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Abstract
Feature selection is a very critical component in the workflow of biomedical data mining applications. In particular, there is
a need for feature selection methods that can find complex relationships among genes, yet computationally efficient. Within
the scope of microarray data analysis, the genetic bee colony (Gbc) algorithm is one of the best feature selection algorithms,
which leverages the combination between genetic and ant colony optimization algorithms to search for the optimal solution.
In this paper, we analyse in depth the fundamentals lying behind the Gbc and propose some improvements in both efficiency
and accuracy, so that researchers can even take more advantage of this excellent method. By (i) replacing the filtering phase
of Gbc with a more efficient technique, (ii) improving the population generation in the artificial colony algorithm used in
Gbc, and (iii) improving the exploitation method in Gbc, our experiments in microarray data sets reveal that our new method
Gbc+ is not only significantly more accurate, but also around ten times faster on average than the original

Keywords Feature selection · Gene selection · Microarray data · Machine learning

1 Introduction

A fundamental issue in microarray data analysis is to learn
the functional relationship �() between different expression
levels of m sequence of genes X = {x1, x2, . . . , xm} and a
discrete class output C = {c1, c2, . . . , ct }. x j is a vector of
real numbers, where xij ∈ gi is the expression level of the i-th
gene in the j-th sequence.C represents a finite set of possible
results associated with a given sequence. As an instance, x j
might be a vector of values (or sequence) associated with the
cells of a tumour biopsy or the cells of the tissue of a healthy
patient, whereas C represents whether the patient has cancer
or not. In high-dimensional microarray data, the output C
is not necessarily determined by the complete set of genes
{g1, g2, gn}; instead, it may be determined by a relatively
small number of genes {ḡ1, ḡ2, . . . , ḡn′ }, where n′ � n. In
fact, finding a set of genes that approximately determine C
brings three key benefits to the knowledge discovery process:
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– Simplification ofmodels, so that researchers can interpret
them more easily. This allows a better understanding of
the relationship between the input and the output [1].

– Shorter training time, which leads to a faster and more
cost-effective microarray data classification.

– Improvement of the prediction performance of classifi-
cation due to the removal of noisy genes.

Gene selection methods are able to identify and remove
unneeded, irrelevant, and redundant genes from data that do
not contribute to the improvement of the accuracy of a pre-
dictive model [2]. A gene selection algorithm can be seen
as the combination of a search method that generates candi-
date gene subsets, along with an evaluation function, which
assigns a score to the candidate gene subset according to its
ability to uniquely determine class labelswith high likelihood
[1].

The simplest algorithm is to test each of the 2n possi-
ble subset of genes finding the one which minimizes the
error prediction rate. However, this is an exhaustive search
of the space, and its computational cost is prohibitively high.
Therefore, alternative search-based techniques have been
constantly proposed by the machine learning community. In
a broad sense, gene selection algorithms take either the fil-
ter approach, the wrapper approach, or the hybrid approach.
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The filter approach takes advantage of statistical properties
intrinsic to data sets and aims to extract relevant genes that
are effective to arbitrary classifier algorithms. By contrast,
the wrapper approach aims to select relevant genes so as to
improve performance of particular focused classifier algo-
rithms, by involving the classifier algorithms in the selection
process. The filters are fast while the wrappers guarantee
good results. The hybrid approach takes advantage of both
the filter and the wrapper: as a general rule, they are faster
than wrappers andmore accurate than filters. The genetic bee
colony (Gbc) algorithm is a good example within the hybrid
approach [3].

