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Abstract
In this paper, we propose a novel binary classifier called twin-hypersphere support vector machine with local density informa-
tion (LDTHSVM). Firstly we extract local density for each training sample and treat it as the weight of that sample, next prune
training dataset according to these local density degrees, finally introduce these local density degrees into twin-hypersphere
support vector machine (THSVM) and reconstruct classification model on the pruned training dataset. LDTHSVM not only
inherits good properties from THSVM, but also gives more robust description for dataset. The experimental results on syn-
thetic and publicly available benchmark datasets show the excellent performance of the LDTHSVM classifier in terms of
classification accuracy and learning time.

Keywords Twin-hypersphere support vector machine · Local density · Pruning dataset · Pattern recognition

1 Introduction

Support vector machine (SVM) [27,34], as computationally
powerful tools for pattern recognition, has already obtained
excellent performance in many fields [12,13,17,29,35]. The
main idea of SVM is to seek an optimal hyperplane that
can separate two classes of samples with maximal margin.
The hyperplane can be obtained by solving a quadratic pro-
gramming problem (QPP). SVM can also successfully solve
nonlinear classification problems by using kernel trick. If the
size of training set is n, the learning complexity of classical
SVM is O(n3). Therefore, one of the key issues for SVM
is the slow learning speed for large-scale training datasets.
To improve the learning speed of the classical SVM, many
efficient training algorithms have been proposed with com-
parable classification accuracy, such as sequential minimal
optimization (SMO) [3,8,23], decomposition method [6,16],
geometric algorithms [7,15], etc.
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Recently, a generalized eigenvalue proximal SVM
(GEPSVM)was proposed [14], whosemain idea aims at con-
structing a pair of nonparallel hyperplanes, each hyperplane
is proximal to the samples of the corresponding class and is
far from the others. By solving two generalized eigenvalue
problems, the two nonparallel hyperplanes of the GEPSVM
can be efficiently obtained. But its classification accuracy
is poor in many practical problems, compared with the
classical SVM. A twin SVM (TWSVM) was proposed by
Jayadeva for binary classification [5]. Similar to GEPSVM in
spirit, TWSVM also aims at seeking two nonparallel hyper-
planes, and each hyperplane is closer to one class and is
at a distance of at least one from the other. The two non-
parallel hyperplanes can be obtained in the TWSVM by
solving two smaller sized QPPs. The experimental results
[5] show that the TWSVM works faster than the classi-
cal SVM and compares favorable with the classical SVM
in the light of classification accuracy. Some extensions to
TWSVM include the smooth TWSVM [9], least squares
TWSVM [10], localized TWSVM [33], twin bounded SVM
[25], twin parametric-margin SVM [19], ν-TWSVM [18],
structural TWSVM [24], nonparallel SVM [26], twin maha-
lanobis distance-based SVM [20], multi-label TSVM [2],
twin support vector clustering [28], etc.

Different from TWSVM which seeks two nonparallel
hyperplanes, Peng proposed twin-hypersphere support vec-
tor machine (THSVM) [22], which uses two hyperspheres to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-018-0141-0&domain=pdf
http://orcid.org/0000-0002-8081-6805


168 Progress in Artificial Intelligence (2018) 7:167–175

depict two classes of samples. The idea may be more reason-
able formanypractical datasets. The twohyperspheres can be
obtained in the THSVM by solving two QPPs. The THSVM
can avoid the inversions of two matrices that appear in the
TWSVM, which makes the THSVM be more efficient than
the TWSVM. Recently the THKSVM [30] and Pin-M3HM
[31] as extensions of theTHSVMwere also proposed, respec-
tively.

In this paper, we propose a novel classifier called THSVM
with local density information (LDTHSVM) for binary clas-
sification. Firstly we extract local density for each sample
and treat it as the weight of that sample, then prune training
dataset according to these local density degrees, finally intro-
duce these local density degrees intoTHSVMand reconstruct
more robust classification model. Computational compar-
isons with some classical classification algorithms have been
made on the synthetic and publicly available benchmark
datasets, indicating that the LDTHSVM has better classi-
fication performance.

