
Prog Artif Intell (2017) 6:299–314
DOI 10.1007/s13748-017-0125-5

REGULAR PAPER

Incremental contingency planning for recovering from critical
outcomes in high-probability seed plans

Yolanda E-Martín1 · María D. R-Moreno2 · David E. Smith3

Received: 13 February 2017 / Accepted: 4 April 2017 / Published online: 20 April 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Planning is the problem of choosing and orga-
nizing a sequence of actions that when applied in a given
initial state results in a goal state. However, in real problems
unexpected action outcomes may occur and the initial state
of the world may not be known with certainty. Incremental
contingency planning considers potential failures in a plan
and attempts to avoid them by incrementally adding contin-
gency branches to the plan in order to improve the overall
probability. The planner focuses on high-probability out-
comes and attempts to avoid them by incrementally adding
contingency branches to the plan in order to improve the
overall probability. Some of these high-probability outcomes
might be repairable by runtime replanning so we focus on
repairing critical outcomes that cannot be fixed by run-
time replanning. For this planning to be successful, we also
need high-probability seed plans. In this work, we describe
approaches to generating high-probability seed plans and to
incremental contingency planning on the critical outcomes.

Keywords Probabilistic planning · Plan graph propagation ·
Probability interaction · Heuristic search

B Yolanda E-Martín
yolanda.escudero@uc3m.es

María D. R-Moreno
mdolores@aut.uah.es

David E. Smith
david.smith@nasa.gov

1 Universidad Carlos III de Madrid, Av. Universidad 30, 28911
Leganés, Madrid, Spain

2 Universidad de Alcalá, Ctra Madrid-Barcelona Km 33.6,
28871 Alcalá de Henares, Madrid, Spain

3 NASA Ames Research Center, Moffett Field, CA 94035, USA

1 Introduction

Classical planning is the problem of choosing and organizing
a sequence of actions that when applied in a given initial
state results in a goal state. It is based on the assumption
of complete knowledge of the initial state and the effects
of actions. However, in real planning problems actions may
have unexpected outcomes and the initial state of the world
may not be known with certainty. A line of research dealing
with planning problems under uncertainty is probabilistic
planning, which describes the uncertainty using probability
distributions.

Incremental contingency planning (ICP) is a framework
that considers potential failures in a plan and attempts to
avoid them by incrementally adding contingency branches
to the plan in order to improve the overall probability [5].
As initially conceived, ICP focuses on high-probability out-
comes. However, some of these high-probability outcomes
might be repairable by runtime replanning and we could,
therefore, focus on repairing critical outcomes that cannot
be fixed by runtime replanning.

In this work, we present an approach to incrementally
generating contingency branches to only deal with critical
outcomes.Themain idea is tofirst generate a high-probability
non-branching seed plan, which is then augmented with
contingency branches to handle the most critical outcomes.
Any remaining outcomes are handled by runtime replanning.
For the most critical outcomes, we attempt to improve the
chances of recovery by (1) revising the plan to avoid or reduce
the probability of getting to that outcome, (2) adding precau-
tionary steps that allow recovery, if the failure occurs, or (3)
adding a conformant path that can achieve the goal by using
a different path. All three strategies can increase the overall
probability of the plan. The process is repeated until (1) the
resulting contingent plan achieves at least a given probability

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-017-0125-5&domain=pdf

300 Prog Artif Intell (2017) 6:299–314

threshold, (2) the available time is exhausted, or (3) a certain
number of branches are added.

In Sect. 2, we briefly describe PIPSSI [6], a system
that adopts the Determinization and Replanning approach
for generating non-branching seed plans. In Sect. 3, we
describe a novel approach for generating higher probabil-
ity non-branching seed plans, namely probability estimates
without determinization (PEWD), which does not rely on
determinization. In Sect. 4, we define the heuristic function
used to identify points of failure that potentially improve the
total probability of the plan. In Sect. 5, we detail the different
techniques we can apply to improve the chances of recovery,
if a failure occurs. In Sect. 6, we present an empirical eval-
uation. Finally, in Sect. 7, we discuss the limitations of our
approach and outline some future work.

2 Seed plans from all-outcomes determinization

Determinization consists of transforming a probabilistic
planning domain into a deterministic planning domain. All-
outcomes determinization generates a deterministic action
for each outcome of a probabilistic action. Consider the
probabilistic action (drive trk a b) defined in Fig. 1a with
two outcomes, one where the truck arrives at its destination
normally, and the otherwhere it arriveswith a flat tire. Apply-
ing all-outcomes determinization results in two deterministic
actions. The most likely outcome of the action implies that
the car successfully drives between locationswith probability
0.6. This results in action (drive-1 trk a b), shown in Fig. 1b.
For the other outcome, the car achieves the destination, but it
gets a flat tire with a probability of 0.4. This results in action
(drive-2 trk a b), shown in Fig. 1c.

The classical all-outcomes determinization does not make
use of the probabilistic information in the domain descrip-

(a)

(b)

(c)

Fig. 1 All outcomes determinization considering the probability of
propositions across action outcomes. a PPDDL action (drive trk a b).
b Determinized PDDL action (drive-1 trk a b). c Determinized PDDL
action (drive-2 trk a b)

tion, which may result in frequent replanning. To overcome
this issue, Jiménez et al. [9] developed an approach that turns
the probability information of each outcome into an additive
costC equal to the negative logarithm of the probability. That
is, C(a′) = − ln(po). Then, they search for a plan using a
numeric deterministic planner that minimizes cost. In our
example, this conversion process builds the same two deter-
ministic actions (drive-1 trk a b) and (drive-2 trk a b) with
additive costs C(drive-1 trk a b) = − ln(0.6) = 0.51 and
C(drive-2 trk a b) = − ln(0.4) = 0.91 respectively.

Converting probability information into costs makes it
possible to use deterministic numeric planners to find higher
probability seed plans [9]. Following this paradigmwe devel-
oped PIPSSI [6], a forward heuristic planner that adopts the
determinization and replanning approachwith the aimof pro-
ducing high-probability seed plans that are less likely to get
stuck in dead-end states. This system initially translates the
probabilistic problem into a deterministic one by using the
technique of Jiménez, Coles, and Smith. Then, the system
builds a plan graph for the purpose of estimating costs. The
system uses this information to guide forward state-space
search using A∗. For each state, the plan graph is updated,
and a relaxed plan is created to estimate the cost (probabil-
ity) of achieving the goals from that state. This estimation is
called the completion cost estimate (CCE).

All-outcomes determinization has proven very success-
ful in several systems [9,11–14]. However, considering the
outcomes independently can underestimate the probability
of propositions. For any single outcome of an action, the
probability of a proposition may be lower than considering
the probability across all the outcomes. As a result, action
determinization as done in PIPSSI may mislead the plan-
ner into picking the wrong outcome or action. To illustrate
this, consider the simple action A shown in Fig. 2, which
has three outcomes: outcome o1 that produces x and y with
probability 0.3; outcome o2 that produces x with probability
0.3; and outcome o3 that produces z with probability 0.4.
Outcomes o1 and o2 have a common proposition x , while
outcome o3 produces a different proposition that does not
occur in any other outcome. Suppose that the three outcomes
lead the planner to the goal with equal probability. The out-
come o3 has a probability of 0.4, which is higher than the
probability of either o1 or o2. Therefore, a cost minimizing
planner would likely choose outcome o3. However, the true
probability of x is a combination of outcomes o1 and o2. The
combination of these outcomes will lead to a probability of
0.6 for x and, therefore, result in a better plan.

