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Abstract Instance selection is a popular preprocessing task
in knowledge discovery and data mining. Its purpose is to
reduce the size of data sets maintaining their predictive capa-
bilities. The usual emerging problem at this point is that these
methods quite often suffer of high computational complexity,
which becomes highly inconvenient for processing huge data
sets. In this paper, a parallel implementation for the instance
selection algorithm Democratic Instance Selection (DIS) is
presented. The main advantages of the DIS algorithm turn
out to be its computational complexity, linear in the number
of instances, as well as its internal structure, intuitively par-
allelizable. The purpose of this paper is threefold: firstly, the
design of the DIS algorithm by following the MapReduce
model; secondly, its implementation in the popular big data
framework Spark; and finally, its empirical comparison over
large-scale data sets. The results show that the processing
time is reduced in a linear manner as the number of Spark
executors increases, what makes it suitable for big data appli-
cations. In addition, the algorithm is publicly accessible to
the scientific community.

Keywords Big data ·MapReduce ·Apache Spark · Instance
selection · Democratic Instance Selection · Classification

1 Introduction

Nowadays, the large quantity of data amassed all over the
world has made unsuitable most of the techniques and tools
that have traditionally been used in the field of data min-
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ing and automatic learning. A new term has been coined to
describe this problem: big data. There is no clear definition
for the meaning of big data, although Laney [16], at the start
of this century, described it as the opportunities and difficul-
ties that appear as the volume, variety and speed of the data
increases. Here, volume refers to massive information that is
been generated and collected. Variety refers to the diversity
of formats in which we can find the data: structured con-
ventionally, semi-structured or without any structure, such
as video or audio. Finally, speed refers to the fact that data
should be processed in an swift way, so that its utilization
and exploitation are of commercial value [7]. Another com-
monly accepted definition describes the problems of big data
as the difficulties that appearwhen the quantity of data to pro-
cess exceeds the capacities (memory and/or time) of a given
system [20].

According toWu et al. [25], the most acceptable approach
for the treatment of massive data sets is to distribute them
into parallel environments and cloud computing platforms.
This parallelization of tasks is not new at all, and the
“divide and conquer” strategy has been used since the dawn
of machine learning. Nevertheless, new frameworks have
recently become popular for facilitating this task and for
helping programmers in their work. Among the frameworks
used today,MapReduce is one of the most popular models of
parallel computation, due to its robustness and transparency
with regard to resource management [9,21].

Looking at the problem from a different perspective, data
reduction presents a direct solution to the problemof process-
ing large volumes of information that can also be applied in
conjunction with any type of learning algorithm. Of all the
different paradigms, instance selection is a commonly used
method that consists of selecting a subset of examples. This
method is capable ofmaintaining, or even improving, the pre-
dictive capability of the original set [10]. The main problem,
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however, is that the majority of instance selection methods
have a high computational complexity (quadratic order in the
number of instances or higher), which means that it is infea-
sible to use them in data sets of large dimensions [22]. One
of the instance selection algorithms that are not subject to
this limitation is Democratic Instance Selection (DIS) [12].

In this paper, the adaptation of the DIS algorithm to
the MapReduce model is presented through Apache Spark
framework [26]. In summary, the objectives of the present
paper are as follows:

– To design a parallelized version of the DIS algorithm
following the model MapReduce.

– To implement the previously parallelized DIS algorithm
in Spark.

– To confirm its correct performing in terms of accuracy
and compression.

– To evaluate its scalability through its execution on large
data sets.

The organization of the present paper is as follows: Sect. 2
presents an introduction to instance selection techniques,
explaining in detail the algorithmDemocratic Instance Selec-
tion (DIS), Sect. 3 introduces the MapReduce model and
its application to the DIS algorithm, Sect. 4 details the
experiments conducted for evaluating the performance of the
algorithm and, finally, Sect. 5 expounds the conclusions and
the principal lines of future work.

2 Instance selection

A fundamental task in knowledge extraction from data sets is
their preprocessing.Data preparation groups together a large
number of techniques that are necessary as a preliminary
step in learning processes such as classification, regression
or clustering. Among these, we can find many algorithms for
data set size reduction. These algorithms are grouped under
the term data reduction which, in turn, is divided into: dis-
cretization, feature extraction, instance generation, feature
selection and instance selection [11]. The aim of these tech-
niques is to minimize the size of the initial data set, by reduc-
ing either the number of instances or the number of attributes
(avoiding the so-called curse of dimensionality [15]).

