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Abstract Subgroup discovery is a well-known technique
for the extraction of patterns, with respect to a variable of
interest in the data. However, the explosion in data gathering
has hampered the performance of traditional algorithms to
discover interesting relationships between different objects
in a set with respect to a specific property which is of interest
to the user. In this regard, our goal is to propose a set of effi-
cient techniques to mine subgroups on Big Data by means
of Apache Spark. On this matter, AprioriK-SD-OE and PFP-
SD-OE are proposed as fast exhaustive search algorithms to
discover subgroups on Big Data using Apache Spark. The
experimental study includes more than 70 datasets consider-
ing search spaces bigger than 1015 subgroups. The scalability
of our proposals are analyzed by considering datasets with
200 million of instances demonstrating the usefulness of
using Spark to tackle Big Data.

Keywords Subgroup discovery · Big Data · Apache Spark

1 Introduction

The increasing innovation in data gathering of the last years
has provoked an exponential growth on the quantity of data to
deal with. The generation and collection of large datasets has
further encouraged the analysis and knowledge extraction
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process [1]. The discovery of high-level information from
rawmassive data has become a priority for both academia and
industry, driving and motivating the research in improving
techniques for data analysis in such massive datasets red.
Big Data is the new buzzword more and more used to refer
to the techniques used to face up the problems arising from
themanagement and analysis of these huge quantities of data.

Aiming at extracting hidden and interesting information
from large quantities of data, many different techniques have
been proposed, even though all of them could be cataloged in
two different categories [2]. Descriptive learning tasks focus
on characterizing and exploring the data, since no informa-
tion is known previously. On the contrary, the purpose of
predictive learning is given a sequence of inputs and outputs,
try to predict new outputs as accurate as possible. Notwith-
standing, some recent techniques are in halfway between the
aforementioned categories. Supervised local pattern mining
is one of them, and specifically, Subgroup discovery (SD)
has received special attention [3].

SD is a broadly applicable data mining technique aimed
at discovering interesting relationships between different
objects with respect to a specific property which is of interest
to the user (the target variable) [4]. To mine these sub-
groups, many different techniques have been proposed [3],
although almost all of them are based on adaptations from
the descriptive tasks. As a matter of example, Apriori [5]
or FP-Growth [6] algorithms are some of the most distin-
guished algorithms from unsupervised learning which have
been adapted to extract subgroups. Special attention has
received these adaptations of FP-Growth since it enables to
speed up the process thank to a highly efficient data structure
known as FP-Tree.

Although the algorithms based on FP-Tree speed up the
process of mining subgroups, the performance of these
algorithms could be hampered on truly Big Data. Some
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researchers have faced up this challenging problem bymeans
of heuristic algorithms reducing the search space [7], or even
considering sampling techniques [8]. Although these tech-
niques achieve to reduce the search space, many interesting
solutions could be neglected losing interesting subgroups.
In this regard, an exhaustive search is required to study the
whole set of results. It is worth noting that these kind of
algorithms obtains all the possible solutions present in the
dataset. However, its main issue is the huge search space
that they need to consider. Aiming at reducing the search
space without losing any interesting subgroups, optimistic
estimates (OEs) have been proposed [9]. These estimators
enable to prune the search space achieving a better runtime
without losing any accuracy in the results.

At this point, our goal is to propose a new set of algo-
rithms based on traditional approaches but using emerging
technologies to tackle Big Data. To avoid the loss of inter-
esting subgroups, only exhaustive search algorithms have
been proposed. To face up the aforementioned issues of this
kind of algorithms, our proposals consider OEs to prune the
search space.Hence, it could be stated that the proposed algo-
rithms extract the best subgroups available. Furthermore, to
tackle massive data, Apache Spark has been used since it has
proved to obtain excellent results on dealing with massive
datasets [10]. Thus, two exhaustive search algorithms tomine
subgroups on Big Data are proposed in this paper. AprioriK-
SD-OE (AprioriK-SubgroupDiscoveryOptimistic Estimate)
as a fast iterative exhaustive search algorithm to discover
subgroups on Big Data. Likewise, PFP-SD-OE (Parallel
FP-Growth Subgroup Discovery Optimistic Estimate) is an
exhaustive search algorithm to mine subgroups on Big Data
using a highly efficient data structure. All of them are able to
discover subgroups on binary, numeric or nominal targets.

A detailed experimental study has been carried out to
prove the efficiency and scalability of our proposals. In the
analysis, a comparative study with traditional techniques has
also been performed. The results reveal that our propos-
als outperform with respect to traditional algorithms on Big
Data. The experimental study includes more than 60 datasets
considering search spaces bigger than 1015 subgroups and
2 × 108 instances.

This paper is structured as follows. Section2 presents
the most relevant definitions and related work. Section3
describes the proposed algorithms. Sect. 4 presents the exper-
imental analysis. Finally, some concluding remarks are stated
in Sect. 5.

2 Related work

In this section, the subgroup discovery task is formally
defined and some traditional approaches are described.
Finally, Apache Spark and its foundation are outlined.

2.1 Subgroup discovery

Subgroup discovery (SD) is a widely applicable data mining
technique whose aim is to identify interesting relationships
in a populationwith high generality and distributional unusu-
alness [11]. In where the relations are represented by means
of rules with the form R ≡ A → B, being A a set of inde-
pendent variables known as subgroup, and B represents a
value of the target variable. The number of independent vari-
ables in A is the length of the subgroup. In order to quantify
the quality of the obtained solutions, tonnes of qualities have
been proposed. The aim of these measures is to quantify how
interesting a specific subgroup is within a dataset [3]. Thus,
the goal is to obtain the j subgroups with a higher value
for the quality q. Hence, this task is formally described as
follows. Given a database DB, a quality function q and j
being the number of subgroups with maximum quality. To
return a set of j subgroups descriptions G such that: ∀ sub-
group description sd : sd /∈ G ⇒ q(DB, sd) ≤ q∗, where
q∗ = minsd∈Gq(DB, sd).