To overcome this issue, we could use a determinization
approach in which we created a new deterministic action
for each possible proposition combination across all of the
action’s outcomes. To illustrate, consider again the proba-
bilistic action A from Fig. 2. We could create deterministic
action A1 for proposition x with probability 0.6 because x is

123

Prog Artif Intell (2017) 6:299–314 301

Fig. 2 Example of a probabilistic action where determinization can
pick the wrong outcome

Fig. 3 Example of a potential determinization technique

in outcomes o1 and o2; A2 for proposition y with probabil-
ity 0.3 because y is only in outcome o1; A3 for proposition
z with probability 0.4 because z is only in outcome o3;
and A4 for the pair of propositions (x, y) from outcome
o1 with probability 0.3. There is no outcome that contains
y and z or all three x , y, and z, so these possibilities do
not need to be considered. These new deterministic actions
shown in Fig. 3 would be mutually exclusive, and we can
use them in probability propagation as is done in PIPSSI [6].
However, this would significantly increase the number of
actions in the plan graph and, therefore, increase propagation
time.

To overcome this issue, we instead consider the over-
all probability of each proposition across all of the action’s
outcomes, and the dependence between those propositions.
In the next section, we introduce a technique to compute
estimates of probability without determinization. These esti-
mates are then used to guide the search toward higher
probability plans.

3 Seed plans without determinization

In this section, we present a newway to estimate probabilities
that we call probability estimates without determinization
(PEWD), which does not rely on determinization. This
approach considers the probabilistic problem without trans-
forming it into a deterministic one. Given a PPDDL problem,
we initially process and load all the information given in the
domain. Then, we build a probabilistic plan graph estimator
as will be described in Sect. 3.3. This propagation technique
is different from the standard probability propagation in plan

graphs because (1) it considers the dependence among propo-
sitions in action outcomes to avoid the reliance on individual
outcomes, and (2) it propagates probability rather than cost
since it directly deals with probabilistic actions.

The next subsection explains the concept of probability
interaction. Then, Sect. 3.2 describes the search in the space
of probabilistic states. Finally, Sect. 3.3 describes the prob-
abilistic plan graph heuristic used to guide the probabilistic
search toward high-probability seed plans.

3.1 Probability interaction

Bryce and Smith [2] define interaction, I , between two
elements as the probability of the conjunction divided by
the individual probabilities. I , therefore, represents how
more or less likely it is that two propositions or actions
are established together instead of independently. Formally,
the optimal interaction, I ∗, considers n-ary interaction rela-
tionships among propositions and among actions in the plan
graph. It is defined as:

I ∗(p0, p1, . . . , pn) = pr∗(p0 ∧ p1 ∧ · · · ∧ pn)

pr∗(p0) pr∗(p1) · · · pr∗(pn)
(1)

where the term pr∗(p0 ∧ p1 ∧ · · · ∧ pn) is the maximum
probability among all the possible plans that achieve the
conjunction. Computing I ∗ would be computationally pro-
hibitive. As a result, we limit the calculation of these values
to pairs of propositions and pairs of actions in each level of a
plan graph. In other words, binary interaction is defined as:

I (p, q) = pr(p ∧ q)

pr(p) pr(q)
(2)

I has the following characteristics:

I (p, q) is

⎧
⎪⎪⎨

⎪⎪⎩

>1 if p and q are synergistic
=1 if p and q are independent
<1 if p and q interfere
=0 if p and q are mutually exclusive

I provides information about the degree of interference or
synergy between pairs of propositions and pairs of actions in
a plan graph. When 0 < I (p, q) < 1 it means that there
is some interference between the best plans for achieving
p and q, so it is less likely to achieve them both than to
achieve them independently. In the extreme case, I = 0,
the propositions or actions are mutually exclusive. Similarly,
when I (p, q) > 1 the two elements are synergistic, which
means that the probability of establishing both p and q is
higher than the product of the probabilities for establishing
the two independently. However, this probability cannot be
higher than the probability of establishing the most difficult

123

302 Prog Artif Intell (2017) 6:299–314

of p and q. As a result:

I (p, q) ≤ min{pr(p), pr(q)}
pr(p)pr(q)

= 1

max{pr(p), pr(q)}
(3)

3.2 Search in the space of probabilistic states

We define a probabilistic state s as consisting of a set of
propositions with individual probabilities Pr(x) together
with a probability interaction I (x, y) for all pairs x and y
in s.

The following subsections describe in detail how to
compute the probability and interaction information in a
probabilistic state.

3.2.1 Calculating probabilities for a probabilistic state

Consider a probabilistic state s and let s′ be the new state after
attempting to perform action a, with set of preconditionsPa ,
in s. The probability of a proposition x ′ in s′ is given by
the probability of getting the proposition when the action
succeeds plus the probability of getting the proposition when
the action fails.1 That is:

Pr(x ′) = pr(x ′|a) pr(a) + pr(x ′|¬a) pr(¬a)

= pr(x ′|a) pr(a) + pr(x |¬a) pr(¬a)

= pr(x ′|a) pr(a) + pr(x) pr(¬a|x)
= pr(x ′|a) pr(a) + pr(x) (1 − pr(a|x))
= pr(x ′|a) pr(a) + pr(x) (1 − pr(Pa |x))
= pr(x ′|a) pr(a) + pr(x) − pr(x) pr(Pa |x)
= pr(x ′|a) pr(a)

︸ ︷︷ ︸
T1

+ pr(x) − pr(x ∧ Pa)︸ ︷︷ ︸
T2

(4)

The first term T1 can be rewritten in terms of the action’s
outcomes as:

pr(x ′ | a) pr(a) = pr(a)
∑

o∈O(a)

pr(o) pr(x ′ | o, a)

where the conditional probability of x given an outcome o of
action a is defined as:

pr(x |o, a) =
⎧
⎨

⎩

1 if (x ∈ o)
0 if (¬x ∈ o)
pr(x |Pa) if (x,¬x /∈ o)

In other words, if the outcome o produces the proposi-
tion x , then the conditional probability is 1 (the outcome is

1 We assume that the executive is smart enough that it will not exe-
cute an action if its preconditions are not satisfied so the state remains
unchanged in this case.

considered). If o produces ¬x , then the conditional proba-
bility is 0 (the outcome is not considered). Finally, if o does
not produce either x or ¬x , then the probability is that of x
persisting through a, which depends on the probability of x
given the set of preconditions Pa of a:

pr(x |Pa) =

⎧
⎪⎨

⎪⎩

1 if (x ∈ Pa)

0 if (¬x ∈ Pa)

pr(x)
∏

pi∈Pa

I (x, pi) if (x,¬x /∈ Pa)

In other words, if the proposition x belongs to the action’s
preconditions, the conditional probability is 1 (the outcome is
considered). If ¬x belongs to the action’s preconditions, the
conditional probability is 0 (the outcome is not considered).
If x and ¬x do not belong to the action’s preconditions, then
it is necessary to compute the probability that x holds given
the preconditions of a, which is the probability of x times
the interaction of x with the preconditions of a.