Both instance selection and instance generation work at
the level of instances, reducing their number. While instance
generation creates new instances and discards existing ones,
instance selection (which concerns us in this paper) selects
the most representative instances from the original data set.
The selected subset1 should be able to maintain, or even

1 The subset selected by the algorithm is indistinctly referred to as
filtered or selected set in the present paper.

improve, the predictive capability of the original set. One
of the benefits of size reduction is the corresponding reduc-
tion in classification time (for lazy learning algorithms) and
training time (for eager learning algorithms).

Since their appearance [14], multiple instance selection
algorithms have been described in the literature.2 Never-
theless, most of these algorithms suffer from a problem
that complicates their application to massive data sets: their
computational complexity. The computational complexity of
the majority of the above-mentioned methods is, at least,
quadratic in the number of instances. Recent algorithms have
been developed to overcome this drawback [2,3,6,8,12],
among which we will highlight Democratic Instance Selec-
tion [12], which is analysed in detail in the following section.

2.1 Democratic Instance Selection

The algorithm Democratic Instance Selection or DIS [12] is
based on the idea of divide and conquer. Putting it briefly, it
consists of the execution of a number of rounds r , in each
of which the original set is divided into a number of disjoint
equally sized partitions (called bins). Then, a classic instance
selection algorithm is applied independently over all those
partitions. The instances selected to be eliminated by this
last instance selection algorithm receive a vote. The process
is repeated during the predefined number of rounds r (chosen
by the user), after which the instances with a number of votes
equal or higher than the calculated threshold are eliminated.

The biggest advantage of DIS is the reduction of the exe-
cution time due to its computational complexity: linear in the
number of instances. The details of how this calculation is
obtained is given in Sect. 2.1.3.

Another benefit is the easewithwhich the algorithmcan be
adapted to work in a parallel environment. This is possible
due to the execution of each instance selection process on
each partition is independent from the others. It is worth
noting that the user can select the number and size of the
subsets in such a way that it is adjusted to the capabilities of
the system where the algorithm will be executed.

Pseudocode 1 presents the original algorithm, which is
divided into two equally important parts that are analysed
below:

– Partitioning and voting: the input set is divided into dis-
joint subsets and the desired instance selection algorithm
is applied to each one of them. This process is repeated as
many times as rounds we have previously defined. Each
time an instance is selected to be eliminated, it receives a
vote. These votes will be stored for subsequent process-
ing.

2 We recommend the work of S. García et al. [10] for readers interested
in this field.
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– Selection of instances: a threshold for the number of votes
is calculated, in accordance with a fitness function, and
all instances with a number of votes equal to or over that
threshold are removed.

Algorithm1:Democratic InstanceSelection (DIS) algo-
rithm
Input: A training set T = {(x1, y1), ..., (xn, yn)}, subset size s,

number of rounds r
Output: Selected set S ⊆ T

1 for k = 1 to r do
2 Divide instances of T into ns disjoint subsets ti :

⋃
i ti = T of

size s
3 for j = 1 to ns do
4 Apply instance selection to t j
5 Store votes of removed instances from t j

6 Obtain threshold of votes, v, to remove an instance
7 S = T
8 Remove from S all instances with a number of votes � v

9 return S

An example of how the DIS algorithm operates is shown
in Fig. 1. The problem depicted here contains 30 instances,
10 rounds were performed and, at the end, all those instances
with a number of votes below 5were selected. In otherwords,
all those with a number of votes equal to or greater than 5
were eliminated.

2.1.1 Data set partition

An important stage in the method is the partitioning of the
initial set T into smaller subsets ti (called bins), which com-
prise the complete data set

⋃
i ti = T . The size of the bins is

selected by the user. It is worth highlighting that the execu-
tion time of the complete algorithm depends on the size of the
biggest bin (the one with the greatest number of instances).
Therefore, it is recommended that each bin has, approxi-
mately, the same number of instances.

The simplest partitioning method is by random selection,
in which each instance is assigned a bin in a randommanner.
The problem with this method is that the neighbourhoods
are not maintained from one round to another, i.e. instances
that are neighbours in one round will likely not be so in the
following round. However, this method has been selected
because of its easy implementation and speed.