Given that the space of candidate subgroups could be con-
sidered as a tree with subgroups of length 1 at the first level,
subgroup descriptions of length 2 at the next level and so
on. A naive approach could be to mine this tree recursively;
however, in this approach, the size of search space is expo-
nential in the number of attributes, and thus, some kind of
pruning is required to be run efficiently.Unfortunately, unlike
related tasks like association rule mining where state-of-the
art algorithms exploit the property of monotonicity [5], in
SD this property does not hold: Even if the subgroup descrip-
tion sd does not have a sufficient quality, it is still necessary
to consider its refinements [9]. However, if the j best sub-
groups have been found, and all the refinements sd ′ of a
subgroup sd had a quality that is worse or equal than all
j subgroups found so far, this search space could be safely
pruned. What is needed to do so is an optimistic estimate
(OE) for the refinements sd ′ of sd. Where an OE(sd) for a
given quality function q is a function that satisfies the fol-
lowing ∀sd, sd ′.sd ′ 
 sd ⇒ OE(sd) ≥ q(sd ′). Also, tight
OEs could be found which are OEs that satisfy the condition,
∀sd, sd ′.sd ′ 
 sd ⇒ OE(sd) = q(sd ′). The tightness the
OE, the better the estimation, thus the higher the part of search
space which could be safely pruned.

To obtain these j subgroups, many approaches have been
used [3]. Pioneering researches were based on adaptations
from the association rule mining field, where one of the most
distinguished algorithms, known as Apriori [5], have been
adapted to the SD task for different kind of targets [12].
Apriori follows a breadth-first search, where patterns are
considered as frequent if they have a value of frequency
greater than a threshold. It generates candidate itemsets of
length s from itemsets of length s − 1. Apriori, while his-
torically significant, suffers from a number of inefficiencies
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or trade-offs, which have spawned other algorithms. Can-
didate generation is time-consuming and requires a huge
amount of memory, by this reason FP-Growth has been pro-
posed as an approach which not requires the process of
generating candidates. FP-Growth uses a compact represen-
tation of the database reducing the memory requirements.
The core of this method is the usage of a special data struc-
ture named FP-Tree, which retains the patterns information.
Finally, this data structure is mined in a recursive way. Past
proposals are analyzed in function of the kind of considered
target.

(a) Binary SD-MAP [13] is an algorithm to discover sub-
groups in binary targets using a highly efficient data
structure, known as FP-Tree, which enables to speed up
the process. In these targets, there are only two differ-
ent values (True/Positive or False/Negative). The most
typical quality function used in these targets has been
proposed by Piatetsky-Shapiro [14] as qps = n(p− p0).
Considering this measure, Grosskreutz et al. [9] pro-
posed a tight OE as OEps = np(1 − p0) enabling to
prune huge parts of the search space, where n means the
size of the subgroup; p is the relative frequency of the
target variable in the subgroup; and p0 is the relative
frequency on the target variable in the total population.

(b) Numeric some authors proposed to discretize target
variable, but this solution is not accurate at all since
it involves a loss of information [15]. Unlike it, SD-
MAP* [16] mines subgroups in numeric targets. It
searches for significant deviations of an aggregation
measure among the others. Being the mean one of the
most outstanding [17], where the mean value μP in
the subgroup P is compared to overall mean in the
datasetμ∅. In concrete, onemeasure based on the generic
mean function is the impact quality function defined as
qimp = q1mean(P) = n · (μP − μ∅). For this measure, an
OE [17] has been proposed to prune the search space as
OEqimp = ∑

t∈P:T (t)>μ∅ T (t) − μ∅. n refers to the size
of the subgroup and T (t) means the value for the target
variable in the transaction t.

(c) NominalDpSubgroup [18] is one of themost prestigious
algorithms where an FP-Tree is used to speed up the task
on nominal targets. Gini is considered as one of the most
distinguished either in SD and in data mining in gen-
eral [19]. It is defined as qgini(P) = n

N−n

∑
i (pi − p0i )2.

An OE proposed by Grosskreutz et al. [9] is OEgini =
∑

max{E+
i , E−

i Eg
i }, where E−

i = n(1−pi )
N−n(1−pi )

(p0i )2,

Eg
i = n

N−n (pi − p0i )2, and E+
i = npi

N−npi
(1 − p0i )2,

where N means the size of the dataset; n is the size of
the subgroup; pi is the distribution over the class i in the
subgroup; and p0i is the distribution over the class i in
the dataset.

Despite of these algorithms are highly efficient consid-
ering both OEs and data structures, any of them follow a
distributed approach. Thus, they only could be scaled up
requiring each time a higher quantity of resources. Ham-
pering its application on truly Big Data, where it is required
to scale out [20].

2.2 Foundations of Apache Spark: MapReduce

MapReduce [21] is a recent framework of distributed com-
puting, where algorithms are composed of two main stages,
map and reduce. In the map phase, each mapper processes a
subset of input data and produces a set of 〈k, v〉 pairs. Finally,
the reducer takes this new list as input to produce the final
values. Since its origins, many implementations have been
proposed [10,22].

Hadoop [22] is the de facto standard for implementation of
MapReduce applications. Hadoop implements the MapRe-
duce paradigm efficiently and the Hadoop Distributed File
System (HDFS), which replicates file data in multiple stor-
age nodes that can concurrently access to the data. The main
drawback of Hadoop is that it imposed an acyclic data flow
graphs, and there are applications that cannot be expressed
efficiently using this kind of graph such as iterative or inter-
active analysis. As it has supposed a bottleneck for iterative
algorithms which are very common in machine learning,
a novel solution has been proposed known as Spark [10].
Spark is designed to cooperate with Hadoop, specially by
using HDFS. To solve these downsides, Spark introduces
an abstraction called Resilient Distributed Datasets (RDDs).
RDD represents a read-only collection of objects partitioned
across a set of machines. It allows us to load a dataset in
memory one time and readmultiple times from executor pro-
cess without having to load it in each iteration as occurred
in Hadoop. Not only introduces Spark an in memory stor-
age but also it provides a thorough set of programming
primitives enabling users to implement much more complex
distributed applications than those implemented in classic
MapReduce. It enables to implement several distributedmod-
els like MapReduce, SQL like or even Pregel.