The remaining parts of this paper are organized as fol-
lows. Section 2 introduces the classical THSVM. Section
3 discusses the local density degrees of training samples
and pruning method of training dataset. Section 4 deduces
LDTHSVMin detail. Section 5 gives the computational com-
plexity of LDTHSVM. In Sect. 6, experimental results on
the synthetic and publicly available benchmark datasets are
shown and conclusions are outlined in Sect. 7.

2 Related works

2.1 Notations

In this paper, we consider the binary classification problem
with the dataset D = {(xi , yi )}li=1, where xi ∈ Rd is a
training sample labeled yi ∈ {1,−1}. Further, we denote by
matrix A ∈ Rl+×d and B ∈ Rl−×d the positive and negative
samples, respectively. Finally amappingϕ(·) is introduced to
map Rd into some feature space Z . It is possible to use some
kernel function K (xi , x j ) to represent the inner product in
Z , i.e., K (xi , x j ) = ϕ(xi )Tϕ(x j ).

2.2 Review of THSVM

The THSVM [22] determines two hyperspheres, rather than
two nonparallel hyperplanes, to describe two classes of sam-
ples in the feature space Z :

‖ϕ(x) − a+‖2 = R2+ and ‖ϕ(x) − a−‖2 = R2−, (1)

where a± and R± are, respectively, the centers and radii of
the corresponding hyperspheres.

The THSVM classifier is obtained by solving a pair of
QPPs as follows:

min R2+ − v1

l−

l−∑

j=1

∥∥ϕ(Bj ) − a+
∥∥2 + c1

l+

l+∑

i=1

ξi ,

s.t. ‖ϕ(Ai ) − a+‖2 ≤ R2+ + ξi ,

R2+ ≥ 0, ξi ≥ 0, i = 1, . . . , l+, (2)

min R2− − v2

l+

l+∑

i=1

‖ϕ(Ai ) − a−‖2 + c2
l−

l−∑

j=1

ξ j ,

s.t.
∥∥ϕ(Bj ) − a−

∥∥2 ≤ R2− + ξ j ,

R2− ≥ 0, ξ j ≥ 0, j = 1, . . . , l−, (3)

where c1, c2, v1, v2 > 0 are the penalty factors prespecified
in advance, and ξi , ξ j are the slack variables.

The dual QPPs of (2) and (3) can be obtained:

min
l+∑

i1,i2=1

αi1αi2K (Ai1, Ai2)

−
l+∑

i=1

αi [2v1
l−

l−∑

j=1

K (Bj , Ai ) +(1 − v1)K (Ai , Ai )],

s.t.
l+∑

i=1

αi = 1,

0 ≤ αi ≤ c1
l+

, i = 1, . . . , l+, (4)

min
l−∑

j1, j2=1

β j1β j2K (Bj1, Bj2)

−
l−∑

j=1

β j [2v2
l+

l+∑

i=1

K (Ai , Bj )+(1 − v2)K (Bj , Bj )],

s.t.
l−∑

j=1

β j = 1,

0 ≤ β j ≤ c2
l−

, j = 1, . . . , l−. (5)

Once QPPs (4) and (5) are solved, the decision function
of THSVM can be written as:

f (x) = sgn

{
(ϕ(x) − a+)T(ϕ(x) − a+)

R2+

− (ϕ(x) − a−)T(ϕ(x) − a−)

R2−

}
. (6)
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3 Pruningmethod of training dataset

3.1 Local density of training dataset

The noise samples, which may be caused by sampling or
instrument error, have many effects on classification ability
of THSVM. That is to say, the classification accuracy will be
reduced if there are many noise samples in the training set.
The noise samples mainly have two types, one is isolated
samples with abnormal features, and the other is the samples
with wrong label. In this paper, we use the weight of sample
to reduce the effect. The weight of sample can be obtained by
estimating its local density degree. The process of calculating
the weights of samples is as follows:

Firstly, the Euclidean distances di j between samples xi
and x j in the feature space are calculated:

d2i j = ∥∥ϕ(xi ) − ϕ(x j )
∥∥2

= K (xi , xi ) − 2K (xi , x j )

+K (x j , x j ), i, j = 1, . . . , l and i �= j . (7)

Secondly, seek k nearest neighbor region �i of sample xi
and the radius of the region ri according to (7):

�i = {x j |x j is k nearest neighbor of xi }, (8)

ri = max(d2i j ), j ∈ �i , (9)

where k is predetermined value.
Then, obtain intra-nearest neighbors of sample xi :

�i ={x j |x j ∈ �i & x j and xi belong to the same class}.
(10)

Finally, calculate local density degree di of sample xi accord-
ing to the following formula:

di =
∑

j∈�i

exp{−ω ∗ d2i j/r}, (11)

where r = 1
l

∑l
i=1 ri and ω is a weight.

Clearly, this method gives the higher local density degree
di for the sample in a higher density region: the sample with
lower distances from its k nearest neighbors has higher di .
Moreover, a smallerω produces higher local density degrees.
Generally ω and k are, respectively, set 1 and 7 [11,21].

3.2 Pruning training dataset

To improve classification efficiency, it is necessary to prune
samples for large-scale training set. In this paper, the pruning
method that uses local density information is proposed as
follows:

Firstly, use algorithm presented in Sect. 3.1 to obtain local
density degrees di of sample xi .

Then, prune the sample from training dataset whose local
density degree is smaller than σ , and remain the sample
whose local density degree is bigger than or equal to σ , where
pruning threshold σ is a determined by users according to the
real problems.

Finally, suppose the pruned training dataset D̄ =
{(x̄i , ȳi , d ′

i )}l̄i=1, then denote by matrix Ā ∈ Rl̄+×d and

B̄ ∈ Rl̄−×d the positive and negative samples in the D̄,
respectively, further let d

′
+ and d

′
− be the weights of Ā and

B̄, respectively. Scale the weights of remaining samples as
follows:

d̄±
i = l̄± × (d

′
±)i/

l̄±∑

j=1

(d
′
±) j . (12)

4 The LDTHSVM classifier

In order to obtain more accurate and efficient classifier for
large-scale training datasets with noise, THSVM is improved
to be the enhanced version using local density information,
called LDTHSVM. Similar to THSVM in spirit, LDTHSVM
also tries to construct a pair of hyperspheres, one for each
class, such that each hypersphere can cover the samples of
the corresponding class as many as possible.

Consider the binary classification problemwith the pruned
dataset D̄ = {(x̄i , ȳi , d̄i )}l̄i=1,which can be obtained byusing
the pruning method in Sect. 3.2. Further denote by matrix
Ā ∈ Rl̄+×d and B̄ ∈ Rl̄−×d the positive and negative samples
in the D̄, respectively, and let d̄+ ∈ Rl̄+ and d̄− ∈ Rl̄− be the
weight vectors of Ā and B̄. LDTHSVM can be formulated
as follows:

min R2+− v1

l̄−

l̄−∑

j=1

d̄−
j

∥∥ϕ(B̄ j ) − a+
∥∥2+ c1

l̄+

l̄+∑

i=1

d̄+
i ξi ,

s.t.
∥∥ϕ( Āi ) − a+

∥∥2 ≤ R2+ + ξi ,

R2+ ≥ 0, ξi ≥ 0, i = 1, . . . , l̄+, (13)

min R2−− v2

l̄+

l̄+∑

i=1

d̄+
i

∥∥ϕ( Āi ) − a−
∥∥2+ c2

l̄−

l̄−∑

j=1

d̄−
j ξ j ,

s.t.
∥∥ϕ(B̄ j ) − a−

∥∥2 ≤ R2− + ξ j ,

R2− ≥ 0, ξ j ≥ 0, j = 1, . . . , l̄−. (14)

From the primal problems (13), we notice that, unlike
THSVM, firstly LDTHSVM does not employ all training
samples, but use pruned training dataset, which makes clas-
sifier more robust and efficient when there exist many noise
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samples in the large-scale training set. Secondly, the local
density degrees of negative and positive samples are, respec-
tively, added to the second and third terms in the objective
function which contributes to the positive center far away
from the negative samples with higher local density degrees,
in addition, to the positive samples with higher local density
degrees covered by the positive hypersphere. Furthermore,
we can get similar conclusions from the primal problem (14).
Obviously, the LDTHSVM classifier is more reasonable for
the practical applications.