The second term T2 in Eq. 4 computes the probability of
the proposition assuming that the action fails to execute. The
first term in T2 refers to the probability of the proposition
before the action is applied. The second term in T2 refers to
the probability that x is consistent with the set of precondi-
tions Pa of a, which is given as:

pr(x ∧ Pa) =

⎧
⎪⎨

⎪⎩

pr(a) if (x ∈ Pa)

pr(a) pr(x)
∏

p∈Pa

I (p, x) if (x /∈ Pa)

In other words, if the proposition x belongs to the action’s
preconditions, the term reduces to the probability of the
action. Otherwise, it is necessary to consider the interaction
between x and the action’s preconditions.

To illustrate, consider the planning problem shown in
Fig. 4, where there is a package pkg and a truck trk at location
a, and the package needs to be delivered to location c. The
truck can move between different locations, and it may have
a flat tire during a move with 0.4 probability. Location d has
a spare tire.

Figure 5 shows the transition process from a probabilistic
state S0 to a probabilistic state S1 for this simple problem.The
probabilistic state S0 is the initial state, where each proposi-
tion has probability equal to 1. The probabilistic state S1 is the
result of applying (drive trk a d) to S0, where the probability

Fig. 4 Initial and goal states for a logistics problem

123

Prog Artif Intell (2017) 6:299–314 303

Fig. 5 Example of the transition from a probabilistic state to another
probabilistic state

Fig. 6 Example of the transition from a probabilistic state to another
probabilistic state with interaction information

of propositions (at b trk) and ¬(at a trk) is 1, the probability
of ¬(flattire) is 0.6, and, therefore, the probability of (flattire)
is 0.4 (Fig .6).

3.2.2 Calculating interaction information for a
probabilistic state

The propositions in a probabilistic state are not independent
of each other. It is, therefore, necessary to capture and store
the interaction between each pair of propositions. The inter-
action for a pair of propositions in s′ is:

I (x ′, y′) = pr(x ′ ∧ y′)
pr(x ′) pr(y′)

≤ 1

max{pr(x), p(y)}

where the conjunction probability of x ′ and y′ is given by the
probability of getting both when the action succeeds plus the
probability of getting both when the action fails. That is:

pr(x ′ ∧ y′) = pr(x ′ ∧ y′|a) pr(a) + pr(x ∧ y|¬a) pr(¬a)

= pr(x ′ ∧ y′|a) pr(a) + pr(x ∧ y|¬a) pr(¬a)

= pr(x ′ ∧ y′|a) pr(a) + pr(x ∧ y) pr(¬a|x ∧ y)

= pr(x ′ ∧ y′|a) pr(a) + pr(x ∧ y) (1 − pr(a|x ∧ y))

= pr(x ′ ∧ y′|a) pr(a)
︸ ︷︷ ︸

T1

+ pr(x ∧ y) − pr(x ∧ y ∧ Pa)︸ ︷︷ ︸
T2

(5)

As before, the term T1 in Eq. 5 can be rewritten in terms
of the action’s outcomes as:

pr(x ′ ∧ y′|a) pr(a) = pr(a)
∑

o∈Oa

pr(o) pr(x ′ ∧ y′|o, a)

where the conditional probability of x ′ and y′ given an out-
come o of action a, with set of preconditions Pa , (pr(x ′ ∧
y′|o, a)) is:

– 1 if (x, y ∈ o)
– 0 if (¬x ∈ o) or (¬y ∈ o)
– pr(y|Pa) if (x ∈ o) and (y,¬y /∈ o)
– pr(x |Pa) if (x,¬x /∈ o) and (y ∈ o)
– pr(x ∧ y|Pa) if (x,¬x, y,¬y /∈ o)

In other words, if the outcome o produces propositions x
and y, then the conditional probability is 1 (the outcome is
considered). If o produces ¬x or ¬y, then the conditional
probability is 0 (the outcome is not considered). If o pro-
duces x and does not produce y or ¬y, then it is necessary
to compute the probability that y persists through a, which
depends on the probability of y given the preconditions of
a. If o produces y and does not produce x or ¬x , then it is
necessary to compute the probability that x persists through
a, which depends on the probability of x given the precon-
ditions of a. If o does not produce x , ¬x , y, or ¬y, then it
is necessary to compute the probability that x and y both
persist through a, which depends on the probability of x
and y given the preconditions of a (pr(x ∧ y|Pa)), which
is:

– 1 if (x, y ∈ Pa)

– 0 if (¬x ∈ Pa) or (¬y ∈ Pa)

– pr(x)
∏

p∈Pa

I (x, p) if (x /∈ Pa) and (y ∈ Pa)

– pr(y)
∏

p∈Pa

I (y, p) if (x ∈ Pa) and (y /∈ Pa)

– pr(x)pr(y)
∏

p∈Pa

I (x, p)I (y, p) if(x,¬x, y,¬y /∈ Pa)

The term T2 in Eq. 5 computes the probability of the con-
junction x and y assuming that the action fails to execute.
The first term in T2 refers to the conjunction probability of x
and y before a is applied. The second term in T2 refers to the
probability that x and y are consistent with the preconditions
of a (pr(x ∧ y ∧ Pa)), which is given as:

– pr(a) if (x, y ∈ Pa)

– pr(a) pr(x)
∏

p∈Pa

I (p, x) if (x /∈ Pa) and (y ∈ Pa)

– pr(a) pr(y)
∏

p∈Pa

I (p, y) if (x ∈ Pa) and (y /∈ Pa)

– pr(a) pr(x) pr(y)
∏

p∈Pa

I (p, x) I (p, y) if (x, y /∈ Pa)

Figure 9 shows again the transition process from S0 to
S1 with probability information for each probabilistic propo-
sition, and interaction information between some pairs of
propositions at S1. As an example, the interaction between
propositions (at d trk) and ¬(flattire) at S1 is 0.6. An

123

304 Prog Artif Intell (2017) 6:299–314

interaction value of 0.6 means that there is some interfer-
ence between propositions. This interference comes from
the fact that one of the action’s outcomes produces (flat-
tire).

3.3 Probability and interaction propagation in plan
graphs for PEWD

In the previous section, we described the concept of proba-
bilistic states and how to compute them. In searching for a
plan, we also need a heuristic estimate to help the planner
decide what state to expand next. In order to do this, we need
an estimate of how likely the state is to lead to the goals. In this
section, we describe an approach to computing more accu-
rate estimates of probability that allow the planner to search
toward non-branching seed plans with high probability of
success. We first describe how we do this probability estima-
tion considering the overall probability of each proposition
across all of the action’s outcomes, and the dependencies
between propositions in the different outcomes. Then, we
describe a heuristic function that makes use of this probabil-
ity estimation to guide a planner toward high probability of
success plans.

As in previous work [6,7], probability and interaction
information can be estimated using a plan graph. The com-
putation of probability and interaction information begins
at level zero of the plan graph where the probability of the
propositions and their pairwise interactions are given by the
probabilistic state.

It is important to note that the probabilities and interac-
tion values propagated in the plan graph are approximations
since the calculation of these values is limited to pairs of
propositions and pairs of actions in each level of a plan
graph.