2.1.2 Determining the threshold of votes

A keystone of the selection process is the estimation of
the threshold, which will determine the instances that
are selected for the filtered set. Experimentation reported
by García-Osorio et al. [12] demonstrated that this value

depends on the data set under analysis. It is therefore impos-
sible to come up with a fixed value for all possible data sets,
and a function that selects the value directly from the input
data during execution time is necessary. The most intuitive
approach would be to perform a cross-validation on the ini-
tial set, although this would be tremendously costly in terms
of time.

The chosen method is much less computationally expen-
sive. It estimates the value of the most appropriate number
of votes on the basis of the initial set. When computing the
threshold, two criteria are taken into account: training error
εt (on a subset of the initial set) and the resulting size m of
the possible solution set. As is logical, both values should be
minimized. A criterion called fitness or f (v), is defined as
the weighted combination of both:

f (v) = αεt (v) + (1 − α)m(v)

wherem is the percentage of instances conserved by the algo-
rithm, εt is the training error and α is a parameter within the
interval [0, 1]. This parameter represents the relative impor-
tance of each of the two previously mentioned criteria. The
user-selected α value means the user has the choice to max-
imize either accuracy or reduction.

Calculation of error can be a costly process. To minimize
this cost, the error is estimated by using a small percentage
of the complete training set, which can be, according to the
authors [12], 10% for large sets and 0.1% for massive sets.

The process to obtain the threshold is as follows: first, we
sum the number of votes received by each instance after r
number of rounds have been completed. Then we use those
votes to calculate the threshold v ∈ [1, r ] which minimizes
the function f (v). Once calculated, all the instances that have
a number of votes greater or equal to the threshold v are
eliminated.

2.1.3 Complexity analysis

As previously stated, DIS algorithm divides the data set into
disjoint sets of a fixed size s, such that the instance selection
algorithm used during the voting, whatever its complexity,
is applied to a set of fixed size. Let K be the number of
operations necessary to complete the selection of instances
in a set of size s. For an initial data set of size n, if we perform
r rounds, the total time is proportional to r(n/s)K , which is
lineal as K is a constant value.

In addition to the selection of instances applied in each
partition, there are another two processes: the partitioning
of the original set and the threshold computation. The parti-
tioning is random, so its complexity is O(1). With regard to
the decision on the number of votes, if all the instances were
considered, the cost of this step would be O(n2); however,
the number of instances that are considered decreases as the
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Fig. 1 Example of a DIS algorithm execution on a set of 30 instances. The algorithm executes 10 rounds and the calculated threshold of votes is
5, so that all those instances with a lower number of votes are selected for the filtered set

size increases (e.g. 10% of the training set in large sets and
0.1% in huge sets). Therefore, the complexity of this step
and the whole algorithm is maintained linear in the number
of instances.

3 MapReduce

MapReduce emerged as a programming model that faces the
problem of processing large data sets from the perspective
of parallel computing. It is based on the use of pairs 〈key,
value〉 and on the division of problems into two phases:Map
and Reduce. TheMap stage operates on the initial pairs 〈key,
value〉 to generate intermediate pairs 〈key, value〉. Subse-

quently, these pairs are combined according to their key in
the Reduce phase, yielding the final result [9].

The tendency toworkwith ever larger amounts of data, this
system’s high tolerance to failure and its transparency with
regard to resource management have made of this model one
of the most widely used over the recent years [19].

Apache Hadoop and Apache Spark are two of the most
popular frameworks at present for massive processing in
big data environments. They both implement MapReduce
and both use a master–slave architecture where a single
node (master) is in charge of managing a variable number
of worker nodes (slaves). Nevertheless, Spark has a clear
advantage over Hadoop given that it is designed to make
iterative operations faster through the intensive use of mem-
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Fig. 2 Example of a DIS algorithm execution following the MapReduce model

ory (instead of using only disc as Hadoop does). This makes
Spark more appropriate for data mining and machine learn-
ing tasks, where it is able to outperformHadoop by up to 100
times [26].

Currently, there is a lack of instance selection methods in
Spark [23]. Thus, the present paper also seeks to provide the
community with a new parallel algorithm and its implemen-
tation, for the preprocessing of large volume of information.

3.1 MR-DIS: the MapReduce design for Democratic
Instance Selection

The MapReduce parallelization technique explained earlier
was used for adapting the DIS algorithm to the big data envi-
ronment.

With regard to the structure of the data, pairs 〈votes, inst〉
were used to operate throughout the Map and the Reduce
phases.The term“inst” refers to a concrete instance,while the
value “votes” refers to the number of times that the instance
that accompanies it has been selected during the voting phase.