The Lagrangian function of (13) is given by

L = R2+− v1
l̄−

l̄−∑

j=1

d̄−
j

∥∥ϕ(B̄ j )−a+
∥∥2+ c1

l̄+

l̄+∑

i=1

d̄+
i ξi

+
l̄+∑

i=1

αi

(∥∥ϕ( Āi ) − a+
∥∥2 − R2+ − ξi

)

−
l̄+∑

i=1

riξi − λR2+, (15)

where αi ≥ 0, ri ≥ 0, λ ≥ 0, i = 1, . . . , l̄+ are the
Lagrangian multipliers. According to the Karush–Kuhn–
Tucker Theorem, the following conditions are satisfied:

2v1
l̄−

l̄−∑

j=1

d̄−
j (ϕ(B̄ j )−a+)−2

l̄+∑

i=1

αi (ϕ( Āi )−a+)=0, (16)

1 −
l̄+∑

i=1

αi − λ = 0, (17)

c1
l̄+

d̄+
i −αi −ri =0⇒0≤αi ≤ c1

l̄+
d̄+
i , i=1, . . . , l̄+, (18)

∥∥ϕ( Āi ) − a+
∥∥2 ≤ R2+ + ξi , i = 1, . . . , l̄+, (19)

αi

(∥∥ϕ( Āi )−a+
∥∥−R2+−ξi

)
=0, αi ≥0, i =1, . . . , l̄+,

(20)

riξi = 0, ξi ≥ 0, ri ≥ 0, i = 1, . . . , l̄+, (21)

λR2+ = 0, R2+ ≥ 0, λ ≥ 0. (22)

According to (16), (17) and (22), the center of positive
hypersphere can be obtained as follows:

a+ = 1

1− v1
l̄−

∑l̄−
j=1 d̄

−
j

⎛

⎝
l̄+∑

i=1

αiϕ( Āi )− v1

l̄−

l̄−∑

j=1

d̄−
j ϕ(B̄ j )

⎞

⎠ .

(23)

Substituting (17), (18) and (23) into (15) and discarding the
constant items, we can obtain the following dual problem of
(13):

max −t1

l̄+∑

i1,i2=1

αi1αi2K ( Āi1, Āi2)

+ t2

l̄+∑

i=1

αi

⎡

⎣
l̄−∑

j=1

d̄−
j K (B̄ j , Āi )+(1/t2)K ( Āi , Āi )

⎤

⎦,

s.t.
l̄+∑

i=1

αi = 1,

0 ≤ αi ≤ c1
l̄+

d̄+
i , i = 1, . . . , l̄+, (24)

where t1= 1+ v1
l̄−

∑l̄−
j=1 d̄

−
j −2v1

(1−v1)
2 and t2=

2v1
l̄− − 4v21

l̄− +2( v1
l̄− )

2 ∑l̄−
j=1 d̄

−
j

(1−v1)
2 .

According to (18)–(21), we obtain

R2+ = 1∣∣ Ī+
R

∣∣

∣∣ Ī+
R

∣∣∑

i=1

∥∥ϕ( Āi ) − a+
∥∥2, (25)

where Ī+
R =

{
i |0 < αi < c1

l̄+
d̄+
i , i = 1, . . . , l̄+

}
.

