bound:1.28
– Dimensions: 10

• Function F8

– Mathematical expression:
∑n

i=1 i x
4
i +random[0, 1)

– Upper bound: −500
– Lower bound: 500
– Dimensions: 10

• Function F9

– Mathematical expression:
∑n

i=1[x2i − 10 cos(2πxi)
+ 10]

– Upper bound: −5.12
– Lower bound: 5.12
– Dimensions: 10

• Function F10

– Mathematical expression:−20exp

(
−0.2

√
1
n

∑n
i=1 x

2
i

)

− exp
(1
n

∑n
i=1 cos(2πxi)

) + 20 + e
– Upper bound: −32
– Lower bound: 32
– Dimensions: 10

123

356 Progress in Artificial Intelligence (2019) 8:343–358

• Function F11

– Mathematical expression: 1
400

∑n
i=1 x

2
i − ∏n

i=1 cos(
xi√
i

)
+ 1

– Upper bound: −600
– Lower bound: 600
– Dimensions: 10

• Function F12

– Mathematical expression: π
n { 10 sin(π y1) + ∑n−1

i=1
(yi − 1)2[1 + 10 sin2(π yi+1)] + (yn − 1)2}
+ ∑n

i=1 u(xi , 10, 100, 4)
yi = 1 + xi+1

4

u(xi , a, k,m) =
⎧⎨
⎩
k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

– Upper bound: −50
– Lower bound: 50
– Dimensions: 10

• Function F13

– Mathematical expression:
0.1

{
sin2 (3πx1) + ∑n

i=1(xi − 1)2[1+ sin2(3πxi +
1)] + (xn − 1)2[1 + sin2(2πxn)] } + ∑n

i=1 u(xi , 5,
100, 4)
yi = 1 + xi+1

4

u(xi , a, k,m) =
⎧⎨
⎩
k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

– Upper bound: −50
– Lower bound: 50
– Dimensions: 10

• Function F14

– Pseudocode:
aS = [−32 − 1601632 − 32 − 1601632 − 32
− 1601632 − 32 − 1601632 − 32 − 1601632; , . . .

−32 − 32 − 32 − 32 − 32 − 16 − 16 − 16 − 16 −
160000016161616163232323232];
for j = 1 : 25
bS(j) = sum((x ′ − aS(:, j)).̂ 6);
end
o = (1/500 + sum(1./([1 : 25] + bS))).̂ (−1);
end

– Upper bound: −65.536
– Lower bound: 65.536
– Dimensions: 2

• Function F15

– Pseudocode:
aK = [.1957.1947.1735.16.0844.0627.0456.0342.
0323.0235.0246];
bK = [.25.51246810121416];

bK = 1./bK;
o = sum((aK − ((x(1).∗(bK.̂ 2 + x(2).∗bK))./

(bK.̂ 2 + x(3).∗bK + x(4)))).̂ 2);
end

– Upper bound: −5
– Lower bound: 5
– Dimensions: 4

• Function F16

– Pseudocode:

O = 4 ∗ (x(1)2) − 2.1 ∗ (x(1)4) + (x(1)6)/3

+ x(1) ∗ x(2) − 4 ∗ (x(2)2) + 4 ∗ (x(2)4);

– Upper bound: −5
– Lower bound: 5
– Dimensions: 4

• Function F17

– Pseudocode:
o = (1 + (x(1) + x(2) + 1)̂ 2∗(19 − 14∗x(1) +
3∗(x(1)̂ 2)−14∗x(2)+6∗x(1)∗x(2)+3∗x(2)̂ 2))∗ . . .

(30+(2∗x(1)−3∗x(2))̂ 2∗(18−32∗x(1)+12∗(x(1)̂ 2)
+ 48∗x(2) − 36∗x(1)∗x(2) + 27∗(x(2)̂ 2)));

– Upper bound: −2
– Lower bound: 2
– Dimensions: 2

• Function F18

– Pseudocode:
aH = [31030; .11035; 31030; .11035];
cH = [11.233.2];
pH = [.3689.117.2673; .4699.4387.747; .1091.
8732.5547; .03815.5743.8828];
o = 0;
for i = 1 : 4
o = o − cH(i)∗exp(−(sum(aH(i, :).∗((x-pH(i, :
)).̂ 2))));
end