3 Exhaustive search approaches to mine subgroups
on big data

With the arrival of Big Data, existing algorithms are not able
to run efficiently due to the huge size of the data to deal with.
Whereas other researchers have preferred to lose some accu-
racy on the results introducing heuristic, our proposals are
able to work in large datasets using an exhaustive search.
It guarantees that the best solutions are obtained. Hence,
the aim of this paper is to propose new approaches of dis-
covering subgroups on Big Data by combining pioneering
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techniques with new trends. In this regard, a full description
of our approaches is given, relying on Apache Spark. Each
version obtains the exact same set of results, but the approach
followed in the search process is totally different.

3.1 AprioriK-SD-OE

AprioriK-SubgroupDiscoveryOptimisticEstimate (AprioriK-
SD-OE) is an iterative algorithm based on the well-known
Apriori [5] algorithm tomine subgroups onBigData.A really
important handicap of Apriori is the extremely high number
of items which could produce at the same time (2X −1 items
could be produced for X items) [23]. Moving on to SD field,
supposing l attributes where each one hasm different values,
then

∑l
i=1 C

l
i × mi subgroups could be produced. Thus, to

deal with this issue, an option is not to create the whole lat-
tice for each transaction but the l-sized sub-lattice each time,
so a set of iterations is required. In this regard, the memory
requirements are being reduced, achieving an improvement
in the computational time. Additionally, OE allows to reduce
the search space enabling to stop the process of discover-
ing subgroups when the j best subgroups have been mined,
reducing considerably the computational time.

The proposed AprioriK-SD-OE obtains subgroups on any
kind of target value, changing the quality metric depend-
ing on the type of target. For binary targets, the previously
described qps measure is used; for numeric and nominal, the
qimp and qgini measures are considered, respectively. The
quality metrics could be changed depending on the type
of problem. To reduce the resulting set, AprioriK-SD-OE
only returns the j best subgroups; thus, only the subgroups
with a quality value greater than a threshold will be returned.
The OE depends on the quality measure used; thus, OEps,
OEimp and OEgini are considered.

To obtain the j best subgroups, this algorithm uses three
different processes: driver, mapper and reducer, all of them
are fully described in this section. The proposed algorithm
works as follows.

Step 1 The driver read the database from disk and loaded in
a RDD, which is split in a set of sub-databases. Then, the
driver calculates the maximum size of the subgroups, that is,
the maximum number of attributes as maxL , iterating from
l = 1 to maxL .

Step 2 For each iteration l, a MapReduce phase is needed. In
this regard, our proposal works by running a differentmapper
for each specific sub-database, the results are collected in a
reducer phase. Thus, this step is split in two different sub-
parts, both of them are fully depicted in Code 1.

Step 2.1. Map phase Each of these mappers are responsible
for mining the complete set of subgroups of size l for its
sub-database (line 1 in Code 1). Producing a set of 〈k, v〉
pairs where k has a set of attributes, that is, the subgroup.

Code 1 AprioriK-SD-OE algorithm
function mapper(l, instance, group, metaInfo)
1: subgroups ← get SubgroupsBySize(instance, l)
2: for each subgroup in subgroups do
3: in f o ← get I n f ormation(instance, group,metaIn f o)
4: emit (subgroup, in f o) // Emit 〈k, v〉 pair
5: end for
end function
function reducer(subgroup, Iterator<infoAll>, Thresholdquali t y)
1: global I n f o ← 0
2: for each info in subgroups do
3: global I n f o + = in f o
4: end for
5: if global I n f o.quali t y ≥ Thresholdquali t y then
6: emit (subgroup, global I n f o) // Emit 〈k, v〉 pair
7: end if
end function
function getInformation(instance,group,metaInfo)
1: if group.isBinary() then
2: return (tp, f p)
3: else if group.isNumeric() then
4: cond ← (group > metaIn f o.meanGlobal ?

(group − metaIn f o.meanGlobal) : 0)
5: return (group, 1, group − metaIn f o.meanGlobal, cond)

6: else
7: return generateT uple(metaIn f o, group)
8: end if
end function

And depending on the kind of target, value could contains
different values as it will be fully described (this functionality
is provided by the function get I n f ormation depicted in
Code 1).

Step 2.2. Reduce phaseTheoverall count for each subgroup is
performed by the reduce phase. In this regard, each subgroup
is sent to a different reducer, calculating the overall metric
results. The reducer returns to the driver only the subgroups
with a quality greater than a threshold.

Step 3 After the MapReduce phase, the driver collects the j
best subgroups obtained of size l. These subgroups are joined
with the best subgroups obtained up to now, selecting the j
best. The best OE of the subgroups of size l is compared
with the worst quality of the subgroups of whatever size, and
if it is lower, the process could be stopped since that any
refinements could not be better than the previously obtained.
In red another case, l is incremented and it returns to Step 2.
In case that l would have the maximum value, the discovery
process would be stopped since any bigger subgroups could
not be obtained.

For the sake of better understanding, Fig. 1 shows a
schemeof three different executions for the first iteration (one
for each type of target), where the subgroups with descriptors
of size 1 are searched. The quality threshold is fixed to 0, and
the number of subgroups to obtain is established to 2. Firstly,
the dataset is split in different sub-datasets, where each one
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Fig. 1 Example of executions for l = 1 in AprioriK-SD-OE. Each
execution is performed on different datasets, having each one a different
type of target, even though all of them share the same idea being the v in
the 〈k, v〉 pairs the unique difference among them. A quality threshold
of 0 and a number of subgroups of 2 are considered. Bold typeface
solutions are the best

is processed by a different mapper independently. The aim
of the mappers is to mine subgroups of size l. Each mappers
produces a set of 〈k, v〉 pairs, where k is the subgroup and v

depends on the kind of target (this functionality is provided
by get I n f ormation in Code 1) as it is described.

