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Abstract Craniofacial superimposition involves the process
of overlaying a skullwith a number of ante-mortem images of
the face of an individual and the analysis of their morpholog-
ical correspondence. This research focused on the skull–face
overlay stage with the aim of modeling the expert knowl-
edge that is related to the existing anthropometric differences
among landmarks and incorporating it into this stage. Conse-
quently, we havemoved from a single-objective optimization
problem to amultiobjective optimization one aimed to reduce
the distances between pairs of landmarks from each group
independently. To tackle it, two classic approaches from the
area of multicriteria decision making were used: weighted
sum and lexicographical order. The results, which were
obtained over a ground truth dataset, are promising in those
cases where the forensic expert has located a large number of
landmarks, andworse results than the state-of-the-art method
in cases with few landmarks.
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1 Introduction

Craniofacial superimposition (CFS) [1] is one of the most
relevant skeleton-based identification techniques. It involves
the process of overlaying a skull image (or a skull 3Dmodel)
with a number of ante-mortem images of an individual and
the analysis of their morphological correspondence [2] to try
to establish whether they correspond to the same individual.
Three consecutive stages for the whole CFS process have
been distinguished in [3] (see Fig. 1):

– Acquisition and processing of the face and the skull
photographs/models. In some approaches, this step also
involves the location of anatomical landmarks on the face
and the skull.

– Skull–face overlay (SFO). This step focuses on achieving
the best possible superimposition of an image, video-
frame or a 3D model of a physical skull and a single
ante-mortem image of a missing person.

– Skull–face overlay assessment and decision making, in
which the degree of support (strong support, moderate
support, limited support and undetermined [4]) that the
skull and the available photograph belong to the same
person or not (exclusion) is determined.

From the computer vision (CV) point of view, there is
a clear relation between the SFO procedure and an image
registration (IR) problem [5]. SFO can be tackled following
an IR approach in order to superimpose the skull onto the
facial photograph. To do so, the most convenient procedure
is to guide the IR process by matching the corresponding
cranial and facial landmarks.

This matching process involves a really complex opti-
mization task.On the one hand, there is incomplete and vague
information guiding the process (matching of two different
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Fig. 1 Summary of the three craniofacial superimposition stages

objects, a skull and a face, which are different due to facial
soft tissue). On the other hand, the resulting search space
is huge and presents many local minima, especially when a
skull 3D model is considered instead of a skull 2D image.
Hence, exhaustive search methods are not useful. Further-
more, forensic experts demand highly robust and accurate
results. Image registration approaches based on evolution-
ary algorithms (EAs) are a promising solution for facing
this challenging optimization problem. Thanks to their global
optimization nature, EAs are capable of performing a robust
search in complex and ill-defined problems as IR [6,7].

However, one drawback of the existing EA-based pro-
posals dealing with the SFO problem is that they consider
all landmarks equally important (the objective function is
a mean distance of every pair of corresponding landmarks)
when they are not. For instance, landmarks located in the
teeth represent themost confident source of information since
it is the only bony part visible in the face. Thus, there is a
need to properly model the different relative importance of
the pairs of landmarks used to perform SFO as a 3D–2D IR
approach.

To overcome these problems, we modeled the expert
knowledge related to the differences among landmarks based
on anthropometric characteristics into the existing automatic

SFOmethod (secondCFS stage). This has beenmodeledwith
two classic approaches from the area of multicriteria deci-
sion making [8]: weighted sum and lexicographical order. In
addition, the obtained results have been compared with the
state-of-the-art approach (rcga-mc45) [9] using a “ground
truth” dataset [10].

This paper is structured as follows: Sect. 2 reviews the
current state of the art and introduces the automatic CFS
system. Section 3 describes our proposals for modeling and
incorporating expert knowledge within the optimization pro-
cess. Section 4 presents the experiments and results. The final
conclusions are detailed in Sect. 5.