3.3.1 Computing action Probability and interaction

The probability and interaction information of a proposition
layer at a given level of the plan graph is used to compute
the probability and the interaction information for the sub-
sequent action layer. In particular, considering an action a at
level l with a set of preconditions Pa , the estimation of how
likely it is to execute the action is the product of achieving
all its preconditions times the interaction between all pairs
of preconditions:

pr(a) ≈
∏

x∈Pa

pr(x)
∏

(xi , x j)∈Pa
j > i

I (xi , x j) (6)

where pr(a) ≤ maxx∈Pa pr(x).
The interaction between two actions a and b at level l,

with sets of preconditions Pa and Pb, is defined as:

I (a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if a and b are mutex by inconsistent
effects or interference

pr(a ∧ b)
pr(a) pr(b) otherwise

(7)

The probability of both actions pr(a∧b) is the probability
of the union of their preconditions pr(Pa ∪ Pb), which is
approximated as the product of the probabilities of achieving
all their preconditions times the interaction between all pairs
of preconditions. That is:

pr(Pa ∪ Pb) ≈
∏

x∈Pa∪Pb

pr(x)
∏

(xi ,x j)∈Pa∪Pb
j > i

I (xi , x j)

The interaction above can be simplified to:

I (a, b) ≈

∏
xi∈Pa−Pb
x j∈Pb−Pa

I (xi , x j)

∏
x∈Pa ∩Pb

pr(x)
∏

(xi ,x j)∈Pa ∩Pb
j > i

I (xi , x j)
(8)

where the numerator is the interaction between unique pre-
conditions for each action, and the denominator is the
probability of common preconditions and the interaction
between them.

To illustrate, consider a simple problem with operator A
that has preconditions x , y, and t , and operator B that has
preconditions x , y, and z. Assuming that A and B are not
mutually exclusive, the interaction between actions A and B
will be:

I (A, B) = pr(PA ∪ PB)

pr(A) pr(B)
(9)

where:

pr(PA ∪ PB) = pr(t) pr(x) pr(y) pr(z) I (t, x) I (t, y) I (t, z)

I (x, y) I (x, z) I (y, z)

pr(A) = pr(t) pr(x) pr(y) I (t, x) I (t, y) I (x, y)

pr(B) = pr(x) pr(y) pr(z) I (x, y) I (x, z) I (y, z)

Therefore, the interaction between A and B can be sim-
plified to:

I (A, B) = I (t, z)

pr(x) pr(y) I (x, y)

Figure 7 shows a partial plan graph for the Logistics prob-
lem. The numbers above the propositions and actions are
the probabilities associated with each one, computed during
the probability propagation process. The numbers next to

123

Prog Artif Intell (2017) 6:299–314 305

Fig. 7 A partial plan graph with probability values of propositions and actions

the edges are the interaction between the two elements con-
nected by the edges. As an example, the probability of action
(drive d c) at level 1 is 0.6, and the probability of proposition
(change-tire d) at level 1 is 1.

3.3.2 Computing proposition probability and interaction

To estimate the probability of a proposition at a level, all
the possible actions at the previous level that achieve that
proposition need to be taken into account.Wemake the usual
optimistic assumption that we can use the action that max-
imizes the probability, but we are considering the action as
a whole. To do this, we must consider all outcomes of the
action that contribute to the proposition. More formally, for
a proposition x at level l, achieved by actions Ax at the pre-
ceding level, the probability is calculated as:

pr(x) = max
a∈A(x)

{

pr(a)
∑

o∈OA(a,x)

pr(o) pr(x | o, a)

}

(10)

where OA(a, x) is the set of outcomes of action a that pro-
duce x . Therefore, the second term in the equation gives
information about the total probability of x given the action
a. This information is given by the conditional probability of
x given o, which is defined as:

pr(x | o, a) =
⎧
⎨

⎩

1 if (x ∈ o)
0 if (¬x ∈ o)
pr(x |Pa) if (x,¬x /∈ o)

(11)

where Pa is the set of preconditions of a. If the outcome o
produces the proposition x , then the conditional probability
is 1 (the outcome is considered). If o produces ¬x (deletes
x), then the conditional probability is 0 (the outcome is not
considered). Finally, ifo does not produce either x or¬x , then
we need to compute the probability that x persists through the
action. This requires considering the relationship between
x and the action’s preconditions at the previous level. If x
belongs to the action’s preconditions, then the conditional
probability is 1 (x is necessary for the action and the outcome
is considered). If ¬x belongs to the action’s preconditions,
the conditional probability is 0 (x is inconsistent with the
action so the outcome is not considered). If x or ¬x do not
belong to the action’s preconditions, then it is necessary to
consider whether the proposition was present in the previous
layer given the preconditions of the action. Formally:

pr(x |Pa) =

⎧
⎪⎨

⎪⎩

1 if (x ∈ Pa)

0 if (¬x ∈ Pa)

pr(x)
∏

p∈Pa

I (x, p) if (x,¬x /∈ Pa)

(12)

123

306 Prog Artif Intell (2017) 6:299–314

Finally, we compute the interaction between propositions.
In order to calculate the interaction between two propositions
x and y at a level l,weneed to consider all the possibleways to
achieve both propositions. In other words, all the actions that
achieve the pair of propositions, and the interaction between
them. Suppose that Ax and Ay are the sets of actions that
achieve propositions x and y, respectively, at level l. The
interaction between x and y is then:

I (x, y) ≈

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
a∈Ax∩Ay
a /∈ noop

pr(a) pr(x ∧ y|a),

max
a∈Ax , b∈Ay

a /∈ noop, b /∈ noop
a
=b

pr(a ∧ b) pr(x ∧ y|a ∧ b),

pr(x) pr(y) I (x, y)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

pr(x) pr(y)
(13)

The first term in the max expression corresponds to those
actions that accomplish both propositions x and y. It is com-
puted as:

max
a∈Ax∩Ay
a /∈ noop

{pr(a) pr(x ∧ y|a)}

= max
a∈Ax∩Ay
a /∈ noop

⎧
⎨

⎩
pr(a)

∑

o∈Oa

pr(o) pr(x ∧ y|o, a)

⎫
⎬

⎭

whereOa is the set of outcomes of action a. The conditional
probability of x and y given an outcome o (pr(x ∧ y|o, a))
is given as:

– 1 if (x, y ∈ o)
– 0 if (¬x ∈ o) and (¬y ∈ o)
– pr(x |Pa) if (y ∈ o) and (x,¬x /∈ o)
– pr(y |Pa) if (x ∈ o) and (y,¬y /∈ o)
– pr(x ∧ y |Pa) if (x,¬x, y,¬y /∈ o)

Similarly, the second term in the max expression corre-
sponds to those actions that accomplish only one proposition
each. It is given as:

max
a∈Ax , b∈Ay

a /∈ noop, b /∈ noop

{pr(a ∧ b)pr(x ∧ y|a ∧ b)}

which is equal to:

max
a∈Ax , b∈Ay

a /∈ noop, b /∈ noop

⎧
⎪⎨

⎪⎩

pr(a ∧ b)
∑

oi∈Oa

pr(oi) pr(x |oi , a, b)
∑

o j∈Ob

pr(o j) pr(y|o j , a, b)

⎫
⎪⎬

⎪⎭

where Oa is the set of outcomes of action a, and Ob is the
set of outcomes of action b. The conditional probabilities
pr(x |oi , a, b) and pr(y|o j , a, b) are given as:

pr(x |o, a, b) =
⎧
⎨

⎩

1 if (x ∈ o)
0 if (¬x ∈ o)
pr(x |Pa ∧ Pb) if (x,¬x /∈ o)

In other words, if o produces x , the probability is 1 (the
outcome is considered). If o produces ¬x , the probability is
0 (the outcome is not considered). If o does not produces x
and ¬x , then the probability is the probability that x persists
through a and b, which depends on the probability of x before
a given the preconditions of both a and b, which is:

pr(x |Pa ∧ Pb) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if (x ∈ Pa ∪ Pb)

0 if (¬x ∈ Pa ∪ Pb)

pr(x)
∏

p∈Pa∪Pb

I (x, p) if (x, ¬x /∈ Pa ∪ Pb)

Finally, the third term in the max expression corresponds
to the case where both propositions persist through noops
from the previous level. This is given as the product of the
probability of each individual proposition at the previous
level and the interaction between them.