(a) Binary v is a tuple of two longs, where they represent to
tp (true positive) and fp (false positive), respectively. For
instance, the two key-values 〈B2, (1, 0)〉 and 〈B2, (0, 1)〉
are produced from different mappers, both of which are
aggregated in the reducer phase adding theirs values for
tp (cases containing the target variable in the given sub-
group) and fp (cases not containing the target variable
in the given subgroup), resulting 〈B2, (1, 1)〉. Then, the
reducer calculates the quality function qps and OEps

obtaining the values of 0.33 and 0.66, thus the key-value
〈B2, 0.33, 0.66〉 is produced. Only the results in bold
typeface have been considered in the driver since they
are the two best solutions.

(b) NumericThefirst step in this case is to calculate themean
of the targets’ value, thus meanGlobal = 10+2+3

3 = 5.
For this kind of target, v contains a tuple of four values.
The first one represents to the sum of the target values,
the second one represents to the frequency of occurrence,
the third one is the addition of targetValue−meanGlobal
for each transaction and the last one is the addition of
targetValue − meanGlobal for each transaction where

the condition targetValue > meanGlobal was satis-
fied. For instance, two key-values 〈B2, (10, 1, 5, 5)〉 and
〈B2, (3, 1,−2, 0)〉 are produced from different map-
pers, both of which are aggregated in the reducer
phase adding theirs respective values for v, resulting
〈B2, (13, 2, 3, 5)〉. After that, the reducer calculates the
mean of the target for this subgroup, dividing the first
value of the tuple between the second; thus, a subgroup
is produced with the form of B2 → 13

2 and the quality is
the total value contained in the third position of the tuple,
theOE is the value in the position four of the tuple, result-
ing the final key-value: 〈B2 → 13

2 , 3, 5〉. Only the results
in bold typeface have been considered in the driver since
they are the two best solutions.

(c) Nominal In this example, a tuple of three elements is
used since three different values (t1, t2 and t3) are pos-
sible to be included in the target variable. It should be
noted that the dimensions of this tuple are determined
by the problem, thus it does not have a fixed size. In the
example shown in the Fig. 1, the first mapper produces
〈A1, (1, 1, 0)〉 where the value is a counter of frequency
of each target value as (t1, t2, t3), say, since that A1 is
presented in two different instances having the target val-
ues of t1 and t2, the tuple is (1, 1, 0). This functionality
is provided by generateTuple in Code 1. Only the results
in bold typeface have been considered in the driver since
they are the two best solutions.

3.2 PFP-SD-OE

PFP-SD-OE (Parallel FP-Growth Subgroup Discovery Opti-
mistic Estimate) is an algorithm based on the well-known
FP-Growth [6] to discover subgroups on Big Data. It
also includes some ideas of the parallel version of FP-
Growth [24]. The main advantage of this algorithm is that
only two readings of the dataset are required, so huge datasets
could be considered. The dataset is read in a distributed way
enabling a faster computing, creating a set of independent
FP-Trees to represent the current dataset. The number of FP-
Trees is determined dynamically by the number of different
single values for each attribute, the higher this number the
higher the number of FP-Trees. Then, the FP-Trees aremined
using a parallel way, where each computer node only has
access to one local tree. Moreover, OEs are being considered
to reduce the search process; in this way, many branches
could be removed guaranteeing that any alluring subgroups
could be obtained from them. It considers binary, numeric or
nominal targets to be mined, and a different quality measure
is used for each one. For binary targets, the aforementioned
qps is considered, whereas for numeric and nominal, the qimp

and qgini are used, respectively.
The algorithm works as follows.
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Code 2 PFP-SD-OE algorithm
function mapperParallelComputing(instance)
1: for each value in instance do
2: emit (value, 1) // Emit 〈k, v〉 pair
3: end for
end function
function reducerParallelComputing(element, Iterator<frequencies>)
1: globalFrequency ← 0
2: for each frequency in frequencies do
3: globalFrequency + = f requency
4: end for
5: F−list.append(element, globalFrequency)
end function
function mapperPFP(item, instance, F-list)
1: a[] ← spli t (instance)
2: for j = |instance| - 1 to 0 do
3: emit (a[ j], a[0]..a[ j]) // Emit 〈k, v〉 pair
4: end for
end function
function reducerPFP(item, Iterator<instances>)
1: LocalFpTree ← null
2: for each instance in instances do
3: insert_build_ f p_tree(LocalFpTree, instance)
4: end for
5: Mine LocalFpTree recursively
end function

Step 1 The driver read the dataset from disk, splitting it in
successive parts and loaded in a RDD. In this way, the dataset
could be read in a distributed way.

Step 2 A parallel counting is carried out (see Code 2). In this
step, the frequency for each value of each attribute is calcu-
lated, and the final list will be called as F-list. As the dataset is
read completely, some additional operations are also calcu-
lated depending on the target value: (a)Binary: the total value
of TP and FP are calculated; (b)Numeric: the global mean
of the target variable is calculated; (c)Nominal: where the
frequency for each value of the target is calculated. These
operations are performed because this information will be
required to calculate the quality measures. This step requires
one read of the dataset, and hence, only one MapReduce
phase is required.

Step 3 F-list is sorted by frequency. This step is performed
in a single computer in few seconds, since the size of F-list
is enough smaller to save in main memory.