Gbc is a twofold algorithm, which leverage genetics and
ant colony operators to guarantee not to be trapped by local
optima. In thefirst step,Gbcuses thefilter-basedMrmr algo-
rithm to remove irrelevant and redundant genes. Only a few
tens or hundreds out of hundred thousands genes are selected
in this step. The main goal of feature selection is to identify
features (1) that have high correlation with the target class
(relevance) but (2) lowmutual relevance among them (redun-
dancy). Peng et al. [4] have proposed the algorithmnamed the
Max-Relevance and Min-Redundancy algorithm (Mrmr),
which finds approximate solutions to the aforementioned
problem efficiently. Mrmr evaluates each subset of genes
by the Mutual Information Difference measure MIDα(·, ·)
defined as shown below:

MIDα( f ,∅) = I ( f ,C); (1)

MIDα( f , S) = I ( f ,C) − 2α

k

∑

f ′∈S
I ( f , f ′), (2)

where I ( f , f ′) represents the mutual information between
the two genes f and f ′. Mrmr takes the forward search
approach, and hence, the variable S that holds the features
selected at each iteration of the for loop (line 2–5) is initial-
ized to the empty set (line 1). Then, for each iteration of the
for loop, a single feature f that maximizes MIDα( f , S) is
added to S.

Algorithm 1 MRMR [4]
Require: Data set D described by a feature set F and a number q of

features to select.
Ensure: A feature subset { f̄1, . . . , f̄q } ⊂ F.
1: S = ∅
2: for k = 1, . . . , q do
3: f̄k ∈ argmax{MIDα( f , S) | f ∈ F \ S}
4: Add f̄k to S.
5: end for
6: return S

In the second step of theGbc algorithm, the genes selected
by Mrmr are combined to search for the best subset in a
narrower search space. The generation of new candidate sub-

sets is accomplished through some bio-inspired operators in
the following order: (1) generation of random solutions of a
population, (2) update of the solutions with more promising
neighbour solutions, (3) crossover between the best solution
found so far and the candidate solutions, and (4) mutation.
Every candidate subset is assessed by training and testing the
Support Vector Machine (Svm) in the reduced data set.

Despite Gbc is fast, very accurate, and difficult to be
trapped by local optima; we found through empirical experi-
ments that Gbc has three main gaps in its design that are still
subject to improvements:

– In very high-dimensional data sets, Mrmr is relatively
slow, taking around fifty percentage of the running time
of the entire algorithm.

– Gbc does not use the information provided byMrmr (i.e.
the correlation of each gene with the class variable or the
correlation between genes) to create an initial popula-
tion of solutions closer to the global optima. The initial
solutions are created at random, instead.

– During the search, no useful information that can give
insight on the quality of the features is stored or anal-
ysed. Taking advantage of such information may lead to
a significantly faster convergence.

We address these issues as follows.

1. We propose changing theMrmr method by theMrmr+
[6], which finds the same solution of Mrmr, but is sig-
nificantly faster.

2. To generate subsets in the initial population of Gbc,
we propose a new function that leverages the correla-
tion scores given by Mrmr to efficiently create diverse
solutions while being closer to the optimal solution.

3. During the entire search, we constantly predict the good-
ness of a gene, by observing the effect of adding such
features to the candidate solutions in the population. Later
on, the goodness of a gene is used to discover the level
of interaction among genes. Genes with high interaction
score are then likely to be grouped in the same subset,
while the creation of subsets with genes with low inter-
action score is avoided. This method tends to make Gbc
converging faster and escaping from local optima.

Section 2 gives a brief explanation of Gbc algorithm. In
Sect. 3, we formally present our contribution as an improve-
ment of Gbc algorithm and propose a new algorithm called
Gbc+. In Sect. 4, we make an extensive evaluation by com-
paring the proposed algorithm Gbc+ with other four feature
selection benchmark algorithms in 16 microarray data sets.

123



Progress in Artificial Intelligence (2018) 7:399–410 401

Fig. 1 Main phases of the Gbc algorithm

2 Genetic bee colony for gene selection

Gbc is a novel hybrid meta-heuristic algorithm that takes
advantage of two bio-inspired methods: genetic algorithms
(Ga) and artificial bee colony (Abc) optimization algorithm.
As Fig. 1 shows,Gbc is composed of five phases. In the Pre-
processing phase, the grand majority of features are removed
by the filter-basedMrmr algorithm. Afterwards, the first SN
candidate solutions are randomly generated in the initializa-
tion phase similarly to the initialization phase in the Abc
meta-heuristic algorithms [7].