2 State of the art

2.1 Craniofacial superposition

The diverse CFS approaches evolved as new technologies
became available on foundations laid previously. Although
several authors had made different classifications of the
technique, all of them recognize three different categories:
photographic superimposition (developed in the mid-1930s),
video superimposition (widely used since the second half
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of the 1970s) and computer-aided superimposition (intro-
duced in the second half of the 1980s) [1,11]. Another
one was proposed by Damas et al. [3] classifying them
into two groups: non-automatic computer-aidedmethods and
automatic computer-aided methods. Those later approaches
deal with the SFO task within CFS. They obtain unbiased
results and drastically reduced the time taken for SFO. Those
proposals are based either on photograph-to-photograph
comparison [12] or on skull 3D model-to-photograph com-
parison [9,13–16].

Most of the existingmethods are guided by a set of anthro-
pometric landmarks that can be located in both the skull and
the photograph of the missing person. They usually consider
the set of landmarks proposed by Martin and Saller [17]
which has been used since then for the assessment of cor-
respondence between the skull and the face. The selected
landmarks are located in those parts where the thickness
of the soft tissue is low. The goal is to facilitate their loca-
tion when the anthropologist must deal with changes in age,
weight and facial expressions. Figures 2 and 3 show the
most used cranial and facial landmarks, respectively [18]:

2.2 Skull–face overlay as a computer vision problem

Skull–face overlay requires positioning the skull in the same
pose as the face of the photograph. From a pure CV point
of view, the ante-mortem photograph is the result of the 2D
projection of a real (3D) scene that was acquired by a partic-
ular (unknown) camera [19]. In such a scene, the living was
somewhere inside the camera field of viewwith a given pose.

The most natural way to face the SFO problem is to repli-
cate the original scenario. To do so, a 3D model of the skull
must be considered. The goal is thus to adjust its size and ori-

entation with respect to the head in the photograph through
geometric transformations of the skull 3D model in the cam-
era coordinate. The specific characteristics of the camera
must also be replicated to reproduce the original as far as
possible and hence the perspective projection of the skull 3D
model onto the facial photograph. Figure 4 shows an super-
position of a case in three different views.

2.3 Our automatic skull–face overlay procedure

The 3D–2D IR approach is guided by the cranial and facial
landmarks previously assigned by a forensic expert in the
skull 3D model and the facial photograph.

Hence, given two sets of cranial and facial landmarks,
C = {cl1, ..., cln} and F = {fl1, ..., fln}, the process has
to solve a system of equations with 12 unknowns [14]: the
direction of the rotation axis d = (dx , dy, dz), the location
of the rotation axis with respect to the center of coordinates
r = (rx , ry, rz), the rotation angle θ , the factor s that scales
the size of the skull 3D model as the face in the photograph,
the translation t = (tx , ty, tz) that places the origin of the
skull 3Dmodel in front of the camera to replicate themoment
of the photograph and the camera angle of view φ. Those
parameters determine the geometric transformation f that
projects every cranial landmark cli of the skull 3D model
onto its corresponding facial landmark fli of the photograph:

F = C · R · S · T · P (1)

In addition, it modeled two sources of uncertainty.
Firstly, the location of facial landmarks refers to the dif-

ficult task of placing landmarks on a photograph [20]. The
definition of many anthropometric landmarks is imprecise
in nature [21]. Using precise landmarks, forensic anthropol-

Fig. 2 Cranial landmarks in frontal and lateral view
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Fig. 3 Facial landmarks in frontal and lateral view

Fig. 4 Skull–face overlay in three different views (frontal, lateral and oblique)

ogists can only place the facial landmarks that they clearly
identify in the facial photograph. The fuzzy approach devel-
oped in [15] allows experts to enclose a region where the
facial landmark is placedwithout any doubt by using variable
size ellipses (fuzzy landmarks) instead of locating a precise
point as usual. The number of landmarks placed by the expert
can thus increase when those landmarks are considered. This
leads to a better description of the skull–face correspondence
thanks to the new pairs of cranial points and fuzzy landmarks
in the face. The performance of the automatic SFO method
is thus improved.