– Upper bound: 0
– Lower bound: 1
– Dimensions: 3

• Function F19

– Pseudocode: aSH = [4444; 1111; 8888; 6666; 3737;
2929; 5533; 8181; 6262; 73.673.6];
cSH = [.1.2.2.4.4.6.3.7.5.5];
o = 0;
for i = 1 : 5
o = o-((x-aSH(i,:))∗(x-aSH(i, :))′ + cSH(i))̂ (−1);
end

– Upper bound: 0

123

Progress in Artificial Intelligence (2019) 8:343–358 357

– Lower bound: 1
– Dimensions: 6

• Function F20

– Pseudocode:
aH = [103173.51.78; .051017.1814; 33.51.710178;
178.0510.114];
cH = [11.233.2];
pH = [.1312.1696.5569.0124.8283.5886; .2329.
4135.8307.3736.1004.9991;2348.1415.3522.
2883.3047.6650; .4047.8828.8732.5743.1091.
0381];
o = 0;
for i = 1 : 4
o = o − cH(i)∗exp(−(sum(aH(i, :).∗((x-pH(i, :
)).̂ 2))));
end

– Upper bound: 0
– Lower bound: 10
– Dimensions: 4

• Function F21

– Pseudocode: aSH = [4444; 1111; 8888; 6666; 3737;
2929; 5533; 8181; 6262; 73.673.6];
cSH = [.1.2.2.4.4.6.3.7.5.5];
o = 0;
for i = 1 : 7
o = o−((x-aSH(i, :))∗(x-aSH(i, :))′+cSH(i))̂ (−1);
end

– Upper bound: 0
– Lower bound: 10
– Dimensions: 4

• Function F22

– Pseudocode:
aSH = [4444; 1111; 8888; 6666; 3737; 2929; 5533;
8181; 6262; 73.673.6];
cSH = [.1.2.2.4.4.6.3.7.5.5];
o = 0;
for i = 1 : 10
o = o−((x-aSH(i, :))∗(x-aSH(i, :))′+cSH(i))̂ (−1);
end

– Upper bound: 0
– Lower bound: 10
– Dimensions: 4

References

1. Karaboga,D., Akay, B.: Amodified artificial bee colony (abc) algo-
rithm for constrained optimization problems. Appl. Soft Comput.
11(3), 3021–3031 (2011)

2. Fister Jr, I., Yang, X.S., Fister, I., Brest, J., Fister, D.: A brief review
of nature-inspired algorithms for optimization. arXiv preprint
arXiv:1307.4186 (2013)

3. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization
problems. Knowl. Based Syst. 96, 120–133 (2016)

4. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelli-
gence: a survey. Int. J. Bio-Inspir. Comput. 3, 1–16 (2011)

5. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algo-
rithms in multiobjective optimization. Evol. Comput. 3, 1–16
(1995)

6. Biswas, A., Mishra, K., Tiwari, S., Misra, A.: Physics-inspired
optimization algorithms: a survey. J. Optim. 2013, 438152 (2013)

7. Glover, F.: Tabu search–part I. ORSA J. Comput. 1(3), 190–206
(1989)

8. Selman, B., Gomes, C.P.: Hill-climbing Search. Encyclopedia of
Cognitive Science, pp. 333–336. Wiley (2006)

9. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In:
Glover, F., Kochenberger, G.A. (eds.) Handbook ofMetaheuristics,
pp. 320–353. Springer, Boston (2003)

10. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: van
Laarhoven, P.J., Aarts, E.H. (eds.) Simulated Annealing: Theory
and Applications. Springer, Dordrecht (1987)

11. Basturk, B., Karaboga, D.: An artificial bee colony (ABC) algo-
rithm for numeric function optimization. In: IEEE Swarm Intelli-
gence Symposium, pp. 12–14 (2006)

12. Koza, J.R., Koza, J.R.: Genetic programming: on the programming
of computers by means of natural selection (vol. 1). MIT press
(1992)

13. Storn, R., Price, K.: Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces. J. Global
Optim. 11, 341–59 (1997)

14. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster.
IEEE Trans. Evolut. Comput. 3, 82–102 (1999)

15. Simon, D.: Biogeography-based optimization. IEEETrans. Evolut.
Comput. 12, 702–13 (2008)

16. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time
complexity of the derandomized evolution strategywith covariance
matrix adaptation (CMAES). Evolut. Comput. 11, 1–18 (2003)

17. Webster, B., Bernhard, P.J.: A local search optimization algo-
rithm based on natural principles of gravitation. In: Proceedings
of the 2003 International Conference on Information and Knowl-
edgeEngineering (IKE’03), LasVegas, Nevada,USA, pp. 255–261
(2003)