Step 4 This step is cornerstone since that it creates the
FP-Trees. The mapper phase read the RDD created in
Step 1 and the sorted F-list created in Step 3. Each map-
per produces a set of 〈k, v〉 pairs, where k is an item from
F-list and v is a item-dependent transaction. For each item
of F-list, if it appears in one instance, locate its right-
most appearance, say L , and output a key-value pair with
the form 〈i tem, instance[1]...instancei [L]〉. These steps are
fully described in the function mapperPFP in Code 2. A

detailed description about item-dependent transaction and
the process carried out in this step is found in [24]. Then, each
reducer processes a different item enabling a higher level of
parallelism. The reducer creates an independent local FP-
Tree and grows its conditional FP-tree recursively. During
the recursive process, subgroups are discovered. The qual-
ity measure could be calculated in this step since each node
has enough information to do it, as well as the OE. When
a new node is examined in this recursive process, the OE is
compared. If it is lower than the worst subgroup in the collec-
tion with the j best subgroups, the recursive step is stopped
since that any better subgroups could not be discovered in
this branch.

The information contained in each node depends on the
type of target value.

(a) Binary a single tuple with two values tp (cases containing
the target variable in the given subgroup) and fp (cases
not containing the target variable in the given subgroup).

(b) Numeric one tuple with four elements, having a counter
of frequency, an addition of target values for this sub-
group, the addition of targetValue−meanGlobal and the
addition of targetValue −meanGlobal where the condi-
tion targetValue > MeanGlobal was satisfied.

(c) Nominal a counter variable for each target is included
to keep the frequency. Furthermore, each node inde-
pendently of the kind of target includes a field with its
respective value of OE.

The driver process manages the aforementioned steps,
doing as point of coordination. Each reducer returns the j
best subgroups after mining its local FP-Tree. Even though it
produces j×NumberReducers subgroups in the driver, when
only j subgroups are needed, this is the only way of guaran-
teeing that the final obtained j best subgroups are returned. In
this regard, the driver collects each result from each reducer,
sorting and selecting only the final j best subgroups.

For the sake of better understanding, an example of
running PFP-SD-OE on a dataset with numeric target is
described (See Fig. 2). Supposing a dataset with 4 instances.
The Step 1 and Step 2 are performed, where the dataset is
split in two different parts, loaded in a RDD and the parallel
counting carried out. This parallel counting is developed as a
classic MapReduce application, where each mapper extracts
subgroups of size 1 from its sub-dataset producing key-value
as 〈subgroupsize=1, v〉, where v means the occurrence fre-
quency for this subgroupsize=1. Then, the aim of the reducer
is to collect these key-values with the same subgroupsize=1,
aggregating the occurrence frequency to obtain the over-
all results. At the end, the frequency of occurrence of
each value is obtained with the form value(frequency):
A1(3), A2(1), B2(2), B1(2),C2(3),C1(1). Returning this
list to the driver.
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Fig. 2 Example of execution for PFP-SD-OE Step 4. The number of
mapper is limited by the RDD previously created, whereas the number
of reducer is limited by the number of items in F-list, as this list contains
six different items, six reducers have been required

Following the Step 3, this list is sorted by frequency
This step is performed in the driver, since the size of this

list is smaller enough to save in main memory.
Now, the Step 4 is performed as shown in Fig. 2. The inter-

mediary 〈k, v〉 are the form of 〈item, (tupleI temDepend-
antT ransaction, targetValue)〉, which are received in the
reducer depending on its i tem value, and in this way, all
the instances with the same item are analyzed in the same
reducer. As F-list contains six different values, six differ-
ent reducers are needed, producing key-values with the form
〈subgroup, (counterFreq, additionTargetValues, quality,
OE)〉. For instance, the key-value 〈C2, (3, 235, 19, 31)〉 is
produced, since it appears three times in the dataset, 235 is
the addition of 100+75+60, 19 is the quality as 3( 2353 −72)
and 31 is the OE as (100− 72)+ (75− 72). 72 is the overall
mean in the dataset.

Each reducer builds a local FP-Tree, as shown in Fig. 3 and
then discover subgroups from it using a recursive strategy,
considering the OE to remove non-promising branches. For
each local FP-Tree, j subgroups are mined, all of them have
a quality greater than a threshold established by the user.

4 Experimental study

The aim of this section is to study the scalability and the per-
formance of our proposals considering a varied set of dataset.
The purpose of this study is threefold:

– Evaluation of the performance when OEs are considered
to prune the search space. The tightness of these OEs are
also studied.

– Analysis of the computational time for a varied set of
algorithms, comprising both sequential and MapReduce

Fig. 3 Example of FP-Tree local created in each reducer. These FP-
Trees are built using the item-dependent transactions. As it could be
seen, each FP-Tree is totally independent for the rest one; thus, each
one could be built and mined separately, enabling a higher level of
parallelism

algorithms. This study also includes an evaluation of the
performance and scalability of our proposals when truly
Big Data is considered.

– Analysis of the endeavor of our algorithms on real-world
datasets.

It is worth noting that the runtime obtained for all the algo-
rithms in this experimental analysis is the average runtime
obtained for 10 different runs. It has been carried out in this
way to alleviate the variations in the runtime derived from
the resource management.

All the experiments have been run on a HPC cluster com-
prising 12 compute nodes. Each of the nodes comprised two
Intel Xeon E5645 CPUs with 6 cores at 2.4GHz and 24
GBDDRmemory. Cluster operating system is Rocks cluster
6.1× 64 running Spark 2.0.

4.1 Used datasets

This experimental section considers a large number of dif-
ferent datasets. A total of 40 synthetic datasets have been
used. Synthetic data have been used since the number of both
instances and attributes can be easily changed to illustrate the
scalability of the algorithms. In these datasets, the number
of instances varies from 105 to 2 · 108, whereas the number
of attributes ranges from 6 to 16. It is worth mentioning that
the search space is exponential in the number of distinct ele-
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ments, and these elements are numbered not only by distinct
attributes but also by distinct values that each attribute com-
prises, and thus, this number of attributes produces a search
space from 1.17648 · 105 to 1.276 · 1015 subgroups.

Finally, several executions on 30 real-world datasets have
also been considered to prove that our algorithms could work
in real data in a efficient way.