In the Employee Bee phase, the genetic crossover opera-
tion is performed between the Queen Bee, which is the best
solution found so far and solutions randomly chosen from the
population, to generate new diverse solutions closer to the
optima. Subsequently, the Scout Bee phase is accomplished
by resetting the solutions trapped by local optima. Also, in
this phase, the genetic mutation operation is performed over
theQueen Bee to intensify the search. The search stops when
a number of generations are accomplished. Usually, the num-
ber of generations is equal to 100 [3]. The candidate solutions
are evaluated by testing the Svm classifier using the leave-
one-out cross-validation procedure. In addition to represent
a candidate solution, a binary representation is used (0 for
a gene not selected and 1 otherwise) as suggested in [3]. In
the remainder of this section, we briefly explain the different
phases aforementioned.

2.1 Phase 1: the preprocessing phase

In high-dimensional microarray data sets, with hundred of
thousands of genes, it is infeasible to apply evolutionary algo-
rithms such asGa and Abc. Therefore,Gbc takes advantage
of the filter-based algorithm Mrmr to remove irrelevant and
redundant genes at the very beginning of the search to nar-

Fig. 2 Preprocessing phase in the Gbc algorithm. t is usually fixed to
50 genes

row down the space of solution from 2n to 2qt subsets, with
qt � n.

As shown in Fig. 2, Mrmr is run several times until
the stopping criteria are met. In each run, Mrmr returns
the subset selected in the previous run plus t additional
genes. The preprocessing phase stops when the returned
subset can uniquely determine the class variable. That is
SVM(G) = 1.0, being SVM(G) the accuracy reached by
the classifier Svm in the reduced data set composed of the
current qt genes in G.

2.2 Phase 2: the initialization phase

In the second phase, Gbc generates the initial population
composed of SN solutions. Each solution is represented as
a group of genes indices that are selected from the subset
G, returned by the Mrmr algorithm. To build a solution,
a linear forward selection search is performed. That is, a
gene is randomly selected from G and then is tested in the
current solution. If the current solution improves by adding
the gene, then we continue adding genes while the current
solution improves. The solution is built when a gene does not
improve it. The i-th gene in a solution is randomly selected
according to the following equation:

xij = rand(0, 1) × qt, (3)

where rand(0, 1) represents a random number generator in
the range of [0,1) with a normal distribution.

2.3 Phase 3: the employee bee phase

In the artificial bee colony (Abc) population-based algo-
rithm, the colony consists of three group of bees: employee
bees, onlooker bees, and scout bees [8]. The position of a
food source represents a potential solution while the amount
of nectar in a food source corresponds to the accuracy of
the associated solution. The Abc optimization problem con-
sists in finding the food source with higher amount of nectar
through the social cooperation of bees.

Gbc algorithm uses this analogy to improve the current
population of solutions. Gbc sends the employee bees to
search in the neighbour of the current SN solutions (food
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Fig. 3 Crossover operation between the Queen Bee and a solution ran-
domly selected from the population. The crossover parameter was fixed
to 0.6 as recommended in [3]

sources) to find solutions that may be closer to the global
optima. A neighbour solution is determined by changing the
index genes of a current solution by the following equation:

vij =
{
xij + K if |S| − K > xij
xij − K otherwise,

(4)

with K = rand(−1, 1) × (xij − xkj ), where rand(−1, 1)
denotes a random real number in the range of [−1, 1] and
k is a random integer number in [0, SN − 1].

2.4 Phase 4: the onlooker bee phase

In Gbc, the crossover operation is used to share information
between employee and onlooker bees in the optimization
search space (hive). The employee bees indicate their loca-
tion of the food sources to the onlooker bees, by a waggling
movement.

As Fig. 3 depicts, the crossover operation is accomplished
by theQueen Bee, which is the best solution found so far, and
a solution randomly selected from the current population of
bees. The probability a solution has to be selected depends
only on its accuracy and can be computed as follows:

P(x j ) = SVM(x j )∑SN
k=1 SVM(xk)

. (5)

Uniform crossover works by treating each gene indepen-
dently and making a random choice as to which parent it
should inherit, as shown in Fig. 3.