18. Formato, R.A.: Central force optimization: a new metaheuristic
with applications in applied electromagnetics. Prog. Electromagn.
Res. 77, 425–91 (2007)

19. Alatas, B.: ACROA: artificial chemical reaction optimization algo-
rithm for global optimization. Expert Syst. Appl. 38, 13170–80
(2011)

20. Du,H.,Wu,X., Zhuang, J.: Small-world optimization algorithm for
function optimization. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu,
F. (eds.) Advances in Natural Computation, pp. 264–273. Springer,
Berlin (2006)

21. Shah-Hosseini, H.: Principal components analysis by the galaxy-
based search algorithm: a novel metaheuristic for continuous
optimisation. Int. J. Comput. Sci. Eng. 6, 132–40 (2011)

22. Moghaddam, F.F., Moghaddam, R.F., Cheriet, M.: Curved space
optimization: a random search based on general relativity theory.
arXiv, preprint arXiv:1208.2214 (2012)

23. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravita-
tional search algorithm. Inf. Sci. 179, 2232–48 (2009)

24. Kaveh, A., Talatahari, S.: A novel heuristic optimization method:
charged system search. Acta Mech. 213, 267–89 (2010)

25. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv.
Eng. Softw. 69, 46–61 (2014)

123

http://arxiv.org/abs/1307.4186
http://arxiv.org/abs/1208.2214

358 Progress in Artificial Intelligence (2019) 8:343–358

26. Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray
optimization. Comput. Struct. 112, 283–94 (2012)

27. Erol, O.K., Eksin, I.: A new optimization method: big bang-big
crunch. Adv. Eng. Softw. 37, 106–11 (2006)

28. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: World
Congress on Nature & Biologically Inspired Computing, 2009.
NaBIC 2009, pp. 210–214 (2009)

29. Kaveh, A.: Particle swarm optimization. In: Kaveh, A. (ed.)
Advances in Metaheuristic Algorithms for Optimal Design of
Structures, pp. 9–40. Springer, Cham (2014)

30. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization.
IEEE Comput. Intell. Mag. 1, 28–39 (2006)

31. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Pro-
ceedings of the IEEE International Conference on Neural Net-
works, pp. 1942–1948 (1995)

32. Yang, X.-S.: Firefly algorithm, stochastic test functions and design
optimisation. Int. J. Bio-Inspir. Comput. 2, 78–84 (2010)

33. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv.
Eng. Softw. 69, 46–61 (2014)

34. Rajabioun,R.: Cuckoooptimization algorithm.Appl. SoftComput.
11, 5508–5518 (2011)

35. Pan,W.-T.: A new fruit fly optimization algorithm: taking the finan-
cial distress model as an example. Knowl. Based Syst. 26, 69–74
(2012)

36. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In:
Nature Inspired Cooperative Strategies for Optimization (NICSO
2010), Springer, pp. 65–74 (2010)

37. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H.,
Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 114, 163–191
(2017)

38. Montiel, O., Castillo, O., Melin, P., Díaz, A.R., Sepúlveda, R.:
Human evolutionary model: a new approach to optimization. Inf.
Sci. 177, 2075–2098 (2007)

39. Liu, C., Han, M., Wang, X.: A novel evolutionary membrane
algorithm for global numerical optimization, In: 2012 Third
International Conference on Intelligent Control and Information
Processing (ICICIP), pp. 727–732 (2012)

40. Farasat, A., Menhaj, M.B., Mansouri, T., Moghadam, M.R.S.:
ARO: a newmodelfree optimization algorithm inspired from asex-
ual reproduction. Appl. Soft Comput. 10, 1284–1292 (2010)

41. Kaveh, A., Farhoudi, N.: A new optimization method: Dolphin
echolocation. Adv. Eng. Softw. 59, 53–70 (2013)

42. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv.
Eng. Softw. 95, 51–67 (2016)

43. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: The
1998 IEEE International Conference on Evolutionary Computa-
tion Proceedings, 1998. IEEE World Congress on Computational
Intelligence, pp. 69–73 (1998)

44. Karaboga,D., Akay, B.: Amodified artificial bee colony (abc) algo-
rithm for constrained optimization problems. Appl. Soft Comput.
11(3), 3021–3031 (2011)

45. Gandomi, A., Yang, X.-S., Talatahari, S., Alavi, A.: Firefly algo-
rithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1),
89–98 (2013)