Several quality thresholds (α) have been used depending
on the quality measure. For binary a value of α1 = 8.0 ·10−1

has been used, whereas for numeric targets and nominal tar-
gets values of α2 = 8.0 · 102 and α3 = 5.0 · 10−5 have
been used, respectively. It is noteworthy tomention that these
thresholds are so varied, since each one is applied in a differ-
ent metric having each one a totally different range of values.

4.2 Optimistic estimates: pruning the search space

The aim of this study is to analyze the effects of considering
OEs. Firstly, a comparative study between the same algo-
rithmswith andwithout OE is performed. Then, the tightness
of OEs is also studied.

Binary targets In this first analysis, only binary targets are
considered. The quality measure is qps and the tight opti-
mistic estimate isOEps. Figure 4a shows the resultswhenour
proposals are run with and without OE. As it could be seen,
the behavior of AprioriK-SD-OE is better than AprioriK-
SD, achieving one order of magnitude in runtime better. It is
noteworthy tomention that the number of subgroups does not
affect. Obviously, when the number of subgroups to extract
is close to the number of possible subgroups in the dataset,
the performancewould be similar, but never worse. The same
endeavor happens with PFP-SD-OEwith respect to PFP-SD.
Both algorithms with OE achieve the best performance. It
is also relevant to note that PFP-SD obtains a worse perfor-
mance thanAprioriK-SD, however,whenOEs are considered
the contrary happens. It is due to the fact that PFP-SD needs
to build an FP-Tree where any branches could be pruned
being faster extracts directly subgroups.

Numeric targets The quality measures is qimp and the opti-
mistic estimate is OEimp. Figure 4b shows the results when
our proposals are run with and without OE. As it could
be seen, the same as before occurs. PFP-SD obtains worse
results than AprioriK-SD since it needs to build and mines a
huge FP-Tree, as any OEs is considered in this algorithm any
branch could be pruned, resulting in a larger runtime. When
anOE is included, as PFP-SD-OE, the building andmining of
an FP-Tree is justified since many branches could be pruned
resulting in an considerable improvement in the runtime. It
should be highlighted that algorithms based on FP-Tree are
meaninglesswhen the number of subgroups is very low, since
the building of an FP-Tree is not justified being faster directly
extracts the subgroups as AprioriK-SD-OE does.

Nominal targets The quality measure has been qgini and the
OE has been OEgini. Figure 4c shows the results when our
proposals are run with and without OE. The behavior is the
same as the shown previously.

Readers should observe that if Fig. 4a, b is compared, it
shows the importance of considering tightOEs. The tightness
the OEs, the better the performance of all algorithms, but
specially of AprioriK-SD-OE. As OEps is tight, AprioriK-
SD-OE obtains a performance similar to PFP-SD-OE in
binary targets, but as OEimp is not tight, there is more differ-
ence between PFP-SD-OE and AprioriK-SD-OE in numeric
targets. As OEgini is less tight thanOEimp (see Fig. 4b, c), the
performance of AprioriK-SD-OE is not similar to PFP-SD-
OE in nominal targets. It is caused because AprioriK-SD-OE
is not able to prune as much as PFP-SD-OE does. Whereas
that PFP-SD-OE is able to prune many branches and mines
only alluring branches, AprioriK-SD-OE needs to calculate
each l and filter after that. Thus, OEs are more effective on
algorithms based on FP-Trees.

Continuing the study, the orders of magnitude are ana-
lyzed. Demonstrating that the use of OE is recommended
(see Table1). As it could be seen, in binary target, the OE is
defined as tight, being the difference always of 1.0 order of
magnitude better than algorithms with OEs. When the OE is
not tight, as in nominal or numeric, AprioriK-SD does not
obtain always one order of magnitude, because this OE is not
able to prune as much search space as a tight OE. Being one
advantage of PFP-SD-OE that is not as affected as AprioriK-
SD-OE by the tightness of the OEs.

To sum up, OEs have proved to prune the search space
improving substantially the performance, the tightness the
OE, the better. Although, AprioriK-SD-OE is more affected
by the non-tightness of the OEs, the use of OEs is justified in
all the algorithms because it improves their performances.

4.3 Scalability

In this study, the scalability of our proposals is analyzed.
In this regard, a set of synthetic datasets have been used
to analyze how the number of both instances and attributes
affects the performance. These datasets comprises a search
space of 11.76·104 to 12.75·1014 subgroups.Only algorithms
with OEs have been considered in this study, since it has
been proved that these algorithms obtain better performance.
These algorithms have been selected since they are able to
work in the same kind of target as our proposals. Each of
these algorithms has been briefly described as follows:

– SD-MAP [13] this algorithm uses a highly efficient data
structure to speed up the discovery of subgroups. It only
works in binary targets.
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(a) (b)

(c)

Fig. 4 Runtime considering datasets with 106 instances and a search space of 1.38413 · 1010 subgroups. a Binary target with a quality threshold
of α1, b Numeric target with a quality threshold of α2, c Nominal target with a quality threshold of α3

Table 1 Results show the
orders of magnitude in the
difference of the runtime when
each pair of algorithms is
compared

Target Comparisons Average Worst Best

Binary AprioriK-SD-OE versus AprioriK-SD 1.00 1.00 1.00

PFP-SD-OE versus PFP-SD 1.00 1.00 1.00

Numeric AprioriK-SD-OE versus AprioriK-SD 0.75 0.00 1.00

PFP-SD-OE versus PFP-SD 1.00 1.00 1.00

Nominal AprioriK-SD-OE versus AprioriK-SD 0.25 0.00 1.00

PFP-SD-OE versus PFP-SD 1.00 1.00 1.00

The dataset has a search space of 1.38413 · 1010 subgroups. The average, worst and best case are shown

– DpSubgroup [18] based on SD-MAP shares the same
approach of using the same data structure, but nominal
targets are considered in it.