Similarly, we can get the simplified dual optimal problem
of (14) as follows:

max −t3

l̄−∑

j1, j2=1

β j1β j2K (B̄ j1, B̄ j2)

+ t4

l̄−∑

j=1

β j

⎡

⎣
l̄+∑

i=1

d̄+
i K ( Āi , B̄ j )+(1/t4)K (B̄ j , B̄ j )

⎤

⎦,

s.t.
l̄−∑

j=1

β j = 1,

0 ≤ β j ≤ c2
l̄−

d̄−
j , j = 1, . . . , l̄−, (26)

where t3= 1+ v2
l̄+

∑l̄+
i=1 d̄

+
i −2v2

(1−v2)
2 and t4=

2v2
l̄+ − 4v22

l̄+ +2( v2
l̄+ )

2 ∑l̄+
i=1 d̄

+
i

(1−v2)
2 .

Also, the center a− and radius R− of negative class are,
respectively, calculated as follows:

a− = 1

1− v2
l̄+

∑l̄+
i=1 d̄

+
i

⎛

⎝
l̄−∑

j=1

β jϕ(B̄ j )− v2

l̄+

l̄+∑

i=1

d̄+
i ϕ( Āi )

⎞

⎠ ,

(27)

R2− = 1∣∣ Ī−
R

∣∣

∣∣ Ī−
R

∣∣∑

j=1

∥∥ϕ(B̄ j ) − a−
∥∥2, (28)

where Ī−
R =

{
j |0 < β j < c2

l̄−
d̄−
j , j = 1, . . . , l̄−

}
.
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A new sample x ∈ Rd is assigned to the positive class or
negative class, depending on which of the two hyperspheres
it lies closest to. Therefore, the decision function is defined
as follows:

f (x) = sgn

{
(ϕ(x) − a+)T (ϕ(x) − a+)

R2+

− (ϕ(x) − a−)T (ϕ(x) − a−)

R2−

}
, (29)

where

(ϕ(x)−a+)T(ϕ(x)−a+)

= K (x, x) − 2

1− v1
l̄−

∑l̄−
j=1 d̄

−
j

⎛

⎝
l̄+∑

i=1

αi K ( Āi , x)

−v1

l̄−

l̄−∑

j=1

d̄−
j K (B̄ j , x)

⎞

⎠ +
⎛

⎜⎝
1

1 − v1
l̄−

∑l̄−
j=1 d̄

−
j

⎞

⎟⎠

2

⎛

⎝
l̄+∑

i1=1

l̄+∑

i2=1

αi1αi2K ( Āi1, Āi2)

−2v1
l̄−

l̄+∑

i=1

l̄−∑

j=1

αi d̄
−
j K ( Āi , B̄ j )

+
(

v1

l̄−

)2 l̄−∑

j1=1

l̄−∑

j2=1

d̄−
j1
d̄−
j2
K (B̄ j1, B̄ j2)

⎞

⎠ , (30)

(ϕ(x)−a−)T(ϕ(x)−a−)

= K (x, x) − 2

1− v2
l̄+

∑l̄+
i=1 d̄i

⎛

⎝
l̄−∑

j=1

β j K (B̄ j , x)

− v2

l̄+

l̄+∑

i=1

d+
i K ( Āi , x)

⎞

⎠ +
⎛

⎜⎝
1

1 − v2
l̄+

∑l̄+
i=1 d̄

+
i

⎞

⎟⎠

2

⎛

⎝
l̄−∑

j1=1

l̄−∑

j2=1

β j1β j2K (B̄ j1, B̄ j2)

− 2v2
l̄+

l̄+∑

i=1

l̄−∑

j=1

β j d̄
+
i K ( Āi , B̄ j )

+
(

v2

l̄+

)2 l̄+∑

i1=1

l̄+∑

i2=1

d̄+
i1
d̄+
i2
K ( Āi1 , Āi2)

⎞

⎠ . (31)

5 Computational complexity of LDTHSVM

In this section, we further analyze the computational com-
plexity of our LDTHSVM. There are three main steps in Our
LDTHSVM, which are

1. Calculating the local density degrees of all training sam-
ples,

2. Pruning training dataset,
3. Solving the optimal problems (24) and (26),

where the main computational cost is the calculation of k
nearest neighbor of all training samples in step 1 and the
solution of the optimal problems in step 3. The computational
complexity of calculating k nearest neighbor of all training
samples is O(l2 log l), and the computational complexity of
solving the optimal problems is O(l̄3+ + l̄3−), where l̄+ 

l+ and l̄− 
 l−, when the training dataset contains many
noise samples. Therefore, the computational complexity of
LDTHSVM is about O(l2 log l + l̄3+ + l̄3−).