Returning to the current example, the calculation of the
interaction between propositions (at c trk) and (¬flattire) at
level 2 is 0.6, which means that there is interference between
having the package at location c and not having a flat tire.
This comes from both the facts that action (drive d c) has
(¬flattire) as a precondition and it has nonzero probability at
level 1, and has (flattire) as an effect.

3.4 Upper bounds on probability and interaction

Because the probabilities in Eqs. 6 and 10 are estimated
based on binary interaction, the resulting calculations can
sometimes overestimate probability and interaction. As we
previously noted in Sect. 3.1, the interaction between x and
y is bounded above by:

I (x, y) ≤ 1

max{pr(x), pr(y)} (14)

We also noted that the probability of an action is bounded
above by the minimum probability of its preconditions. That
is:

pr(a) ≤ min
x∈Pa

pr(x) (15)

We use these bounds at all stages of the calculation in
order to help avoid overestimation.

123

Prog Artif Intell (2017) 6:299–314 307

3.5 Probabilistic heuristic estimator

Using Eqs. 6, 7, 10, and 13 we can build a plan graph and
propagate probability and interaction information. The con-
struction process finishes when two consecutive proposition
layers are identical and there is quiescence in probability
and interaction for all propositions and actions in the plan
graph. On completion, each possible goal proposition has
an estimated probability of being achieved, and there is an
interaction estimationbetween eachpair of goal propositions.
Therefore, using the probability and interaction information
computed in the probabilistic plan graph we can compute an
estimated probability of achieving a (possibly conjunctive)
goal G = { g1, . . . , gn} from a particular state n, which we
call the Completion Probability Estimate (CPE):

CPE(n) ≈
∏

g∈G
pr(g)

∏

(gi ,g j)∈G
j > i

I (gi , g j) ≤ min
g∈G pr(g)

(16)

Figure 8 shows the high-level algorithm for computing the
CPE used to compute the probability estimation of reaching
the goal from a particular state, which may be summarized
in the following steps:

1. For each proposition p in the probabilistic state S com-
pute the probability of p in S using Eq. 4.

2. For each each pair of propositions p and q in the proba-
bilistic state S compute the interaction between p and q
in S using Eq. 5.

3. Initialize the probabilistic plan graphwith the probability
and interaction information of the current state and com-

Fig. 8 The CPE calculation pseudo-algorithm

pute the new probability and interaction estimates using
Eqs. 6, 7, 10, and 13.

4. Compute the CPE of the current state S by estimating
the probability of G from the Probability and interaction
estimates in the updated probabilistic plan graph using
Eq. 16.

3.6 An extended example

Consider the progress of the probabilistic search process
shown in Fig. 9 that finds a path for the logistics problem
in Fig. 4. S0 is the initial state. Actions (drive trk a b) and
(drive trk a d) are the applicable actions in S0, and generate
the probabilistic states S1 and S2 respectively. The path to the
goal through (drive trk a d) and state S2 has a higher probabil-
ity than the path through (drive trk a b) and state S1 because
of the fact that location d has a spare tire, while location b
does not. The CPE value for states S1 and S2 are 0.6 and 1,
respectively. Therefore, the next node to be expanded is S2
where (drive trk d c) and (change d) are the applicable actions,
and generate states S3 and S4 respectively. The path to the
goal through (change d) has a higher probability than the
path through (drive trk d c). The fact that pr(¬flattire) = 0.6
at S2 lowers the probability of (drive trk d c). On the other
hand, the spare tire at location d increases the probability
of (change d). The CPE values for states S3 and S4 are 0.6
and 1 respectively. Therefore, the next node to be expanded
is S4 where (drive d c) is the applicable action, and gener-
ates state S5. It is important to note that pr(¬flattire) in S4
increases from 0.6 to 1 after applying (change). Therefore,
pr(drive d c) also increases to 1. The new state S5 contains
the goal state with probability 1 so it is, therefore, not nec-
essary to explore the search space further. For this particular
problem, our heuristic leads to a maximum search probabil-
ity, and finds the following plan solution with the highest
probability of success:

π = {(drive trk a d) (change d) (drive d c)}

4 Recognizing outcomes

Using the technique described in Sect. 3, we can generate
high probability seed plans. We perform a forward state-
space search using A∗ over the space of probabilistic states
as is described in Sect. 3.2. We guide this search using the
CPE estimate as described in the previous section.

Once a seed plan has been generated, we analyze the
potential unexpected outcomes to estimate howmuch proba-
bility could be gained by improving the chances of recovery
for that outcome. We call this estimation Gain and it is
the maximum probability that the plan could potentially be
improved by repairing the outcome. To compute Gain we can

123

308 Prog Artif Intell (2017) 6:299–314

Fig. 9 Search progress using PEWD solving the Logistics problem

again use the CPE, which is used to compute an estimate of
the probability of reaching the goal from that state.

For an alternative outcome (or branch) x of action a, the
optimistic possible Gain from improving the branch will be
the difference between the estimated reward with repair and
the estimated reward without repair. We compute the latter
using the CPE estimation. That is, the probability of reach-
ing the goal from that state. To compute the estimated reward
with repair, we propagate probability and interaction in the
plan graph only considering the outcome x , but allowing
other actions in the plan to change. By doing this, we force
x to be in the plan and, therefore, the new probability and
interaction information can be used to compute the proba-
bility of reaching the goal from that state without repair. We
call this estimation optimistic probability estimation (OPE).
More formally, for a branch x, the Gain is a measure of how
much the total plan probability could potentially be increased
by incremental contingency planning and is computed by the
difference between the OPE of branch x and the CPE of x :

Gain(x) = OPE(x) − CPE(x) (17)

To illustrate, consider the seed plan in Fig. 10. Action
(drive trk a b) has an alternative outcome o1 with probability
0.4 and CPE = 0. This means that there is no chance of
completing the objective if this outcome actually happens—
the tire goes flat and the truck cannot reach the goal. Action
(drive trk b c) has an alternative outcome, o2, with probability
0.4 and CPE = 1 because even though the tire goes flat, the
truck still arrives at location c, and the remainder of the plan
succeeds.

The Gain for branches o1 and o2 are:

Gain(o1) = OPE(o1) − CPE(o1) = 0.36 − 0 = 0.36

Gain(o2) = OPE(o2) − CPE(o2) = 0.36 − 1 = −0.64

Fig. 10 Example of a non-branching seedplanwith potential outcomes
to be repaired

Thismeans that by repairing branch o1, the total plan prob-
ability will improve more than through branch o2. Therefore,
wewould prefer to recover o1 since it seems that it is possible
to gain more probability mass, whereas o2 might be recover-
able by using runtime replanning. These calculations of Gain
allow creating a ranking on the alternative outcomes.