Secondly, facial soft tissue depth varies for each land-
mark correspondence and for different groups of people. It
produces a mismatch among cranial and facial landmarks.
Thus, the correspondence of a particular landmark on the

surface of the skull and on the surface of the skin may not
be symmetrical and perpendicular. This variability has been
widely studied in many populations and considering differ-
ent age and gender subgroups. The first and unique proposal
tackling this uncertaintywithin an automaticSFOprocess has
been recently published in [9]. This directly incorporates the
corresponding landmark spatial relationships and distances
within the automatic SFO procedure. To do this, they model
the minimum (min), mean (mean) and maximum (max) dis-
tances between a pair of cranial and facial landmarks. These
distances can be obtained from any anthropometric study
looking at the specific population group considered. They
used two alternative approaches to deal with the landmark
matching imprecision in SFO (using spheres or cones). The
main drawback of this approach is the computational com-
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plexity, increased with the need of calculating distances
between a point (or a fuzzy set) and a fuzzy set [22]. In
the first case, distance between a point and a fuzzy set, the
same group of authors proposed a cooperative coevolution-
ary algorithm able to achieve a similar performance with a
dramatic execution time reduction [16].

Using the cranial and facial landmarks together with the
previous consideration, anEA iteratively searches for the best
geometric transformation f, i.e., the optimal combination of
the 12 parameters that minimizes themean error (ME) fitness
function [9]:

FME =
∑Ncrisp

i=1 (d ′(xi , f (C̃i )) + ∑N fuzzy
j=1 (d ′′(F̃ j , f (C̃ j ))

N
,

(2)

where Ncrisp is the number of 2D facial landmarks precisely
located (crisp points), Nfuzzy is the number of 2D facial
landmarks imprecisely located and defined as bidimensional
fuzzy sets, N is the total number of landmarks considered
(N = Ncrisp + Nfuzzy), xi corresponds to a 2D facial land-
mark defined as a crisp point (xi ∈ F), C̃i and C̃ j are fuzzy
sets modeling each 3D cranial landmark and the soft tis-
sue distance to the corresponding 3D facial landmark i or
j , f is the function that determines the 3D–2D perspective
transformation that properly projects every 3D skull point
onto the 2D photograph (Eq. 2), f (C̃i ) and f (C̃ j ) are two
fuzzy sets, corresponding to the result of applying the per-
spective transformation f to the 3D volume (either sphere
or cone), which model the landmark matching uncertainty,
F̃ j represents the fuzzy set of points of the imprecise 2D
facial landmark, d ′(xi , f (C̃i )) is the distance between a point
and a fuzzy set of points, and d ′′(F̃ j , f (C̃ j )) is the distance
between two fuzzy sets.

3 Modeling anthropometric landmarks relative
importance within the automatic SFO process

The aim of this section is twofold: firstly, to introduce
the anthropometric characteristics that distinguish groups of
landmarks and secondly, to present two approaches to model
the relative importance among landmark groups identified in
the previous point and their incorporation to the state-of-the-
art SFO automatic method.

3.1 Anthropometric differences among landmarks for
SFO purposes

The rationale behind differentiating or grouping landmarks
could bemultiple. However, since not all of the possible com-
binations can be tested to find the best way of grouping them
for every particular scenario, there is a need to choose among

them. In this work, we focused on landmark anthropometric
differences in order to give them a different importance as
guiding elements within the SFO optimization process. In
particular, we modeled the three following scenarios:

3.1.1 Landmark classification I (LC-I): according to their
anatomical definition

It has long been recognized that not all landmarks are equally
identifiable. This way distinguishes three types of landmarks
in [21] named types 1, 2 and 3 according to the decreas-
ing precision of their anatomical location (see Table 1).
Type 1 includes landmarks at which three different tissues
meet. Type 2 defines points of maximum curvature or other
local morphogenetic processes, usually with a biomechani-
cal implication like a muscle attachment site. Finally, type
3 refers to external landmarks, which belong to a curve or
surface. In addition, there is a good reason to suspect that
the identification precision differs among landmarks [23].
Related to the previous classification, a recent study ana-
lyzing the spatial distribution/precision of forensic experts
while locating landmarks in facial photographs concluded
that there is a significant correlation between the type of
landmark and the precision in their location [24].