– SD-MAP* [16] this algorithm is based on the previous
one but considering numeric targets.

These algorithms have been implemented as they are describ-
ed by their respective authors. The quality and the optimistic

estimates functions used in these algorithms are the same as
the used by our proposals.

Binary targets In the first place, only binary targets are con-
sidered. Figure5a shows the results when the number of
instances changes between 105 and 2 · 108. The behavior
of AprioriK-SD-OE Spark and SD-MAP is almost the same
when the number of instances is up to 1.2·107. Although SD-
MAP and AprioriK-SD-OE Spark obtain a runtime almost
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Fig. 5 Runtime on data with a number of instances from 105 to 2 · 108 and a search space of 1.38 · 1010 subgroups. a Binary target is considered.
b Numeric target is considered. c Nominal target is considered

equal when a very large number of instances is consid-
ered, AprioriK-SD-OE Spark allows to scale horizontally,
whereas that SD-MAP as a sequential approach needs a
better hardware with larger quantities of RAM to continue
executing. SD-MAP needed more than 24 GBytes of RAM
only to run a dataset with 106 instances. Finally, it should
be noted that PFP-SD-OE Spark obtains the best perfor-
mance when a large number of instances are considered,
when this number is lower AprioriK-SD-OE Spark obtains
better performance than PFP-SD-OE Spark. This last fact is
due to that the tackled search space is not bigger enough
to justify the time invested in building a FP-Tree, but it
could be more efficient to mine directly the subgroups as
AprioriK-SD-OE does. When the number of instances is
increased again up to 2 · 108 instances, sequential algo-
rithms are not able to run in a reduced quantum of time,
thus only algorithms based on Spark could be run. As it

could be seen, the behavior is the same, PFP-SD-OE Spark
overcomes AprioriK-SD-OE Spark with this huge number
of instances.

Numeric targets In this case, only numeric targets are con-
sidered. Figure5b shows the results when the number of
instances varies from 105 to 2 · 108. The behavior of the
algorithms is almost the same as the shown with binary tar-
gets since the approach is shared. PFP-SD-OE Spark allows
to discover subgroups in the most efficient way; it only needs
an 8.35% of time with respect to SD-MAP* to discover the
same subgroups on a dataset with 106 instances. As it has
been noted in previous studies, the tightness of OEimp is
lower than OEps results in a bigger search space. This could
be appreciated in two different ways: (1) AprioriK-SD-OE
Spark does not have a similar behavior than SD-MAP*, hav-
ing SD-MAP* a worse performance since it needs to tackle a
bigger search space than SD-MAP, thus a parallel approach
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Fig. 6 Runtime on data with 106 instances and a search space that varies from 1.17 · 105 to 1.27 · 1015 subgroups. a Binary target is considered.
b Numeric target is considered. c Nominal target is considered

as AprioriK-SD-OE Spark is preferred; (2) the performance
of algorithms based on Spark with a number of instances big-
ger than 2 · 107 is more similar, since the approach based on
FP-Tree is not able to prune as much search space as happen-
ing with a tight OE. As the search space is bigger, sequential
algorithms are not able to work efficiently, whereas that algo-
rithms based on Spark tackle these bigger search spaces by
means of parallelism.

Nominal targets In this case, only nominal targets are con-
sidered. The behavior of the algorithms is almost the same
as shown previously (see Fig. 5c). Again, it could be appreci-
ated that as OEgini is the least tight, the performance among
algorithms is more varied than in the previous cases.

Continuously, this study, the influence of attributes in the
performance is also studied in function of the kind of target.

Binary targets Figure6a shows the results when the num-
ber of instances is 106 and a varied set of search spaces.

As it could be noted, PFP-SD-OE Spark and AprioriK-SD-
OE have a very similar behavior since the OE is tight, thus,
both algorithms are able to prune almost the same search
space. As happened in previous studies, SD-MAP obtains a
very similar behavior as AprioriK-SD-OE, but the last one
enables to scale out, whereas the first one only is able to scale
up.

Numeric targets In concrete, Fig. 6b shows the results when
the number of instances is 106 and a varied set of search
spaces. As it could be noted, PFP-SD-OE Spark obtains
almost always the best performance, excepting with very
small datasets. It is caused because datasets with a small
search space produces smaller FP-Tree, thus it could be point-
less to try to parallelize the mining process.

Nominal targets As it could be appreciated, the endeavors
are the same as the previous studies, in this kind of dataset
the OE is the least tight (see Fig. 6c).
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4.4 Real-world datasets

The aim of this section is to demonstrate that our proposals
are able to mine efficiently subgroups in real-world datasets.
This analysis includes a varied set of 30 dataset, consider-
ing a number of instances ranging from 900 to more than
4 · 107 instances. As our proposals are exhaustive search
algorithms, where all the possible subgroups are exam-
ined, any kind of comparison about effectiveness is required
since our algorithms guarantee that the best solutions found
into the dataset will be returned. In the same regard, as
exhaustive search algorithms have been used, the continuous
attributes have been discretized using unsupervised tech-
niques [15]: equal-width (EW) and equal-frequency (EF). As
no information is known previously, different bins have been
used.

Table2 shows the results obtained, where the labels mean:
Dataset is the name of the dataset, instances is the number
of examples, #Attrs(R/I/N ) is the number of attribute (R
represents real attributes, I is used for integer attributes and

N for nominal attributes), Discretization mean the kind of
discretization considered, and the results of runtime for both
algorithm in seconds. It also should be noted that EF means
that continuous attributes have been discretized using equal-
frequency with 4 bins and EW means equal-width using
4 bins. Different bins have been proved, but due to space
limitations, only 4 bins have been shown. The rest of results
considering different bins is available at http://www.uco.es/
grupos/kdis/kdiswiki/SDBigData. In somecases, the process
of discretization has not been required since the dataset only
contains nominal attributes.