The algorithm is described with a dynamic view in Fig. 2,
and with two static views in pseudocodes 2 and 3. Figure 2
presents a possible scenario where 10 votes are performed
over n instances and a threshold of 3 votes is calculated for
the final selection. In both cases, we can differentiate the two
characteristic phases of the MapReduce model, which are
analysed as follows:

– Map phase Completes the rounds of voting, updating
the value of the key “votes” of the pairs in each iteration.
Each mapper receives a bin (a partition of the original
set), to which it applies an instance selection algorithm,
updating the votes of those instances that the algorithm

discards. The input of each algorithm is, therefore, one
of the disjoint sets described in line 4 of pseudocode 1. In
the current implementation, the distribution of the data is
random, but the size of the bins is selected by the user. The
user also decides the instance selection algorithm that it
is applied to each bin. The number of maps (num_maps)
that are executed is obtained with the following formula:

num_maps = r ×
⌈ |T |

|ti |
⌉

where r is the number of rounds, |T | is the number of
instances of the original set and |ti | is the size of each
one of the bins.

Algorithm 2:MR-DIS: Map function
Input: A subset of the original training set Tj
Output: Array of pairs Vj = {〈votes1, x1〉,..., 〈votesn, xn〉}

1 Apply instance selection algorithm to Tj
2 foreach instance x ∈ Tj do
3 if x has been selected then
4 Add to Vj the pair 〈1, x〉
5 else
6 Add to Vj the pair 〈0, x〉
7 return Vj

An intermediate grouping step occurs between the map
and the reduce functions.3 In this process, the 〈votes, inst〉
3 In Spark, the process located between the map and the reduce phases
is usually referred to as shuffle.
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pairs are grouped by instance, summing the votes that each
instance has received during the voting phase. The instances
are then distributed to the reducers in accordance with the
votes received, creating as many groups as rounds r that have
been completed.

– Reduce phase Includes the calculation of the threshold
of votes. Each reducer completes the calculation of the
fitness function for a certain number of votes k ∈ [1, r ]
(where r is the number of rounds). The input data set of
each reducer is determined by the number of votes of
each instance. In other words, the times that the instance
has been discarded by the individual instance selection
algorithms in the map phase. An estimation of the accu-
racy of the subset and the compression rate is necessary to
calculate thefitness function.Compression is directly cal-
culated by taking into account the number of instances of
the original set and of the selected subset. It is necessary
to apply a classifier to calculate the estimation of accu-
racy, which could imply a problem with large data sets.
A parallel implementation of the algorithm k-NN [19]
over a percentage of the initial set of instances was used
to avoid the possible bottleneck in this calculation. The
number of reducers will be determined by the number of
rounds r .

Algorithm 3: MR-DIS: Reduce function
Input: Array of pairs Vk = {〈votes1, x1〉,..., 〈votesn, xn〉}, test set

X ⊂ T , round key k, α value
Output: Fitness value fk

1 Train kNNIS with Vk
2 ε ← Error(kNNIS, X)

3 m ← |Vk ||T |
4 fk = αε + (1 − α)m
5 return fk

Once the values of the fitness function have been calcu-
lated for each of the values k ∈ [1, r ], the lowest function
value is selected. The last step of the algorithm is the genera-
tion of the resulting data set,which is constructed by selecting
all those instanceswith a number of votes below the threshold
(value k to which the fitness is minimum).

4 Experimental set-up

The objective of this section is the study of the scalability
of the DIS algorithm. As a side note, the results for both
accuracy (% accuracy) and compression (% of instances of
the original data set selected in the filtered set) were simi-
lar to those obtained through sequential implementation, in

order to validate that the parallel version performs in a sim-
ilar way to its sequential counterpart. The parallel k-nearest
neighbour was used for the calculation of accuracy (in its
available version for Spark [19]).

The implementation of DIS was done with Scala on Spark
1.6.1 and is publicly accessible at BitBucket.4

Our initial hypothesis was as follows:

Hypothesis 1 The increase in the number of processors in
the execution of the MR-DIS algorithm reduces execution
time in large data sets.

We have developed two case studies, aimed at assessing
this hypothesis:

– Small data set: the algorithm was executed on various
configurations of executors,5 from 4 up to 256, on a
medium-sized data set. Accuracy, compression and fil-
tering time were all measured.

– Big data sets: the filtering times of theMR-DIS algorithm
with configurations of executors from 64 to 256 were
measured on two data sets of up to one million instances.