5 Repairing outcomes

Given the ranking of alternative outcomes, the next step is
to repair the plan in order to increase the overall probabil-
ity of success. For each outcome, the idea is to look for the
best improvement. In the next subsections, we present three
methods to do that. The first method is called confronta-
tion, which tries to find a plan that avoids the problematic
action outcome. The second method is called precautionary
steps, which adds additional (precautionary) actions before
the problematic action to increase the probability of recov-
ery in case the bad outcome happens. The third method is
called conformant augmentation, which increases the total
probability by adding conformant steps to the plan.

5.1 Confrontation

Aprobabilistic outcome of an actionmay be subject to differ-
ent conditions. In our example, it might be that for the action

123

Prog Artif Intell (2017) 6:299–314 309

Fig. 11 The confrontation pseudo-algorithm

(unload pkg trk c), proposition ¬(at c pkg) occurs when, for
instance, the dolly used to unload the package from the truck
is broken. Confrontation on this condition will avoid ¬(at c
pkg) by ensuring that the dolly is intact before the start of
driving. Figure 11 shows the high-level algorithm used.

The idea is to find a new plan that avoids or reduces the
probability of getting to that branch, and then replace the old
seed plan with the new plan. More precisely, suppose that a
is the action in the seed plan with an unrecoverable outcome
conditioned by c. We force the planner to find a new seed
plan that achieves ¬c to prevent the failure from occurring.
The way we do this is by creating a new version a′ of the
action a that keeps its original preconditions but adds a new
additional precondition ¬c, and keeps its original effects but
adds an additional unique effect. The unique effect is added
to the set of goals. We then add the new action to the set of
operators and call the deterministic planner to find a plan for
the goals to force that action into the plan. If a new plan is
found and it has higher probability than the old seed plan,
the new plan replaces the old seed plan.

In our example, suppose that the package pkg needs to
be delivered at location c. The action of delivering the pack-
age, unload, has a conditional effect (not-broken), which will
deliver the package if the dolly d is intact. Figure 12 shows
the new action (unload’). It includes ¬(not-broken d), the
negation of the conditional effect, in its preconditions, and
the proposition (unique-effect) in its effects. The new prob-
lem includes the proposition (unique-effect) in the goal set.
If a solution is possible for this new problem, the determin-
istic planner would return a plan with action (unload’) in it
to guarantee that the dolly is intact before the start of the
driving.

5.2 Precautionary steps

Adding precautionary steps consists of repairing an undesir-
able action’s outcome by adding precautionary actions to the

Fig. 12 Confrontation: new action and new problem definitions

Fig. 13 The precautionary steps pseudo-algorithm

plan before the problematic action. For example, picking up
a spare tire before driving in case you have a flat tire. This
method improves the chance of recovery if the seed plan fails,
and makes it possible to reach the goal when the unexpected
outcome of the problematic action happens. Figure 13 shows
the high-level algorithm used. The idea is to force the planner
to find a plan that facilitates recovery from the problematic
outcome, but does not lose any precondition needed to reach
the goal when the action has the desired outcome. To do this,
for a problematic outcome of action a we:

1. Divide the initial seed plan into two parts: a prefix, which
contains all actions preceding a, and a suffix, which con-
tains all actions following a.

2. Create a new action a′ that keeps its original precondi-
tions and effects, but adds a new effect (unique effect).

3. Analyze the causal structure of the suffix to collect all
the preconditions needed by the suffix, but not added
by the problematic outcome. We add these to the set of
preconditions of a′.

4. Add the predicate (unique effect) to the goal state to force
a′ into the plan.

123

310 Prog Artif Intell (2017) 6:299–314

Fig. 14 Precautionary steps:
new action and new problem
definitions

Fig. 15 Recovering action outcomes by adding a precautionary step for alternative outcome o1

5. Add a′ to the set of operators and call the deterministic
planner to find a plan for the new goal state. If a plan is
found and the overall probability of the plan is higher,
the prefix of the seed plan is replaced with the prefix of
the new plan, and the suffix is added to it as a branch for
the problematic outcome of a.

Returning to our example, assume that we are repairing
outcome o1. Figure 14 shows the new action created to repair
o1. It includes the proposition (unique-effect) in its effects. Its
precondition set remains the same because it already has all
the preconditions necessary to enable the suffix. In addition,
the new problem definition includes the proposition (unique-
effect) in the goal set. The deterministic planner returns a
new plan that has the precautionary action (get-tire), which
increases chances of recovery in case the unexpected out-
come o1 occurs.

Figure 15 shows the contingency plan once outcome o1
has been repaired by replacing the prefix with the new one
that includes the action (get-tire), and a contingency branch
where the tire is changed if the outcome o1 happens and the
car gets a flat tire. On the other hand, o2 does not need to be
repaired since it can be handled by runtime replanning.

5.3 Conformant augmentation

It is possible that there are several plans that reach the goal,
which are not initially generated because they have lower
probability. In some cases, one or more of these plans may
be concurrently executable with the original seed plan and

will raise the probability of the plan. Conformant plans may
be generatedwhen the precautionary stepsmethod is applied.
This is the casewhen the plan that is generated contains action
a’ (the one forced to be in the plan), but it is only in the plan
to achieve the unique effect.

As an example of this technique, consider the unrecover-
able outcomeof action (drive trk b c) shown inFig. 16.Wecan
increase the overall probability of reaching the goal by simul-
taneously sending a second truck trk2 to pick the package up.
During execution time, both sequences would be executed
concurrently. However, since the conformant plan generated
might interfere with actions in the tail of the contingency
plan, we need to find all the potential execution conditions
and consider them during the execution of the plan. An exe-
cution condition is a proposition that determines which plan
continues to execute. If the execution condition is true, then
the execution continues with the contingency plan. Other-
wise, the execution continues with the conformant plan. In
our example, only one of the trucks can pick the package up
at location c. Therefore, during execution time, we need to
consider the execution condition (at c trk), to disable either
the conformant plan, if the proposition becomes true, or the
contingency plan, if the proposition becomes false.

It may happen that the resulting conformant plan requires
revision to the augmented seed plan in order to be compatible
with the seed plan. This revised seed plan may have lower
probability than the original seed plan. This is the casewhere,
for instance, the truck trk2 in the conformant plan is a large
truck that requires a driver with a specific license. The logis-
tics company only has one driver with that license, and he

123

Prog Artif Intell (2017) 6:299–314 311

Fig. 16 Recovering action outcomes by adding a conformant plan for the unrecoverable outcome of action (drive trk b c)

was first assigned to drive truck trk. As a consequence, the
revised suffix would require (1) assign that driver to trk2 and
(2) assign a new driver to trk. The actions in the revised suf-
fix may have some new probability of failure (for instance,
the driver gets sick and cannot drive), and as a consequence
of that, the overall probability of the seed plan may decrease.
If the total probability of the revised seed plan plus the new
conformant branch is higher than the original seed plan, then
the original seed plan is replaced by the new plan with the
conformant augmentation.

6 Experimental evaluation

We conducted experiments on IPPC-06 [1] and IPPC-08 [4]
fully observable probabilistic planning domains, as well as
on the probabilistically interesting domains (PID) [10]. The
tests consisted of running the planner and using the resulting
plan in the MDP Simulator [15]. The planner and the simu-
lator communicate by exchanging messages. The simulator
first sends the planner the initial state. Then, the interaction
between planner and simulation consists of the planner send-
ing an action and the simulator sending the next state to the
planner.