3.1.2 Landmark classification II (LC-II): according to the
rigid or mobile nature of the region

The jaw is the only articulated part on the skull; hence,
slightly or even large differences in the articulation of the
mandible in the available facial photographs and in the 3D
skull model are always expected (see Table 1). In fact, CFS
practitioners call this region “terra incognita,” in the sense
that they cannot precisely assess craniofacial correspondence
in this region due to its mobile nature. Although jaw articu-
lation has been widely studied and mathematically modeled,
there is not a single CFS method or practitioner reproduc-
ing jaw articulation in ante-mortem images in a reliable and
objective manner. Another alternative to address this source
of error/uncertainty will be thus to introduce a mathematical
modeling of the jaw articulation into the automatic SFO pro-
cess, so it could be estimated for each particular ante-mortem
image. However, even if the latter is successfully performed,
there will always be a margin of error justifying the need
of considering the landmarks within this region in a more
suspicious way.

3.1.3 Landmark classification III (LC-III): according to the
presence or absence of soft tissue

Most landmarks do not have a exact match between their
position in the skull and in the face due to the facial soft
tissue thickness. Contrary to them, a few landmarks (located
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Table 1 Groups of landmarks according to the three classification criteria

Landmark’s name Groups
in LC-I

Groups
in LC-II

Groups
in LC-III

Landmark’s name Groups
in LC-I

Groups
in LC-II

Groups
in LC-III

Vertex 3 1 2 Zygion (left) 3 1 1

Glabella 3 1 2 Zygion (right) 3 1 2

Nasion 1 1 2 Subnasale 1 1 2

Frontotemporale (right) 3 1 2 Prosthion 1 1 2

Frontotemporale (left) 3 1 2 Labiale superius 2 1 2

Endocanthion (left) 1 1 2 Labiale inferius 2 2 2

Endocanthion (right) 1 1 2 Infradentale 1 2 2

Ectocanthion (left) 2 1 2 Gonion (left) 3 2 2

Ectocanthion (right) 2 1 2 Gonion (right) 3 2 2

Tragion (right) 3 1 2 Pogonion 3 2 2

Tragion (left) 3 1 2 Gnathion 3 2 2

Alare (left) 3 1 2 Menton 3 2 2

Alare (right) 3 1 2

For landmarks location, please refer to Figs. 2 and 3

in the teeth) have a direct matching relation since they are
located in a bony region (see Table 1). Thus, it seems quite
obvious to consider this group of landmarks as the most
representative to study craniofacial anatomical correspon-
dence, something recently corroborated by an experimental
study developed with the framework of the European project
MEPROCS [25,26]. However, it has not been analytically
modeled or tested this higher importancewithin an automatic
SFO procedure, which in any case will need the guidance of
other landmarks due to the mostly coplanar region repre-
sented by teeth (in many cases, only more frontal teeth are
visible in ante-mortem images).

3.2 Modeling the differences among landmarks

As a result of distinguishing different groups of landmarks
with a different relative importance, we have to move from
a single-objective optimization problem to a multiobjective
optimization one aimed to reduce the distances between pairs
of landmarks from each group independently. In order to
incorporate it into the EA optimization process, two classic
approaches from the area of multicriteria decision mak-
ing [8] were followed: weighted sum and lexicographical
order.

3.2.1 Weighted sum

In this approach, all landmarks will always contribute to the
final fitness; however, not all of them will contribute equally.
Depending on the relative importance of a particular group
of landmarks and the number of marked landmarks per group
in each case (to be able to fairly compare the results of differ-
ent cases with a different number of marked landmarks per

group). More formally, the fitness of each individual of the
genetic algorithm (GA) populationwill be calculated accord-
ing to Eq. (3):

Fitness =
∑n

i=1 wi ∗ fitnessLeveli ∗ nLeveli
∑n

i=1 nLeveli
(3)

where nLeveli is the number of landmarks of the group i
present in a given SFO case; thus,

∑n
i=1 nLeveli is always

equal to the number of landmarks in the case.
Once this proposal has been defined, the last point is to

establish the value of the free parameters of this approach,
i.e., the number of groups and landmarks included in them,
and the weight Wi of each particular group (their rela-
tive importance). While the three different and independent
landmarks grouping approaches have an anthropometric
motivation, the values for weighting them could be any pos-
sible combination adding 1.