2.5 Phase 5: the scout bee phase

In the Gbc algorithm, the scout bee phase is twofold. First,
we check all the employee bees in the population and reset all
those that have been trapped by local optima. This is achieved
by counting the number of times c that we perform an oper-
ation in a solution with no improvements. At this point, if
c > δ, then we replace the solution with a new subset ran-
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Fig. 4 Percentage of time required by Mrmr (the lighter area) in the
Gbc algorithm

domly generated. δ represents the consecutive number of
timeswe allow a solution to fail on its attempt to be improved.
Usually, δ = 5 is used.

Second, amutation operator is applied to theQueen Bee to
intensify the search in the neighbourhood of the best solution
found so far. Consequently, for each gene in the Queen Bee,
we generate a random number r in [0, 1] and if r < α then
the i-th gene mutates according to the following equation:

vij =
{
QueenBi + K if |S| − K > QueenBi

xij − K otherwise,
(6)

with K = rand(−1, 1)×(QueenBi−xkj ), where rand(−1, 1)
denotes a random number generator in the range of [−1, 1],
k is an integer random number in [0, SN − 1], and QueenB
is the best solution found so far. Usually, α = 0.01 is used.

3 Our proposal

Since we are especially interested in high-dimensional data,
we made some modifications to the Gbc algorithm, so that
Gbc could be effectively used in high-dimensional domains.
In this section, we present some improvements made to the
Gbc algorithm in terms of efficiency and accuracy.

3.1 First phase ofGBC: theMRMR algorithm

Mrmr is used inGbc as a filter to remove redundant and irrel-
evant genes prior to the population-based search. Although
Mrmr drastically reduces the search space, we have found
that the time taken by Mrmr is extremely large in relation
to the total running time of Gbc. Figure 4 depicts the per-
centage of the running time of Mrmr in Gbc (lighter area),
and the percentage of the running time of the rest of the algo-
rithm (darker area). The data sets used are six microarray
data sets from the Rough Sets and Current Trends in Com-
puting conference (RSCTC’2010) discovery challenge [9].
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Fig. 5 Comparison of running time (in seconds) in the Gbc algorithm
when using the originalMrmr and the fasterMrmr+ in the filter phase.
The area with the + symbol represents the Mrmr+ while the darker
area is the running time of the rest of the Gbc algorithm. Results of the
original Gbc are on the right of the Mrmr+

The data sets in Fig. 4 are sorted according to their number
of genes. The number of genes and number of instances of
these data sets can be found in Table 2. As can be seen, for
the first three data sets, which have fewer genes, the running
time of Mrmr is nearly to the fifty percentage of the entire
running time of the Gbc algorithm, while for the remaining
of the data sets, the running time of Mrmr represents more
than the sixty percentage of the total running time.

In fact, at each iteration, Mrmr computes MIDα( f , S)

for (n − k + 1) features, and MIDα( f , S) includes k values
of mutual information. Hence, the algorithm computes (n −
k + 1)k mutual information values at each iteration, and the
total number of computing mutual information is

q∑

k=1

(n − k + 1)k = (3n − 2q + 2)q(q + 1)

6
, (7)

where n = |F|. This number is not small enough to perform
gene selection on large microarray data sets [5].

In [6], we present a solution to this problem by proposing
the algorithm Mrmr+, which finds the same set as Mrmr,
but in a significantly shorter time. Our experiments in very
high-dimensional data reveal that Mrmr+ is 13 times faster
than Mrmr on average [6]. Therefore, we may expect a sig-
nificant improvement in terms of efficiency when we replace
Mrmr with Mrmr+ in the Gbc algorithm. To test the effect
of replacing Mrmr with Mrmr+ over Gbc, we run exper-
iments in the RSCTC’2010 challenge data sets and collect
the running time of both versions as shown in Fig. 5.

In all cases, Mrmr+ is more than two times faster than
the originalMrmr, which significantly improves the running
time of Gbc.