6 Experiments

In this section, we investigate classification performance of
our LDTHSVM on publicly available benchmark datasets,
as well as a synthetic dataset. In the experiments, we com-
pare LDTHSVM with other classical algorithms including
THSVM, WLTSVM [32], TWSVM and SVM. The param-
eters selection is very important for these algorithms. The
exhaustive search is still the most popular method for
determining the parameters [5,10,22,24,25]. To reduce com-
putational complexity of parameters selection, we make the
parameters c1 = c2 = c and v1 = v2 = v. In each
algorithm, the optimal parameter c is searched from set
{2i |i = 0, 1, . . . , 10}, v from set {0.1, 0.2, . . . , 0.9} and
pruning threshold σ from set {0.1, 0.2, . . . , 0.5} on the vali-
dation set comprising of 30% of the training samples. Once
all parameters are determined, the validation sets are returned
to the training datasets to construct the final classifiers.

6.1 Synthetic data with noise

In this subsection, to show the effectiveness of LDTHSVM
intuitively, we use a synthetic dataset. The toy 2-D dataset
is randomly generated under two Gaussian distributions:
positive class: N ((0, 0)T , diag{0.5, 0.5}), negative class:
N ((2, 2)T , diag{0.25, 0.25}). The training dataset consists
of 440 samples (220 samples for each class, where there are
20 samples with wrong label) and the test dataset consists of
4000 samples (2000 samples for each class).

Figure 1 intuitively shows the classification results of
the LDTHSVM, THSVM, TWSVM and SVM on the
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Fig. 1 Classification results of the LDTHSVM, THSVM, TWSVM
and SVM for the synthetic dataset with linear kernels. The thick curves
represent the separating plane, while the thin curves represent two non-
parallel hyperplanes or a pair of hyperspheres. For LDTHSVM, the
circled samples are pruned

Table 1 Classification performance of the LDTHSVM, THSVM,
TWSVM and SVM for the synthetic dataset with linear kernels

Performance SVM TWSVM THSVM LDTHSVM

Accuracy (%) 98.75 98.80 96.07 98.95

Training time(s) 2.0343 0.292 0.4955 0.8008

For LDTHSVM, the training time still includes local density calculation

two Gaussian dataset with linear kernels. By inspecting
Fig. 1, we can get the following conclusions: Firstly,
the THSVM, TWSVM and SVM are significantly influ-
enced by the noise samples, especially by the samples
with wrong label. Secondly, LDTHSVM can effectively
remove most samples with wrong label and a small part
of isolated samples, further suppress the interference of
the remaining noise samples by introducing local density
of samples into the classifier, which make the separat-
ing curves around positive and negative class tighter and
the centers of positive and negative hyperspheres closer
to means of two Gaussian distributions. In other words,
LDTHSVM can effectively depict the true distribution of
the two classes of samples. Further we detailedly show
the classification results in Table 1. We can observe from
Table 1, LDTHSVM obtains better accuracy compared with
THSVM, TWSVM and SVM. Although training speed of
the LDTHSVM is slightly slower than that of THSVM and
TWSVM, its training speed is significantly faster than that
of SVM.