3.2.2 Lexicographical order

This approach lexicographically minimizes the fitness of
each individual of theGApopulation. The first group of land-
marks is the most important, and it always contributes to the
final fitness. However, the information of a following group
is only used when two individual are “similar” in all the pre-
vious groups. Two individual are considered “similar” when
the differences between their fitness is lower than an ε. How-
ever, since the marked landmarks and the distance between
them are different in each case, this epsilon has thus to be
adaptive to each case, group and generation.

εi ti = k ∗ |bestFitnessi ti − worstFitnessi ti | (4)
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Table 2 Experimental design for landmark classifications I, II and III

Modeling approach Parametrization Landmark classification Acronym

Weighted sum (Group 1: 0.7; Group 2: 0.2; Group 3: 0.1) Bookstein anatomical definition G1W1

Weighted sum (Group 1: 0.6; Group 2: 0.25; Group 3: 0.15) Bookstein anatomical definition G1W2

Weighted sum (Group 1: 0.5; Group 2: 0.3; Group 3: 0.2) Bookstein anatomical definition G1W3

Lexicographical order K = 0.05 Bookstein anatomical definition G1L1

Lexicographical order K = 0.1 Bookstein anatomical definition G1L2

Lexicographical order K = 0.2 Bookstein anatomical definition G1L3

Weighted sum (Group 1: 0.9; Group 2: 0.1) Mobile or rigid nature G2W1

Weighted sum (Group 1: 0.75; Group 2: 0.25) Mobile or rigid nature G2W2

Weighted sum (Group 1: 0.6; Group 2: 0.4) Mobile or rigid nature G2W3

Lexicographical order K = 0.05 Mobile or rigid nature G2L1

Lexicographical order K = 0.1 Mobile or rigid nature G2L2

Lexicographical order K = 0.2 Mobile or rigid nature G2L3

Weighted sum (Group 1: 0.9; Group 2: 0.1) Bone or soft tissue G3W1

Weighted sum (Group 1: 0.75; Group 2: 0.25) Bone or soft tissue G3W2

Weighted sum (Group 1: 0.6; Group 2: 0.4) Bone or soft tissue G3W3

Lexicographical order K = 0.05 Bone or soft tissue G3L1

Lexicographical order K = 0.1 Bone or soft tissue G3L2

Lexicographical order K = 0.2 Bone or soft tissue G3L3

where i is the group, i t is the generation number, εi ti is the
adaptive ε of the group i at generation i t , bestFitnessi ti is
the best value of the fitness at generation i t calculated only
using the landmarks of the group i, worstFitnessi ti is theworst
value of the fitness at generation it calculated only using the
landmarks of the group i, and K is a parameter that defines
how severe is the epsilon.

The variable k modulates how easily two individuals are
considered “similar.” A high value of k will produce more
ties at each lexicographical level, and thus, the information
of the less important group of landmarks will be considered
more frequently.

4 Experiments

Once the distinct ways to differentiate landmarks and the two
proposals to combine the error of the landmarks groups have
been introduced, it is necessary to assess the performance of
the resulting new optimization methods for SFO. Firstly, the
dataset of cases used along all the experiments is presented.
Secondly, the experimental design is introduced. Then, the
performance of the two models proposed given different
parametrizations is analyzed. After assessing the perfor-
mance, the correlation between the final objective function
error and the ground truth value of the corresponding solution
is depicted. Finally, a statistical analysis of the performance
of our proposals in comparison with the state-of-the-art opti-
mization method (RCGA-MC45) has been performed.

4.1 Materials

The experimental design involves 19 SFO problem instances
(9 frontal instances, 9 lateral instances and1oblique instance)
corresponding to nine cases of live people (from Spain and
Italy) with ground truth data that will allow an objective eval-
uation of the results.