The planners used for this test were FPG [3], FF-
Replan [12], FHH [13], FHH+ [14], and RFF [11]. We
compare these with four variants of our planner:

– PIPSSI
r [6]: a planner that uses all-outcomes determiniza-

tion togetherwith probability and interaction information
(turned into costs) to generate a seed plan. It does runtime
replanning to deal with unexpected states at execution
time.

– C-PIPSSI
r [7]: a modified PIPSSI

r planner that incre-
mentally augments the plan solution using confrontation,
precautionary steps, and conformant augmentation. It
also does runtime replanning to deal with unexpected
states at execution time.

– PIPSSI P : a planner that uses PEWD rather than action
determinization to generate a high-probability seed plan.
During execution, the planner does not perform any fur-
ther action when an unexpected state occurs.

– PIPSSI P
r : a planner that uses PEWD rather than action

determinization to generate a high-probability seed plan
and does runtime replanning to deal with unexpected
states at execution time.

The experiments were conducted on a Pentium dual-
core processor at 2.4 GHz running Linux. For the rest of
the planners, given that we were not able to obtain and
run them ourselves, data are collected from work done by
Yoon et al. [14]. To perform this test, we have chosen
the Exploding-Blocksworld, Triangle-tireworld, Tireworld,
Climb, and River domains because all have the property that
simple replanning fails because some of the actions’ out-
comes yield dead-end states. (Thus, we can evaluate if our
novel PEWD approach is guiding the search toward higher
probability of success plans.)

Table 1 shows the number of successful rounds for FFH,
FFH+, FPG, PIPSSI

r , C-PIPSS
I
r , PIPSS

I P , and PIPSSI P
r

planners in each domain. For all the planners, 30 trials per
problemwere performedwith a total limit of 30min for the 30
trials. Exploding-Blocksworld-06, Exploding-Blocksworld-
08, and Tireworld have 15 problems for each domain. So,
the maximum number of successful rounds for each domain
is 15 × 30 = 450. Triangle-tireworld only has 10 prob-
lems so that the total rounds in this case is 10 × 30 = 300.
Climb, River, Tire1, and Tire10 have one problem for each
domain, so the maximum number of successful rounds for
each domain is 30.

For the Exploding-Blocksworld-06 domain, C-PIPSSI
r

gets the highest rate of successful rounds closely fol-
lowed by FFH+, PIPSSI

r , FFH, FPG, and finally PIPSSI P

and PIPSSI P
r . There is the same trend for the Exploding-

Blocksworld-08 domain, where FFH+ stands out against the
rest of the planners, followed by PIPSSI

r , C-PIPSS
I
r , FFH,

PIPSSI P , and PIPSSI P
r . The planner with the lowest rate of

123

312 Prog Artif Intell (2017) 6:299–314

Table 1 Total number of
successful rounds for different
planners

Planners

Domains FFH FFH+ FPG PIPSSI
r C-PIPSSI

r PIPSSI P PIPSSI P
r

Exploding-BW-06 205 265 193 239 266 132 158

Tirewld-06 343 364 337 360 362 352 365

Climb 30 30 30 30 30 30 30

River 20 20 20 23 21 18 20

Tire1 30 30 30 21 18 30 30

Tire10 6 30 0 0 0 0 0

Total 624 739 610 663 697 562 603

FFH FFH+ RFF PIPSSI
r C-PIPSSI

r PIPSSI P PIPSSI P
r

Exploding-BW-08 131 214 58 171 170 85 103

Triangle-Tirewld-08 420 420 382 21 67 210 210

Total 551 634 440 192 237 295 313

Bold values represent the highest success rate in each domain

Table 2 Total number of
successful rounds using PEWD
given unlimited amount of time

Planners

Domains PIPSSI P PIPSSI P
r uPIPSSI P uPIPSSI P

r

Exploding-BW-06 132 158 180 180

Exploding-BW-08 85 103 156 161

Tirewld-06 352 365 391 423

Triangle-Tirewld-08 210 210 300 300

Total 779 836 1027 1064

successful rounds is RFF, the competition winner. For the
Tireworld domain, all the approaches have a similar number
of successful rounds, but PIPSSI P has the highest rate. For
Triangle-Tireworld, FFH+ and FFH have the highest rate fol-
lowed by RFF. PIPSSI P and PIPSSI P

r perform much better
than PIPSSI

r andC-PIPSS
I
r . This is because PEWD is finding

plans that avoid dead-end states, and thus manages to solve
more rounds. Climb, River, Tire1, and Tire10 are problems
with dead-ends and a small likelihood of simple paths. All
the approaches solve all the rounds for the Climb domain.
For the River domain, PIPSSI

r achieves the highest rate of
successful rounds, but the other approaches are very close.
For the Tire1 domain, all the approaches solve all the prob-
lems, except PIPSSI

r and C-PIPSS
I
r . This shows that PEWD

is finding high probability of success plans. For the Tire10
domain, FFH and FHH+ are the only planners that solve the
problem and are able to complete 6 and 30 rounds respec-
tively. (The family of PIPSSI∗

r planners run out of time due
to the size of the problem.)

With regard to the difference in performance between
PIPSSI P andPIPSSI P

r , the success rate is only slightly higher
in PIPSSI P

r , which performs replanning while PIPSSI P does
not. This means that runtime replanning does not make a big

difference because the technique is generating high proba-
bility of success seed plans.

It appears that PIPSSI
r and C-PIPSSI

r perform much bet-
ter than PIPSSI P and PIPSSI P

r in most of the domains. The
issue here is that PIPSSI

r and C-PIPSSI
r scale much better

that PIPSSI P and PIPSSI P
r in term of the amount of time

taken to solve the problem. PIPSSI P and PIPSSI P
r were

unable to solve all the problems for the hardest domains such
as Blocksworld and Tire because they run out of time due
to the complexity caused by the update of the plan graph
for each probabilistic state. In particular, for the Exploding-
Blocksworld-06, PIPSSI P solves only 40% of the problems,
while PIPSSI

r solves 66% of them. For this reason, the num-
ber of successful rounds for PIPSSI P and PIPSSI P

r is lower
than for PIPSSI

r andC-PIPSS
I
r . For theTireworld-06 domain,

PIPSSI P solves 86% of the problems, while PIPSSI
r solves

all of them. However, it still gets a high number of successful
rounds, which is evidence that we are generating high proba-
bility of success plans. For Triangle-Tireworld-08, PIPSSI P

and PIPSSI P
r only solve 46% of the problems, compared to

PIPSSI
r and C-PIPSSI

r that solve 66% of them.
In order to confirm that this is a problem of efficiency and,

therefore, the PEWDtechnique is generating high probability
of success plans, we gave PIPSSI P and PIPSSI P

r an unlim-

123

Prog Artif Intell (2017) 6:299–314 313

ited amount of time to solve problems for the Blocksword
and Tireworld domains. Table 2 shows the results of this test.
We compare the number of successful rounds for PIPSSI P

and PIPSSI P
r , given 30 min, against the number of success-

ful rounds for their counterparts uPIPSSI P and uPIPSSI P
r

respectively, given unlimited time.
For the Exploding-Blocksworld-06 domain, uPIPSSI and

uPIPSSI
r are able to solve almost 60% of the problems versus

40% given 30 min. The remainder of the problems are not
solved because uPIPSSI and uPIPSSI

r run out of memory.
Despite this, the number of successful rounds increases sig-
nificantly for both uPIPSSI and uPIPSSI

r . For the Exploding-
Blocksworld-08 domain, uPIPSSI and uPIPSSI

r are able to
solve almost 66% of the problems versus 46% given 30 min.
Again, the remainder of the problems are not solved because
uPIPSSI and uPIPSSI

r run out of memory, and the number of
successful rounds increases for both uPIPSSI and uPIPSSI

r .
For the Tireworld domain, uPIPSSI P and uPIPSSI P

r solve
all the problems. As a consequence, the number of success-
ful rounds increases considerably. In particular, uPIPSSI P

r
gets 423 of 450 successful rounds. For Triangle-Tireworld,
uPIPSSI P and uPIPSSI P

r solve all the problems and have
the highest number of successful rounds. All of this suggests
that PEWD is finding plans that avoid dead-end states, and its
performance could be dramatically improved by improving
the efficiency of the PEWD computation.