3.2 Initialization phase

Most population-based techniques for solving optimization
problems in artificial intelligence generate the first solutions
of the population randomly. While this is essential to ensure
diversity at the early stage of the search, it also may affect
the convergence speed of the algorithm. Gbc, in the initial-
ization phase, does not make use of neither the relevance nor
the redundancy scores of each gene, computed byMrmr, to
build the SN initial solutions. Instead, Gbc selects features
at random. Since wework with high-dimensional microarray
data, we are very interested inmakingGbc to converge faster
towards the most promising solutions. Therefore, in the ini-
tialization phase, we propose to make use of the relevance
and redundancy score of each gene, which are computed by
Mrmr in the previous phase, to efficiently create an initial
population composed of diverse, but accurate solutions.

We define our proposal as follows. Given a set of all genes
sorted according to the order they were selected by Mrmr,
we randomly select a feature and test it in the current solution
(initially the empty solution), if the accuracy of the current
solution is increased, then we add the gene; otherwise, we
stop the search and start creating a new solution by the same
procedure. This is, in fact, the same procedure Gbc uses to
create the initial population. However, additionallywe assign
to each gene gi a probability Pγ j (i) to be selected when
creating the j-th solution as follows:

Pγ j (i) = 1 − γ j

1 − γ n
j

× γ i−1
j , (8)

where n is the number of features in the data and γ j is a
decreasing function in the range of (0, 1) as follows:

γ j = 1 − 1

j + 1
(9)

Figure 6 represents the shape of the probability function
Pγ j (i). As can be inferred from Fig. 6, Pγ j (i) has several
properties:

– First, as a probability function, Pγ j (i) is exhaustive, that
is:

∑n
i=1 Pγ j (i) = 1.

– Second, Pγ j (i) is a decreasing function. Therefore,

Pγ j (1) > Pγ j (2) > · · · > Pγ j (n), (10)

always holds. This means that first genes in the ranking
are likely to be selected. Genes will be ranked in the same
order they were selected by theMrmr algorithm. There-
fore, the first genes in the ranking are highly correlated
with the class variable and are not highly correlated with
other features in the ranking.
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Fig. 6 Chart representing the probability of choosing feature fi to be
tested in the j-th solution

– Third, the larger the number of solutions already built,
the more equal are the probabilities to be chosen for all
genes. That is,

Pγt (i) > Pγt+1(i) > · · · > PγSN (i). (11)

However, for a sufficiently large value of j , for example,
with SN/2 ≤ k ≤ SN ,

Pγk (1) ≈ Pγk (2) ≈ · · · ≈ Pγk (n), (12)

holds.

Pγ j (i) guarantees that the first solutions are likely to
contain genes with high correlation with the class and low
correlation with the other genes. Therefore, these solutions
may have high accuracy. For the rest of the solutions, the
probability of selecting any gene tends to 1/SN . Conse-
quently, we can expect that the initial population will be
composed of two types of solutions: solutionswith high accu-
racy and random solutions. This creates a good synergy in
the search since nowwe have a diverse population with some
accurate solutions that may make the algorithm converge
faster. To evaluate our proposed method, we run experiments
in several data sets and measure the accuracy of the solutions
in the population of the original method (grey curve) and the
proposed (black curve). Figure 7 depicts the results. To build
the chart, we sorted the solutions according to their accuracy
for both methods.

3.3 Intensification

Meta-heuristic optimization algorithms often perform well
approximating solutions because they first diversify the
search looking for candidate solutions without making any
assumption about the underlying fitness landscape. Second,

they intensify the search looking for more promising solu-
tions once they explore diverse regions in the solution space.
InGbc, the intensification process is accomplished bymeans
of the genetic crossover and mutation operations in the
onlooker bee and scout bee phases, respectively. However,
through experiments, we realized that in the scout bee phase
the mutation operation, described in Sect. 2.5, does not make
any effect in the intensification process due to the extremely
lowmutation probability of genes. To carry out a richer inten-
sification process, we adopt the following method.