These cases were created as follows [10]: The subjects
were submitted to cone beam computed tomography (CBCT)
for clinical purposes. It generates precise 3Dmodels (0.3-mm
slices) in an orthostatic position, and it thus avoids undesired
gravitational effects on the soft tissue. The images result-
ing from the CBCT device were automatically processed to
obtain the 3D models of both the skull and the face. After
positioning homologous points on the facial 3D model and
its corresponding photograph, the former was automatically
projected onto the latter using a geometric transformation g
so they perfectly matched, i.e., an actual 3D face–2D face
overlay. Then, this geometric transformation g was applied
to project the skull 3D model onto the photograph resulting
in a perfect SFO. The latter is considered as the ground truth
that can later be compared with the outcome of every SFO
method. As a result, we obtained the ground truth data which
are the 2D coordinates of the 3D cranial landmarks projected
onto the photograph by means of g.

The skull 3D models and the facial photographs were
stored using the Face2SkullTM software , which has been
developed by the University of Granada and the European
Centre for Soft Computing. This software allows forensic
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experts to precisely position the cranial landmarks as well as
place the facial landmarks on the photographs in a precise
and imprecise (using ellipses) manner. Face2SkullTM also
integrates and runs the proposed automatic SFO algorithms.
All the experiments have been performed on an Intel CorelTM

i3 CPUM370 2.40 GHz, with 4GB RAM, runningWindows
8.1 ProfessionalTM.

4.2 Experimental design

A total of 126 different experiments were carried out. These
include 3 different parametrizations for both weighted sum
and lexicographical order approaches, and the three different
landmark classifications for the 19 SFO problems. Within
the first and second way of classifying landmarks, the exper-
iments have been performed over the entire dataset (19 SFO
cases); however, the third group has been only tested over the
4 cases where the teeth are visible. Since all the approaches
tested are based on stochastic processes, 10 independent runs
were performed for each problem instance to compare the
robustness of the methods and to avoid any possible bias.
Table 2 shows a summary of the experiments that have been
carried out, along with the configuration of their parame-
ters.

4.3 Performance analysis of weighted sum and
lexicographical order approaches

The results represent the distance of the obtained SFO to its
corresponding ground truth counterpart. We have estimated
the total error of each case in mm . By backprojecting the
facial points located in the photograph, we can calculate a
backprojection line for a given geometric transformation f .
Thus, we apply the inverse, f −1, of the same transformation
fwewant to validate and thenwe choose one point of this line
as the 3D position of the 2D point. In particular, we select the
point that makes minimum the Euclidean distance between
the line and the facial point in the 3D model.

Tables 3 and 4 show the average distance error (in mm)
in comparison with the ground truth data of the 10 runs per-
formed using the weighted sum and lexicographical order
approaches, respectively. Results are sorted according to the
pose of the face of the person within the photograph of each
particular case, i.e., we always show first the frontal pose
cases and then the lateral pose ones.We choose this particular
order according to the performance differences encountered
when the pose of the face is considered. Indeed, it can be eas-
ily see that the performance of both approaches dramatically
decreases facing lateral pose cases.

Table 5 shows the average error distance of our approaches
for all the SFO cases in order to allow a more in-depth
analysis aimed to determine the best performing approach,
considering the parametrization and landmark classification

Table 5 Mean error in mm regarding the ground truth of all the SFO
cases (19 in total) for each particular approach, landmarks classification
and parametrization

Experiment Average Experiment Average

G1W1 0.804229963 G1L1 0.909523484

G1W2 0.749546683 G1L2 0.926004211

G1W3 0.72936235 G1L3 0.88167599

G2W1 0.762988683 G2L1 0.786697953

G2W2 0.72261966 G2L2 0.790510879

G2W3 0.71343231 G2L3 0.7776824

G3W1 0.690537259 G3L1 0.64084892

G3W2 0.637742092 G3L2 0.657517491

G3W3 0.66171256 G3L3 0.665916628

employed. Weighted sum performs slightly better when the
differences of weights are small (W3). Similarly, lexico-
graphical order performs better when the similarity function
is relaxed (larger k values, L3). This similar behavior is more
evident in the first and second group of landmarks, and it does
not apply for the third group (bone or soft tissue landmarks)
probably because of the limited number of bony landmarks.
In fact, both approaches also reach very similar average
errors when considering the latter group of landmarks. How-
ever, weighted sum performs better in the remaining two
cases. The best parametrization for each particular approach
and landmark group is marked in bold. G3W2 and G3L1
resulted to be the best performing approaches with simi-
lar average distance error. Notice that, as explained before,
the third group of landmarks (G3) could be only tested
on four cases. Then, within those approaches that could
have been applied over the entire dataset, the weighted sum
with parametrization W3 is the best approach (G1W3 and
G2W3).