As it could be appreciated, the obtained results are equiva-
lent to the shown previously. Whereas that AprioriK-SD-OE
is highly affected by the number of attributes, PFP-SD-OE
is not so hampered. This fact could be appreciated in these
datasets with a high number of attributes such as Mushroom,
Thyroid or Twonorm. It should also be highlighted that a
higher number of attributes means a higher search space to
tackle, where the search space grows exponentially with the
number of attributes. Not only is the number of attributes

Table 2 Runtime in seconds of
our proposals when real-world
datasets are considered

Dataset Instances #Attrs (R/I/N) Discretization AprioriK-SD-OE PFP-SD-OE

Mammographic 961 5 (0/5/0) EF 6.1 7.1

EW 5.8 6.5

Tic-Tac-Toe 958 9 (0/0/9) – 7.2 8.5

Vowel 990 13 (10/3/0) EF 19.3 12.5

EW 14.1 7.5

Flare 1066 11 (0/0/11) – 10.4 9.1

Yeast 1484 8 (8/0/0) EF 18.3 11.6

EW 12.2 7.2

Contraceptive 1473 9 (0/9/0) EF 13.7 8.1

EW 12.2 7.8

Car 1728 6 (0/0/6) – 6.4 8.5

Titanic 2201 3 (3/0/0) EF 8.5 7.2

EW 11.3 10.1

Abalone 4174 8 (7/0/1) EF 13.2 9.4

EW 12.6 7.9

Wine 4898 11 (11/0/0) EF 14.8 9.4

EW 13.6 7.6

Banana 5300 2 (2/0/0) EF 11.3 10.4

EW 8.0 6.8

Phoneme 5404 5 (5/0/0) EF 10.1 7.1

EW 95.5 8.0

Page-blocks 5472 10 (4/6/0) EF 13.9 9.2

EW 12.6 7.3

Marketing 6876 13 (0/13/0) EF 24.7 11.7

EW 15.9 7.6

Thyroid 7200 21 (6/15/0) EF 8325.5 1706.0

EW 715.0 47.45
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Table 2 continued

Dataset Instances #Attrs (R/I/N) Discretization AprioriK-SD-OE PFP-SD-OE

Twonorm 7400 20 (20/0/0) EF 34.0 12.3

EW 378.9 8.1

Ring 7400 20 (20/0/0) EF 19.9 11.7

EW 328.1 8.1

Mushroom 8,124 22 (0/0/22) – 17.37 · 103 12.57

Penbased 10,992 16 (0/16/0) EF 132.1 14.0

EW 40.4 8.0

Nursery 12,960 8 (0/0/8) – 12.6 11.9

EEG eye state 14,980 14 (14/0/0) EF 86.1 19.6

EW 21.1 8.0

Magic 19,020 10 (10/0/0) EF 28.8 10.0

EW 13.34 8.1

Letter 20,000 16 (0/16/0) EF 524.4 52.1

EW 63.9 8.2

krvsk 28,056 6 (0/0/6) – 13.3 11.0

Adult 30,162 14 (6/0/8) EF 94.9 32.3

EW 12.8 8.3

Shuttle 43,500 9 (0/9/0) EF 15.3 9.9

EW 12.8 8.3

Skin segmentation 245,057 4 (0/4/0) EF 15.5 8.3

EW 9.4 8.3

Poker 1,025,010 10 (0/0/10) – 72.8 46.3

SUSY 5,000,000 18 (18/0/0) EF 17.37 · 104 69.1

EW 29.4 27.7

Activity recognition 43,930,257 10 (6/0/4) EF 462.7 69.1

EW 330.5 69.7

A quality threshold of α3 has been used, and 100 subgroups have been extracted for each dataset. #Attrs means the number of attributes, where R
is used to refer to real attributes, I means integer attributes and N refers to nominal attributes

important, but also the distribution of the data since it will
determine the search space. By this very reason, the same
dataset with different kinds of discretization could result in
a different search space. One example of this fact could be
Twonorm, where with equal-frequency the search space is
smaller than equal-width. This fact is not dependent to the
used discretization, since in Ring dataset the contrary hap-
pens.

Likewise, as happening in previous studies PFP-SD-OE
is not as much hampered as AprioriK-SD-OE by the number
of instances. If the runtime for the dataset with a high-
est number of instances is analyzed, it could be noted that
AprioriK-SD-OE required more than 669% of the runtime
needed by PFP-SD-OE (see Table2, ActivityRecognition
dataset). However, if the smallest dataset is analyzed, it
could be noticed that AprioriK-SD-OE requires a lower
runtime than PFP-SD-OE (see Table2, Mammographic
dataset).

5 Conclusion

In this work, two new efficient exhaustive search algorithms
have been proposed to mine subgroups on Big Data, relying
on the MapReduce framework. On one hand, AprioriK-SD-
OE is an iterative algorithmbased onApriori [5].On the other
hand, PFP-SD-OE is an algorithm using a highly efficient
data structure based on PFP-Growth [24], SD-MAP [13],
SD-MAP* [16] and DpSubgroup [18]. The two proposed
algorithms have proved to be highly efficient in mining sub-
groups on Big Data, and they are able to work with binary,
numeric and nominal targets.

Both proposals have been implemented in Apache Spark.
This platform has been selected among others since it has
proved to obtain excellent results in iterative algorithms [10].
Both are able to prune the search space by means of opti-
mistic estimates, without losing any subgroups.Whereas that
AprioriK-SD-OE is able to work better when a huge or very
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low number of subgroups are extracted, PFP-SD-OE is able
to obtain subgroups in a more efficient way when the number
of subgroups is not so huge or so low.

All the algorithms have been compared to other highly
efficient algorithms in the SD field depending of the kind of
target, showing that our proposals outperform themwhenBig
Data is taken into account. The experimental stage revealed
that the proposed algorithms perform really well when both
the search space increases (a maximum search space of
1.276 · 1015 subgroups have been used) and the number
of instances drastically increases, achieving a good perfor-
mance even for datasets comprising up to 2 · 108 different
instances.
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