– First, we determine the goodness of a gene according to
its occurrence in the solutions of the population. A gene
fi ∈ S that is in solutions S, with SVM(S) > μ, and is
not in solutions R, with SVM(R) ≤ μ, must have high
goodness. We define the goodness �( fi ) of feature fi as
follows.

�( fi ) =
∑

S∈P δ+
fi ,μ

× SVM(S)

θ+ −
∑

S∈P δ−
fi ,μ

× SVM(S)

θ− ,

(13)

where δ+ = 1 if δ+ > μ and δ+ = 0 if δ+ ≤ μ, being μ

the average of the fitness of all solutions in the population,
δ− has opposite value to δ+, and θ+ and θ− are the sum
of the fitness of all solutions S in the population such that
SVM(S) > μ and SVM(S) ≤ μ,respectively. �( fi ) is a
normalized coefficient in the range of [−1, 1]. A value
of 1 means gene fi is in all solutions where δ+

fi ,μ
= 1

and is not in any solution where δ−
fi ,μ

= 1. A value of

−1 means fi is present in all solutions where δ−
fi ,μ

= 1

and not in any solutions with δ+
fi ,μ

= 1.
– Second, we sort the genes according to their goodness �

and store them in twodifferent sets.Geneswith �( fi ) > 0
are sorted in increasing order and stored in S+ while
genes with �( fi ) ≤ 0 are sorted in decreasing order and
stored in S−. Afterwards, we run a greedy forward selec-
tion search startingwith theQueenBee solution and using
genes in S+. That is, we test adding to Queen Bee, all
genes in S+, one by one, and the gene that maximize
SVM(QueenB ∪ { fi }) is added to QueenB. We stop
searching when neither of the genes improves the cur-
rent QueenB. Subsequently, a greedy backward search
is performed using the genes in S−. That is, we start
with the current Queen bee and test eliminating genes in
S− from QueenB, if present. The gene that maximizes
SVM(QueenB \ { fi }) is removed from QueenB. The
search stops when no feature improves QueenB.

To test our method, we run Gbc twice for each data set:
first, we run the original Gbc and second we replace the
mutation operationwith our proposed intensificationmethod.
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Table 1 Percentage of time saved by the minor improvements respect
to the original Gbc algorithm

Stopping criteria Lookup table All

(i) (ii)

DA1 79/41 – 94/55 81/44

DA2 75/73 – 41/40 85/85

DA3 64/62 – 51 /50 84/84

DA4 64/52 – 72/63 88/73

DA5 60/27 – 76/52 73/52

DA6 63/26 92/68 93/61 86/53

AVE. 67/47 92/68 71/53 83/65

Values are expressed as % of number of evaluations saved/percentage
of running time saved
AVE stands for average

Figure 8 depicts the results. The line between two black
points quantifies an improvement in the Queen Bee by the
proposed method.

3.4 Minor improvements

In addition to the improvements we have proposed in the
previous sections, we have detected some small gaps on the
design of the original Gbc that could lead to undesirable
results. Our final proposals are as follows.

– First, we consider two more stopping criteria in the Gbc
algorithm: (i) stopping the search when SVM(QueenB)

≥ λ and (ii) stopping the search when the current
QueenB remains the same after t consecutive cycles.

– Second, we implement a lookup table that stores the
solutions already evaluated and their respective accuracy.
Every time a candidate solution is going to be evaluated,
we inspect the lookup table to avoid duplicated evalua-
tions.

Thesemodificationsmay look naive. However, we run exper-
iments to determine the evaluations saved by implementing
these modifications in the originalGbc algorithm and results
were very impressive. Table 1 shows the results. We report
that in neither of the data sets the accuracy varies with respect
to the original Gbc.

Table 1 represents how efficient the minor improvements
are. The results are expressed as % of number of evaluation
saved/percentage of running time saved. For example, for the
Da1 data set, the 79 and 41% were saved with respect to the
number of evaluations and running time of the original Gbc
algorithm, respectively.