4.4 Analysis of the correlation between the fitness and
the distance to the ground truth

One important issue in every problem that uses evolution-
ary algorithms is the correlation between the fitness and the
goodness of a solution. In this problem and thanks to the
existence of a ground truth dataset [10], we can analyze this
correlation by measuring the goodness of the obtained solu-
tion of the cases of our datasets with their distance to the
ground truth. Figures 5 and 6 show a quite good correla-
tion, although not perfect, in both poses for the weighed sum
approach, and the lexicographical approach also has the same
correlation. The figures show the correlation for the cases 6a
(frontal) and 6b (lateral). These two cases depict a similar
correlation to the rest.
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Fig. 5 Correlation between the fitness and the distance to the ground truth. G2W3 for case 6a (left) and case 6b (right)

Fig. 6 Correlation between the fitness and the distance to the ground truth. G2L3 for case 6a (left) and case 6b (right)

Fig. 7 Friedman and Bonferroni tests. a All cases, b frontal cases, c lateral cases

4.5 Statistical analysis and comparison with the state of
the art

We performed the same statistical analysis as in [9], i.e., a
Friedman test to analyzewhether significant differences exist
among the performance of our approaches and the state-of-
the-art approach, RCGA-c-45 [9], a Bonferroni–Dunn test
to detect significant differences among a control approach
and the rest, and a paired t test with a Bonferroni and a Holm
correction, aswell as anunadjustedpvalue to know thediffer-
ences within approaches.We firstly compared using all cases
together to see the global performance of both approaches.
Afterward, we studied frontal and lateral pose cases inde-

pendently due to their results having shown a significantly
different behavior (Fig. 7).

For all cases, there is no statistically significant difference
between the MC45 and the two proposals when they model
the differences according to the presence or absence of soft
tissue (G3W2, G3L1). However, this way of classifying is
only formed in our dataset for frontal poses and it could
be misleading. With the rest of approaches, the MC45 is
significantly better than the obtained results.

It can be easily seen that the performance of both
approaches dramatically changes between frontal and lateral
cases. For lateral cases, our results are always significantly
worse than theMC45. However, frontal cases, G2W3,G3W2
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Table 6 Distribution of the landmarks of the cases into types for the three groups

Case Pose Group I:
No Type 1

Group I:
No Type 2

Group I:
No Type 3

Group II:
No Type 1

Group II:
No Type 2

Group III:
No Type 1

Group III:
No Type 2

Case 1a Frontal 3 2 9 10 4 1 (+3 teeth) 13

Case 2a Frontal 4 2 7 9 4

Case 3a Frontal 4 3 8 11 4

Case 4a Frontal 4 3 6 10 3

Case 5a Frontal 4 3 9 12 4 0 (+2 teeth) 16

Case 6a Frontal 5 3 7 12 3 1 (+4 teeth) 14

Case 6c Oblique 4 1 6 8 3 1 (+3 teeth) 10

Case 7a Frontal 4 3 8 12 3

Case 8a Frontal 4 3 8 11 4

Case 9a Frontal 4 3 7 11 3

Case 1b Lateral 2 1 6 6 3

Case 2b Lateral 2 0 3 3 2

Case 3b Lateral 2 1 5 5 3

Case 4b Lateral 2 1 4 4 3

Case 5b Lateral 2 1 6 6 3

Case 6b Lateral 2 1 4 4 3

Case 7b Lateral 2 1 6 6 3

Case 8b Lateral 2 1 5 5 3

Case 9b Lateral 2 1 5 5 3

Table 7 Normalized mean error (mm) regarding the ground truth obtained running 10 times with G2W3, sorted according to the number of
landmarks