46. Zheng, G., Tonnelier, A.: Chaotic solutions in the quadratic
integrate-and-fire neuron with adaptation. Cognit. Neurodyn. 3(3),
197–204 (2009)

47. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-
inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249
(2015)

48. Bidar, M., Kanan, H. R., Mouhoub, M., Sadaoui, S.: Mushroom
ReproductionOptimization (MRO):ANovel Nature-Inspired Evo-
lutionary Algorithm. In: 2018 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–10 (2018)

49. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel
approach for global optimization. Soft Comput. 23(3), 715–734
(2019)

50. dos Santos Coelho, L., Mariani, V.C.: Use of chaotic sequences in
a biologically inspired algorithm for engineering design optimiza-
tion. Expert Syst. Appl. 34(3), 1905–1913 (2008)

51. Almonacid, B., Soto, R.: Andean Condor Algorithm for cell forma-
tion problems. Nat. Comput. 1–31 (2018). https://doi.org/10.1007/
s11047-018-9675-0

52. Han, X., Chang, X.: An intelligent noise reduction method for
chaotic signals based on genetic algorithms and lifting wavelet
transforms. Inf. Sci. 218, 103–118 (2013)

53. Arora, S., Singh, S.: An improved butterfly optimization algorithm
with chaos. J. Intell. Fuzzy Syst. 32(1), 1079–1088 (2017)

54. Kaveh, A.,Mahdavi, V.: CollidingBodiesOptimizationmethod for
optimum discrete design of truss structures. Comput. Struct. 139,
43–53 (2014)

55. Hatamlou, A.: Blackhole:a new heuristic optimization approach
for data clus-tering. Inf. Sci. 222, 175–184 (2013)

56. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved har-
mony search algorithm for solving optimization problems. Appl.
Math. Comput. 188(2), 1567–1579 (2007)

57. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98
(2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

58. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H.,
Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 114, 163–191
(2017)

59. Rizk-Allah, R.M.: Hybridizing sine cosine algorithm with multi-
orthogonal search strategy for engineering design problems. J.
Comput. Des. Eng. 5, 249–273 (2017)

60. Demšar, J.: Statistical comparisons of classifiers over multiple data
sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)

61. Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal
dynamics: from single neurons to networks and models of cog-
nition. Cambridge University Press, Cambridge (2014)

62. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2009)

63. Saremi, S., Mirjalili, S.M., Mirjalili, S.: Chaotic krill herd opti-
mization algorithm. Proced. Technol. 12, 180–185 (2014)

64. Arora, S., Anand, P.: Chaotic grasshopper optimization algorithm
for global optimization.NeuralComput.Appl. 1–21 (2018). https://
doi.org/10.1007/s00521-018-3343-2

65. Kaur, G., Arora, S.: Chaotic whale optimization algorithm. J. Com-
put. Des. Eng. 5(3), 275–284 (2018)

66. Kohli, M., Arora, S.: Chaotic grey wolf optimization algorithm
for constrained optimization problems. J. Comput. Des. Eng. 5(4),
458–472 (2018)

67. Alatas, B.: Chaotic bee colony algorithms for global numerical
optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010)

68. Mishra, A., Majhi, S.K.: Design and Analysis of Modified Leaky
Integrate and Fire Model—TENCON IEEE Region 10 Conference
(2018)

69. Mishra, A., Majhi, S.K.: A comprehensive survey of recent
developments in neuronal communication and computational neu-
roscience. J. Ind. Inf. Integr. 13, 40–54 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s11047-018-9675-0
https://doi.org/10.1007/s11047-018-9675-0
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1007/s00521-018-3343-2
https://doi.org/10.1007/s00521-018-3343-2

	A chaotic salp swarm algorithm based on quadratic integrate and fire neural model for function optimization
	Abstract
	1 Introduction
	2 Background
	2.1 Overview of salp swarm algorithm
	2.2 Overview on quadratic integrate and fire neural model
	2.2.1 Chaotic behaviour in QIF model

	2.3 Chaos theory and chaotic maps

	3 Proposed quadratic integrate and fire model-driven salp swarm optimization
	4 Results and discussion
	4.1 Test against standard benchmark functions
	4.2 Statistical measures for performance evaluation
	4.3 Asymptotic complexity analysis of CSSA

	5 Applications in engineering problems
	5.1 Gear train design problem
	5.2 Cantilever beam
	5.3 Welded beam design

	6 Future scope and conclusion
	Appendix Benchmark functions
	References