6.2 Benchmark datasets

In this subsection, to further investigate the classifica-
tion performance of LDTHSVM, we perform LDTHSVM,
THSVM, WLTSVM, TWSVM and SVM on the pub-
licly available benchmark datasets from UCI Repository.
In these simulations, we only consider the Gaussian ker-
nel K (x1, x2) = e−γ ‖x1−x2‖2 and the parameter γ is
selected from the range {2i |i = −9,−8, . . . , 10}. We use
the tenfold cross-validation methodology to estimate the
classification accuracy of each algorithm. Table 2 lists the
classification accuracies and training time of LDTHSVM,
THSVM, WLTSVM, TWSVM and SVM. From Table 2,
it can be observed that our LDTHSVM obtains better
classification accuracies for most datasets, compared with
THSVM, WLTSVM, TWSVM and SVM. This indicates
that LDTHSVM can effectively suppress the interference of
noise samples. Furthermore, it can be observed that, com-
pared with THSVM, LDTHSVM is inefficient. One of the
possible reasons is that there are not a large number of
noise samples that can be pruned in the training dataset.
Even so, the training time of LDTHSVM is also close to
TWSVM.
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Table 2 Classification performance of the LDTHSVM, THSVM,WLTSVM, TWSVM and SVM for the benchmark datasets with Gaussian kernels

Dataset SVM
accuracy(%)
training time(s)
pruned ratio(%)

TWSVM
accuracy(%)
training time(s)
pruned ratio(%)

WLTSVM
accuracy(%)
training time(s)
pruned ratio(%)

THSVM
accuracy(%)
training time(s)
pruned ratio(%)

LDTHSVM
accuracy(%)
training time(s)
pruned ratio(%)

Heart (270 × 13) 83.96 ± 6.70 79.89 ± 8.36 84.07 ± 6.60 82.48 ± 7.88 84.07 ± 7.62

2.9071 1.8077 6.6423 0.6607 2.2648

– – – – 6.67

Ionosphere (351 × 34) 93.22 ± 4.27 86.03 ± 10.94 89.22 ± 5.15 92.29 ± 4.25 94.06 ± 4.14

5.2718 6.653 6.1171 1.5239 3.4447

– – – – 18.05

Australian (690 × 14) 85.76 ± 4.47 86.30 ± 4.03 86.38 ± 3.39 83.45 ± 3.84 86.39 ± 3.98

28.9792 15.254 16.4124 6.38 12.5349

– – – – 7.68

WDBC (569 × 30) 97.50 ± 1.86 96.45 ± 1.89 97.86 ± 1.92 95.41 ± 2.33 97.36 ± 2.29

17.7337 7.142 7.7190 4.4224 8.2344

– – – – 3.22

Vote (435 × 16) 92.88 ± 4.06 94.32 ± 2.97 94.42 ± 3.43 92.94 ± 3.79 94.59 ± 3.36

9.6824 3.3036 6.9228 2.2737 4.7007

– – – – 3.75

Breast (277 × 9) 73.28 ± 6.81 74.91 ± 6.69 75.44 ± 7.56 66.66 ± 9.04 72.20 ± 3.07

2.3353 8.1016 3.6851 0.7989 1.9445

– – – – 2.48

Sonar (208 × 60) 89.26 ± 6.62 88.16 ± 7.04 89.45 ± 7.81 83.27 ± 9.43 89.99 ± 7.49

1.4464 1.4147 2.5281 0.4884 1.765

– – – – 0.5

For LDTHSVM, the training time still includes local density calculation
The accuracy of bold values are the highest one in all algorithms

Table 3 Rank on classification
accuracy of five classifiers for
benchmark datasets

Dataset SVM TWSVM WLTSVM THSVM LDTHSVM

Heart 2 5 3 4 1

Ionosphere 2 5 4 3 1

Australian 4 3 2 5 1

WDBC 2 4 1 5 3

Vote 5 3 2 4 1

Breast 3 2 1 5 4

Sonar 3 4 2 5 1

Average rank 3 3.71 2.14 4.42 1.71

6.3 Friedman test

From Table 2, we can notice that not any algorithm can out-
perform all others for all datasets in the light of classification
accuracy. In this subsection, to analyze the classification
performance of five algorithms on multiple datasets sta-
tistically, we use Friedman test [1,4]. The ranks of five
classifiers on classification accuracy for all datasets are listed
in Table 3. We can calculate the Friedman statistic according
to (32)

χ2
F = 12q

p(p + 1)