Case Pose No landmarks No landmarks group 1 No landmarks group 2 G2W3

Case 5a Frontal 16 12 4 0.40711535

Case 6a Frontal 15 12 3 0.60298645

Case 7a Frontal 15 12 3 0.64268512

Case 3a Frontal 15 11 4 0.699052

Case 8a Frontal 15 11 4 0.97774978

Case 9a Frontal 14 11 3 0.74372375

Case 1a Frontal 14 10 4 0.75591876

Case 4a Frontal 13 10 3 0.95890104

Case 2a Frontal 13 9 4 0.92836805

Case 6c Frontal 11 8 3 0.86214528

Case 1b Lateral 9 6 3 0.75914446

Case 5b Lateral 9 6 3 0.83418451

Case 7b Lateral 9 6 3 0.88255074

Case 3b Lateral 8 5 3 0.91661514

Case 8b Lateral 8 5 3 0.61599062

Case 9b Lateral 8 5 3 0.77171302

Case 4b Lateral 7 4 3 0.95704746

Case 6b Lateral 7 4 3 0.77855812

Case 2b Lateral 5 3 2 0.51558105
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and G3L1 have shown a performance as good as the MC45
and sometimes it is better although no significant differences
have been found.

Once it is clear that there is a completely different behavior
of the two proposals in frontal and lateral poses, the following
step is to study in depth the reason behind it.

Table 6 shows the number of landmarks in every group for
the three ways of classifying them under study. In general,
frontal cases usually have more landmarks in the first groups
than the lateral poses, which used to have around the half.

In particular for the G2W3, Table 7 shows the normal-
ized average distance error (in mm) in comparison with the
ground truth data of the 10 runs performedofG2W3sorted by
the number of landmarks. The best performances are mostly
located at the top of the table; in other words, they have more
landmarks. However, there are a few exceptions (as the case
2b) that despite of having few landmarks have obtained a
good performance.

We performed a Pearson test in order to measure the
correlation between the number of landmarks and its final
performance. This showed that the performance is related to
the number of landmarks and also with which landmarks are
located. This is because it is crucial to locate a significant
number of landmarks, but also these landmarks must be in
different planes in order to properly determine the geometric
transformation. Thus, the performance of those cases that did
not have enough landmarks (as usually happen with lateral
cases) in each group was unsatisfactory.

In summary, it is not possible to define awinning approach
for all scenarios. For lateral cases, the best approach is the
MC45. For frontal cases where the teeth are visible, the best
is theG3L1,whereas if these are not visible the best approach
is the G2W3.

5 Conclusion

This paper addressed the SFO stage and the problem of the
relative importance of landmarks based on their anthropo-
metric differences. As a result, we moved from a single-
objective optimization problem to a multiobjective one in
order to reduce the distances between pairs of landmarks
from each group, independently. Therefore, the problem was
modeled using two classic approaches (weighted sum and
lexicographical order) based on multicriteria decision mak-
ing in the current SFO stage with three different ways of
classifying landmarks.

The weighted sum obtained better results than the lexico-
graphical order in almost all the experiments. At first sight,
the performance of both approaches was significantly worse
than the state-of-the-art method. However, analyzing the per-
formance of the cases separately depending on the facial pose
of the subject in the ante-mortem photographs, they showed

very different behaviors. On the one hand, in lateral pose
cases the performance was significantly worse than the state
of the art. This poor performance appears to be closely related
to the small number of landmarks in the first groups. On the
other hand, in frontal pose cases, the performance was better
than the state-of-the-art proposal although no significant dif-
ferences were achieved. In summary, although more future
testing seems necessary, promising results were obtained in
those cases where the forensic expert located a large num-
ber of landmarks, and worse results in those cases with few
landmarks.

Promising research lines for future work include the study
of other ways of classification of landmarks as well as mod-
eling other relationships between landmarks such as their
correlation with face symmetry. Our next study will focus on
progressively reducing the uncertainty in fuzzy landmarks.
Lastly, another interesting research line is to use the idea of
using memetic algorithms in the current proposal as a means
of local refinement of the chromosomes.
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