The structure of the present section is as follows: Sect. 4.1
defines the framework of experimentation; Sect. 4.2 details
the instrumentation; and, finally, the case studies are pre-
sented in Sects. 4.3 and 4.4.

4.1 Experimental framework

The experimental study is centred on verifying the scalability
of the implemented algorithm. To do so, the algorithm was
executed with a varying number of executors. It is expected
that parallelization will not affect the general operation of
the algorithm The following measures were extracted from
a tenfold cross-validation without repetition:

– Mean accuracy: percentage accuracy calculated on a 1-
NN classifier trained with the subset selected by theMR-
DIS algorithm.

– Average compression: percentage of instances of the
original set present in the selected subset.

– Filtering time: Time spent by DIS algorithm on the fil-
tering task.

– Speedup: measure of the efficiency of the parallel version
with respect to the sequential version. It is calculated by
dividing the execution time of the sequential version by

4 Author: Alejandro González-Rogel, https://bitbucket.org/agr00095/
tfg-alg.-seleccion-instancias-spark.
5 In the Spark framework, eachworker node has one ormore executors,
each one of which completes a task. A processor was assigned to each
executor in the experimental work.
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the time of the parallel version. The speedup of a sin-
gle processor is one, such that it is easy to guess that the
maximum theoretical speedup thatmay be obtained is the
same as the number of processors in use. Nevertheless,
the speedup is normally lower than the number of proces-
sors as the system tends to become over-saturated [13]. In
other words, efficiency falls as the numbers of processors
increase, which is known as Amdahl’s law [1].

Speed_up = base_line

parallel_time

In all the case studies, the parameters used in the execution
of the MR-DIS algorithm were as follows:

– Algorithmused: condensednearest neighbour (CNN) [14].
– Number of rounds: 10.
– Number of instances by partition: 1000.
– Percentage of instances for the error calculation: 1%.6

– Alpha value: 0.75.

4.2 Instrumentation

The experimentation was performed using the Apache Spark
1.6.1 distribution on the Google DataProc service.7 Several
clusterswere deployed, each one of themwith twice the num-
ber of processing cores than the earlier one, from 4 to 256.
The cluster computation nodes were formed of Intel Xeon E5
with 16 cores and 60GB of RAM. Additionally, each cluster
has a master node in charge of the administration and man-
agement of the executors. Themaster nodewas an Intel Xeon
E5 with 2 cores and 7.5GB of RAM.

Each executor was assigned to a core. The collections of
data used by Spark (RDDs) were stored under the persistence
level MEMORY_ONLY of the framework. This storage option
implies that the data is stored without serialization in mem-
ory and, in case of there being no space, some partitions of
these structures can be removed and recalculated whenever
necessary.

4.3 Small experiment

One of the objectives of the present paper is to test the scal-
ability and the correct distribution of the work between the
nodes, in such a way that the processing time is reduced in
a linear manner as the number of executors increases. This
was tested under various configurations ranging from 4 to

6 In [12] the percentage of instances used for error estimation inmassive
data sets was 0.1%, but the use of a parallel implementation of 1-NN
permits an increase in this percentage, improving the precision of the
estimation.
7 Google Cloud Platform: https://cloud.google.com/dataproc/.

Table 1 Results of the experimentation with 10% of the Susy data set

# Executors Comp. (%) Acc. (%) Filt. time (s) Speedup

4 21.79 66.58 6 877.92 1.81

8 21.80 66.61 3 774.22 3.30

16 21.81 66.56 1 641.45 7.58

32 21.81 66.52 995.02 12.50

64 21.80 66.52 640.44 19.42

128 21.80 66.53 342.74 36.29

256 21.78 66.61 276.70 44.95

Fig. 3 Evolution of speedup with 10% of Susy as the numbers of
executors increase. The scale of the horizontal axis is not linear and
its number is duplicated at each step

256 executors. A subset of 10% of the Susy data set [18]
was selected to be able to run the job on such a small num-
ber of executors within a reasonable time. Susy comprises
5,000,000 instances produced by a physics particle simula-
tion. Each instance is formed of 18 attributes and it is a binary
classification problem.

Table 1 shows the results of those executions. The speedup
was calculated by using the execution time of MR-DIS with
a single executor as the lineal base. This arrangement means
that the linear base is much faster than a possible sequential
external implementation without Spark, as access to the data
sets is done in a more efficient manner (Spark access is not
sequential line by line but it is able to read and to load blocks
of instances in memory) [19].