[ p∑

i=1

R2
i − p(p + 1)2

4

]
, (32)

where Ri = 1
q

∑q
j=1 r

j
i and r j

i represents the rank of the

ith of p classifiers on the jth of q datasets. Friedmans χ2
F is

undesirably conservative, and we use the other better statistic

FF = (q − 1)χ2
F

q(p − 1) − χ2
F

, (33)

which is distributed according to the F(p−1, (p−1)(q−1)).
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Fig. 2 Classification accuracy for different parameter k on different
datasets

Fig. 3 Illustration of the handwritten digits

We can get χ2
F = 14.95 and FF = 6.87 according to

(32) and (33), where FF is distributed according to F(4,24).
The critical value of F(4,24) is 2.19 for the level of sig-
nificance α = 0.1. Similarly, it is 2.78 for the level of
significance α = 0.05. Since the critical value is smaller
than FF , there is significant difference among five classi-

fiers. It can be observed from Table 3 that the average rank of
LDTHSVM is lower than the other classifiers. It implies that
the LDTHSVMhas better accuracy than the other classifiers.

6.4 Analysis on the parameter k

In this subsection, we further analyze the effect of parameter
k on classification performance. In Fig. 2, we show the clas-
sification accuracies for different parameter k on different
datasets. From Fig. 2, we can observe that, for smaller k, it
is hard to get the best results, the main reason is that many
useful neighbors are lost, when calculating the local density
degrees of training samples, for larger k, it cannot be guaran-
teed to get the best classification accuracy, the main reason
is that many noise samples could be introduced. Through a
large number of experiments and observation, we notice that
k = 7 can obtain satisfactory performance in general.

6.5 Handwritten digits recognition

We use LDTHSVM to recognize handwritten digits in this
subsection. The USPS dataset, which is a publicly available
database of handwritten digits recognition, is used to evalu-
ate our LDTHSVM. In USPS dataset, there are 11000 8-bit
grayscale images of handwritten digits, and each handwritten
digit has 1100 images, as shown in Fig. 3.

The classification results of four classifiers are shown in
Table 4. From Table 4, we can learn that our LDTHSVM
has better classification accuracy, compared with the SVM,
TWSVM and THSVM.

7 Conclusions

In this paper, the improvements for THSVM, called
LDTHSVM classifier, have been presented. The proposed
LDTHSVM inherits good properties from THSVM. For
instance, LDTHSVM solves a pair of smaller sized optimiza-

Table 4 Classification result of
the LDTHSVM, THSVM,
TWSVM and SVM on USPS
dataset with linear kernel

Dataset SVM
accuracy(%)
training time(s)

TWSVM
accuracy(%)
training time(s)

THSVM
accuracy(%)
training time(s)

LDTHSVM
accuracy(%)
training time(s)

2 versus 5 99.55 ± 0.59 99.62 ± 0.57 99.69 ± 0.49 99.75 ± 0.47

44.5965 38.5449 41.8993 85.7952

1 versus 9 98.42 ± 1.18 98.05 ± 1.29 97.65 ± 1.45 98.51 ± 1.16

54.7776 32.0918 39.4862 85.4703

3 versus 6 99.49 ± 0.64 99.21 ± 0.89 99.27 ± 0.80 99.56 ± 0.70

47.4127 36.9042 46.4143 92.4035

5 versus 8 99.82 ± 0.38 99.52 ± 0.62 99.86 ± 0.34 99.89 ± 0.43

65.4818 62.5315 64.3012 105.7868

The accuracy of bold values are the highest one in all algorithms
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tion problems, avoids the inversion matrix in its dual QPPs
and directly uses kernel trick to solve nonlinear problems as
in the SVM. Further, unlike THSVM, LDTHSVM prunes
training dataset according to local density degrees of train-
ing samples and introduce local density degrees into THSVM
and reconstruct classification model with the pruned training
dataset. The classification results on synthetic and publicly
available benchmark datasets have shown that LDTHSVM
can obtain better classification performance, compared with
THSVM, WLTSVM, TWSVM and SVM, especially for the
large-scale datasets which include many noise samples.
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