We have also tried using the PEWD technique together
with the addition of incremental contingency branches. How-
ever, the efficiency of thePEWDcomputation is the dominant
factor in determining the number of problems solved, and
therefore the resulting success rate. With PEWD, if a prob-
lemcan be solvedwithin the allowed time, the success rate for
the resulting seed plan is often high, and the insertion of con-
tingency branches seems to have little additional benefit. As
a result, improving the efficiency of PEWD has much greater
payoff than incrementally adding contingency branches.

7 Conclusions

This work goes beyond what Foss et. al. [8] did by com-
puting a high-probability seed plan and a Gain value that
evaluates which outcomes will improve the overall seed plan
probability. In addition, we included the Confrontation tech-
nique to repair outcomes subject to a condition. In general,
incremental contingency planning provides little additional
benefit using all-outcomes determinization for finding the
seed plan. In a few domains, incremental contingency plan-
ning can help; the success rates are higher, which means
that the planner has been able to reach the goal in a larger
percentage of problems. However, we expected that the com-
bination of incremental contingency planning and runtime
replanning would increase the success rate for all the tested

domains. Our hypothesis for the poor performance of our
framework was the classical all-outcomes determinization
approach. For this reason, we investigated a newway to com-
pute estimates of probability without action determinization
for probabilistic planning. This technique uses the PPDDL
action definitions as is and performs search in the space of
probabilistic states. The probability information provided in
the domain definition is used to propagate probability and
interaction information through a plan graph. This propa-
gation technique considers the overall probability of each
proposition across all of the action’s outcomes and the depen-
dencies between those propositions in the different outcomes.
The resulting probabilities are then used to compute a heuris-
tic function that guides the search toward high probability of
success plans. The resulting plans are used in a system that
handles unexpected outcomes by runtime replanning.

According to the results, the approach suffers from poor
scalability for large domains.However, the approach has high
success rates considering the number of solved problems.
This is evidence that we are generating higher probability of
success plans and the technique holds promise.More effort is
clearly required to improve efficiency and memory usage of
the probabilistic plan graph computation in order to improve
scalability.

Acknowledgements This work was supported by the NASA Safe
Autonomous Systems Operations (SASO) project, the MINECO
project EphemeCH TIN2014-56494-C4-4-P, and the UAH project
2016/00351/001.

References

1. Bonet, B., Given, R.: International Probabilistic Planning Compe-
tition. http://www.ldc.usb.ve/~bonet/ipc5, (2006)

2. Bryce, D., Smith, D.E.: Using interaction to compute better prob-
ability estimates in plan graphs. In: Proceedings of the ICAPS-06
Workshop on Planning Under Uncertainty and Execution Control
for Autonomous Systems, The English Lake District, Cumbria,
UK, (2006)

3. Buffet, O., Aberdeen, D.: The factored policy-gradient planner.
Artif. Intell. 173(5–6), 722–747 (2009)

4. Buffet, O., Bryce, D.: International Probabilistic Planning Com-
petition. http://ippc-2008.loria.fr/wiki/index.php/Main_Page,
(2008)

5. Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D.E., Wash-
ington, R.: Incremental contingency planning. In: Proceedings of
ICAPS-03Workshop on Planning under Uncertainty, Trento, Italy,
(2003)

6. E-Martín, Y., R-Moreno, M.D., Smith, D.E.: Progressive heuris-
tic search for probabilistic planing based on interaction estimates.
Expert Syst. 31(5), 421–436 (2014)

7. E-Martín, Y., R-Moreno, M.D., Smith, D.E.: Incremental con-
tingency planning for recovering from uncertain outcomes. In:
Proceedings of the Conference of the Spanish Association for Arti-
ficial Intelligence, Salamanca, Spain, (2016)

8. Foss, J., Onder, N., Smith, D.E.: Preventing unrecoverable failures
through precautionary planning. In: Proceedings of the ICAPS’07

123

http://www.ldc.usb.ve/~bonet/ipc5
http://ippc-2008.loria.fr/wiki/index.php/Main_Page

314 Prog Artif Intell (2017) 6:299–314

Workshop on Moving Planning and Scheduling Systems into the
Real World, Providence, RI, USA, (2007)

9. Jiménez, S., Coles,A., Smith,A.: Planning in probabilistic domains
using a deterministic numeric planner. In: Proceedings of theWork-
shop of the UK Planning and Scheduling Special Interest Group,
Nottingham, UK, (2006)

10. Little, I., Thiébaux, S.: Probabilistic planning vs replanning. In:
Proceedings of the ICAPS’07 Workshop on Planning Competi-
tions, Providence, RI, USA, (2007)

11. Teichteil-Königsbuch, F., Kuter, U., Infantes, G.: Incremental plan
aggregation for generating policies inMDPs. In: Proceedings of the
International Conference on Antonomous Agents and Multiagent
Sytems, Toronto, Canada, (2010)

12. Yoon, S., Fern, A., Givan, R.: FF-replan: a baseline for probabilistic
planning. In: Proceedings of the International Conference onAuto-
mated Planning and Scheduling, Providence, RI, USA, (2007)

13. Yoon, S., Fern, A., Givan, R., Kambhampati, S.: Probabilistic plan-
ning via determinization in hindsight. In: Proceedings of the AAAI
Conference on Artificial Intelligence, Chicago, IL, USA, (2008)

14. Yoon, S., Ruml,W., Benton, J., Do,M.: Improving determinization
in hindsight for on-line probabilistic planning. In: Proceedings of
the International Conference on Automated Planning and Schedul-
ing, Toronto, Ontario, Canada, (2010)

15. Younes, H.L.S., Littman, M.L., Weissman, D., Asmuth, J.: The
first probabilistic track of the International Planning Competition.
J. Artif. Intell. Res. 24, 841–887 (2005)

123

	Incremental contingency planning for recovering from critical outcomes in high-probability seed plans
	Abstract
	1 Introduction
	2 Seed plans from all-outcomes determinization
	3 Seed plans without determinization
	3.1 Probability interaction
	3.2 Search in the space of probabilistic states
	3.2.1 Calculating probabilities for a probabilistic state
	3.2.2 Calculating interaction information for a probabilistic state

	3.3 Probability and interaction propagation in plan graphs for PEWD
	3.3.1 Computing action Probability and interaction
	3.3.2 Computing proposition probability and interaction

	3.4 Upper bounds on probability and interaction
	3.5 Probabilistic heuristic estimator
	3.6 An extended example

	4 Recognizing outcomes
	5 Repairing outcomes
	5.1 Confrontation
	5.2 Precautionary steps
	5.3 Conformant augmentation

	6 Experimental evaluation
	7 Conclusions
	Acknowledgements
	References