Additionally, speedup is shown in graph form in Fig. 3. It
may be seen that, as the number of executors increases, the
speedup slope increases up until 128. After this point, how-
ever, speedup is lower thanmight be expected. This reduction
in the speed could be caused by the fact that a 10% of the
Susy data set is not large enough to be able to give work to all
of the available nodes, and part of the parallelization power
is not exploited.
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Table 2 Average filtered and classification time for the data set types
Poker and Cover Type

# Executors Filtering time (s) Classification time (s)

Cov.Type Poker Cov.Type Poker

64 1 689.39 1 243.38 125.98 330.21

128 717.85 684.33 42.99 160.48

256 361.93 415.75 27.61 78.61

It is worth mentioning that the slight variations in reduc-
tion and accuracy that may be observed in Table 1, are due to
the indeterminism generated by parallel execution. In other
words, there is no exact order in which the operations are
executed and this indeterminate process usually means that
the partitioning or selection of instances from the initial set
is different in each iteration

4.4 Big data sets

In the previous subsection, the experiment carried out on
the subset of 10% of the Susy data set has demonstrated
that the implementation maintains accuracy and compres-
sion regardless of the numbers of executors that are used. In
this subsection, the execution was done with clusters of 64,
128 and 256 executors on two data sets of up to one million
instances. Two popular data sets from the UCI [18] reposi-
tory were used: Cover type and Poker Hand. Cover type is
formed of 581,012 instances, which describe 30× 30 square
metre regions in terms of cartographic variables. The value
to predict is forestry coverage. There are 7 types of forestry
cover; in other words, it is a problem with 7 classes. The

attributes collected for each sample are summarized in 54
nominal and numeric attributes.

Poker Hand is composed of 1,025,010 instances, and each
of them represents an example of a hand consisting of 5 of the
52 possible cards from the deck. Each card is represented by
two attributes (suit and rank), so the set has ten attributes: five
numeric (from 1 to 13) and five categorical with four possible
values (Hearts, Spades, Diamonds, Clubs). It has ten classes
that indicate the possible game: one pair, two pairs, flush and
so on.

Table 2 shows the evolution over filtering (time needed
to apply MR-DIS) and classification (using MR-kNN over
the output of MR-DIS) time, in seconds, for Cover type and
Poker data sets. In both cases, it may be appreciated that the
time is shortened in a linear way as the number of execu-
tors is doubled. In addition, the algorithm execution time is
shown in a graph in Fig. 4. A line (expected) has been drawn
to facilitate comparison, which uses the time with 64 execu-
tors as a reference and is halved as the number of executors
increases.

5 Conclusions and further work

In the present paper, a Spark implementation of the instance
selection algorithm, known as Democratic Instance Selec-
tion (DIS), has been presented. The implementation has been
done according to theMapReducemodel. This algorithmwas
selected for two reasons: on the one hand its complexity, lin-
eal in the number of instances, and on the other, its intuitively
parallelizable design.

During the implementation process, Spark’s ability to dis-
tribute work between different machines has become clear.

(a) (b)

Fig. 4 Evolution over time of filtering in the data sets Cover type
and Poker as the number of executors increases. The filtering time
(observed) and the expected linear progression are shown. In order to
facilitate the comparison, a grey line (expected) is drawn that shows

the time with 64 executors as its origin and is halved as the number of
executors is doubled. The scale of the horizontal axis is not linear, and
at each step, its number is doubled. a Cover type, b Poker
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The work of the developer is to implement the algorithm
following the MapReduce model, but Spark framework is
responsible for assigning the work load of each node in a
transparent way.

The experimentation has proved the scalability of the
MR-DIS implementation and its ability to deal with large
dimensional data sets. Since in its current version it already
uses a parallel implementation of kNN, the MR-DIS is scal-
able on massive data sets without having any bottleneck that
could weaken its performance. In addition, the code is pub-
licly available at the Bitbucket repository.

Thus far, this study has only implemented and tested one
instance selection algorithm (CNN) in the internal process of
DIS. One immediate improvement, in which we are working,
is the addition of new algorithms such as ICF [5], DROP [24]
or LSBo [17] that could provide a faster, more efficient and
novel approach.

Moreover, the random partitioning method is not the most
intelligent. In the original paper where DIS was presented,
the authors proposed another partitioning alternative based
onGrandTour theory [4]. Its executionunder theMapReduce
model is a line of investigation that is proposed for the future.
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