4 Experimental evaluation

4.1 Experimental set-up

To validate our proposed algorithm Gbc+, we run exper-
iments and collect the running time, the accuracy of each
algorithm, and the number of genes selected.We compare our
proposed algorithm with four feature selection algorithms,
including Gbc.

For each data set, we generate m pairs of training and
test data subset, where m is the number of instances in the
data. Each test data subset represents an instance in the data
set, and the training data subset is composed of the rest of the
instances. First, we run the feature selection algorithms in the
training data and thenwe reduce the test data according to the
features eliminated by the algorithms. Second,we train theC-
SVM-with-RBF-Kernel classifier with the reduced training
data and then test them on the reduced test data to deter-
mine the Area Under the Receiver Operating Characteristic
curve (AUC-ROC) score. In addition, the average of the run-
ning time taken by each algorithms and the number of genes
selected, when is applied to the training data, is collected.
In the comparison, we use four feature selection algorithms:
Gbc,Mrmr- Ga [10],Mrmr- Ba [11], and Pso [12], which
are population-based algorithms. Mrmr- Ga is very similar
to Gbc, but after runningMrmr, uses a genetic algorithm to
search for the optimal solution. Mrmr- Ba is also a meta-
heuristic algorithm that also usesMrmr as a filter in the first
phase to narrow down the search space. In the second phase,
Mrmr- Ba uses the Bat algorithm, which is a bio-inspired
technique that emulates the echolocation behaviour of bats.
The Pso algorithm is the Particle Swarm Optimization algo-
rithm implemented in weka [13]. However, we have added a
first phase by running Mrmr to reduce the search space as
in the Gbc algorithm. All the algorithms use as evaluation
function the accuracy of the Svm when tested in the given
subset to evaluate.

Table 2 shows the characteristics of the data sets used in
the experiments, which were collected from two machine
learning data repositories: Open Machine Learning [14] and
Machine Learning Data; and the feature selection challenge
RSCTC’2010 [9].

4.2 Accuracy

Table 3 shows the Auc values of the support vector machine
classifier over the reduced sets output by every algorithm.
Surprisingly, Gbc+ wins in 11 data sets while in the other
data sets gets the best results with ties. The other algorithms
got good results in a general sense. However, the results of
Gbc+ are outstanding .

To detect significant differences among algorithms, we
compute averaged ranking and the critical distance as stated
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Table 2 Characteristics of the
data sets used in the experiments

Data Acronym #Features #Instances #Classes Source

St. Jude leukaemia STJ 12,559 327 7 [14]

Breast cancer BRE 24,482 97 2 [14]

ECML ECM 27,680 90 43 [15]

Hepatitis C HEP 22,278 123 4 [15]

Burkitt lymphoma BUR 22,284 220 3 [14]

Data1 DA1 54,676 123 2 [9]

Data2 DA2 22,284 105 3 [9]

Data3 DA3 22,278 95 5 [9]

Data4 DA4 54,676 113 5 [9]

Data5 DA5 54,614 89 4 [9]

Data6 DA6 59,005 92 5 [9]

Anthracycline ANT 61,360 159 2 [14]

Mouse type MOU 45,102 214 7 [14]

Ovarian tumour OVA 54,622 283 3 [14]

Various cancer VAR 54,676 383 10 [14]

Pems PEM 138,673 267 7 [15]

Table 3 Accuracy of SVM in
the reduced sets outputted by
different feature selection
algorithms in several data sets

Alg\data STJ BRE ECM HEP BUR DA1 DA2 DA3

Gbc 0.76 0.94 1 1 0.96 0.99 0.93 0.97

Gbc+ 0.94 0.96 1 1 0.98 0.99 0.97 1

PSO 0.91 0.93 0.97 0.94 0.97 0.99 0.94 0.89

MRMR-GA 0.83 0.92 0.99 0.99 0.86 0.94 0.94 0.93

MRMR-BA 0.78 0.93 1 0.99 0.96 0.99 0.94 0.95

DA4 DA5 DA6 ANT MOU OVA VAR PEM

Gbc 0.85 0.98 1 0.87 0.68 0.96 0.89 0.85

Gbc+ 0.98 0.98 1 0.99 0.99 0.98 0.99 0.87

PSO 0.89 0.96 1 0.87 0.83 0.94 0.99 0.83

MRMR-GA 0.96 0.93 0.97 0.99 0.78 0.98 0.87 0.85

MRMR-BA 0.98 0.96 1 0.93 0.68 0.94 0.99 0.86

in theNemenyi test. Figure 9 shows the critical distance chart,
where the group of algorithms that has no significant differ-
ences are connected by a thick line. From Fig. 9, we state
that Gbc+ is significantly more accurate than the rest of the
algorithms, in these data sets with a confidence of 90%.How-
ever, results of the rest of the algorithms are not significantly
different.

4.3 Running time and number of features selected

Speaking about the running time, Gbc+ is the fastest in all
data sets. In fact, Gbc+ is ten times faster than Gbc on aver-
age. Moreover, through a deep analysis of Gbc+ behaviour,
we discover that although the intensification procedure pro-
posed in Sect. 3.3 may increase the accuracy of Gbc+, it also
may have a negative impact on its efficiency. We discovered

Fig. 9 Nemenyi post hoc chart. Group of algorithms with no signifi-
cance difference are connected by the thick lines with a confidence of
90%

that the intensification process tends to increase the number
of features in theQueenBee. Therefore, in the crossover oper-
ation, all the solutions in the population grows in number of
features, which makes the rest of the procedures in the algo-
rithm very heavy and high costly. Although we do not have
a solution to this problem at the moment, Gbc+ is still fast.
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Table 4 Running time of the
feature selection algorithms in
several data sets

Alg\data STJ BRE ECM HEP BUR DA1 DA2 DA3

Gbc 548 50.3 907 87.6 187 196 83.6 88.3

Gbc+ 8.52 16.7 31.1 7.06 51.8 120 35.5 15.7

PSO 721 78.5 403 102 122 216 101 49

MRMR-GA 378 81.9 524 141 266 278 92.1 76.4

MRMR-BA 182 29.3 108 23.1 103 178 72.7 26.7

DA4 DA5 DA6 ANT MOU OVA VAR PEM

Gbc 337 155 157 244 346 331 1704 6397

Gbc+ 101 67.9 106 187 42.6 123 387 421

PSO 324 194 109 434 281 229 2005 5184

MRMR-GA 219 84.8 143 313 329 486 1647 8562

MRMR-BA 328 140 127 207 47.9 166 842 1902

Table 5 Number of genes
selected by the feature selection
algorithms in several data sets

Alg\data STJ BRE ECM HEP BUR DA1 DA2 DA3

Gbc 1 7 1 9 10 6 9 7

Gbc+ 22 12 2 11 14 7 13 10

PSO 31 14 6 12 14 8 12 27

MRMR-GA 18 14 5 7 12 9 21 19

MRMR-BA 5 6 4 12 9 14 21 14

DA4 DA5 DA6 ANT MOU OVA VAR PEM

Gbc 9 10 11 7 1 6 13 14

Gbc+ 20 11 12 19 27 10 39 27

PSO 12 11 17 11 32 12 9 29

MRMR-GA 13 12 7 21 38 9 16 10

MRMR-BA 9 11 21 6 29 12 13 18

Speaking about the number of features selected, we realize
that all the algorithms get good results. However, algorithm
Gbc gets the best results in general (Tables 4, 5).

5 Conclusions

In this paper, we deeply analyse theGbc algorithm and point
out some drawbacks on its design.We improve theGbc algo-
rithm by improving the filter phase, where we speed up the
Mrmr algorithm. In addition, we create a new mechanism
to generate initial solutions that are closer to the local and
global optima. In this sense, we expect the new algorithm
to converge faster. Finally, we propose the implementation
of a new intensification procedure that leads to a substantial
improvement in the accuracy of Gbc. Experiments reveal
that the new version of Gbc is significantly faster and more
accurate than its original version and other three state-of-the-
art algorithms.
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