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Abstract The simulation of biological processes has pro-
duced some of themost importantmeta-heuristics algorithms
for optimization. Evolutionary algorithms were the first,
and probably the most applied, algorithms coming from
biological inspiration, but there have been many more, spe-
cially in the last few years. This paper describes a special
class of evolutionary algorithms recently proposed, the coral
reefs optimization algorithm (CRO), which simulates some
specific biological processes that occur in real coral reefs.
The simulation of these processes leads to an evolutionary
algorithm in which similarities with Simulated Annealing
have been introduced. Moreover, the inclusion of alternative
processes occurring in coral reefs produces very effec-
tive co-evolution versions of the CRO algorithm, specially
well suited for optimization problems with inherent variable
length encodings, or able to co-evolve several exploration
patterns within the same population. All these issues related
to the CRO approach are thoroughly described in the paper,
and also a fully description of the main applications of the
algorithm in engineering optimization problems is given to
close this first review on the CRO.
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1 Introduction

The development of new meta-heuristic algorithms for opti-
mization is a hot topic in Artificial Intelligence in the last
decades [1,2]. The No-Free-Lunch (NFL) theorem for opti-
mization [3] establishes that if an algorithm performswell on
a certain class of optimization problems, then its performance
on the set of all remaining problemswill be degraded. In other
words, two algorithms are equivalentwhen their performance
is averaged across all possible optimization problems. NFL
opens the door to the design and development of a large
amount of different meta-heuristics, that provide excellent
performance over certain classes of optimization problems,
and in fact, the objective is to develop new meta-heuristics
that exploit problem-specific knowledge to achieve a good
algorithm’s performance.

Modern meta-heuristics can be classified into nature-
inspired approaches, i.e. those techniques based on different
natural processes, and non-nature meta-heuristics, based on
processes different from natural sources. Among the first
set, we can find bio-inspired approaches such as Evolu-
tionary Algorithms (EA), which include a whole family of
techniques such as Genetic Algorithms [4], Evolutionary
Strategies [5], Evolutionary Programming [6], Differential
Evolution [7], among others. These schemes are based on
concepts borrow from natural evolution and survival of the
fittest individuals in Nature. Likewise, Ant Colonies Opti-
mization [8] is based on the social behavior of ants, whereas
Artificial Immune System algorithms [9] is focussed on imi-
tating the behavior of the immune system in animals. Particle
Swarm Optimization is another bio-inspired approach [10],
based on the behaviour birds flocks or fish schools looking
for food, and specially well suited for continuous optimiza-
tion problems. There have been more research activity on
bio-inspired meta-heuristics, with approaches such as Arti-
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ficial Bee Colony [11,12], which imitates the bees behavior
when locating and bring food to the hive, the Invasive Weed
Optimization Algorithm, [13], based on weed growth and
their invasive properties, the bat algorithm [14], based on
the behaviour of bats and its capability for echolocation of
objects, the Hunting Search [15], based on how group of ani-
mals hunt or the Cuckoo search approach [16], built upon
the reproduction and breeding of the cuckoo bird. The tiniest
living organisms have also inspired good search procedures,
such as the optimization based on virus infection [17], and on
colonies of bacteria [18,19] or the amoeba algorithm [20],
that uses the intelligence of groups of amoebas to explore
solutions to complicated problems in networks.

Meta-heuristics classified as nature based (not bio-inspi-
red) have been proposed from the very beginning of Arti-
ficial Intelligence. For instance, the well-known Simulated
Annealing algorithm [21] is a meta-heuristic based on the
process of annealing in metallic materials. It consists of
heating a substance and then cooling it down slowly, until
a final strong molecular structure is obtained. This process
can be artificially simulated to solve optimization problems.
There are several variants of this algorithm such as Simu-
latedQuenching [22], etc. Recently, some other nature-based
techniques have been proposed, such as the Gravitational
Search Algorithm [23], inspired by the law of the gravity, the
Colliding Bodies optimization algorithm [24], based on the
behaviour of bodies colliding at different speeds or the Ray
Optimization algorithm [25], based on particles that follow
the Snell’s law for ray of light. The Artificial Chemical Reac-
tion Optimization Algorithm [26], is another nature-based
approach which simulates the behaviour of different types of
chemical reactions (synthesis, decomposition, redox, etc.)
to solve optimization problems. The Electromagnetic-like
algorithm [27], can also solve optimization problems based
on physics of electrically charged particles, repelling and
attracting each other in a multi-dimensional space. A very
recent nature-inspired algorithm so-calledWater Wave Opti-
mization [28] simulates different phenomena ofwater waves,
such as propagation, refraction, and breaking, to effectively
solve optimization problems.

Regarding meta-heuristics which are not based on natural
processes, they are usually inspired by alternative concepts.
For instance, a successful optimization procedure is the
Harmony Search (HS) algorithm [29], which have been suc-
cessfully applied to numerous optimization problems in the
last few years. HS is inspired from the improvisation process
of musicians, i.e., the process by which the musicians (who
may have never played together before) refine, through varia-
tion and check, their individually improvised notes, resulting
in an aesthetic harmony, played by the entirety of musicians
in the orchestra. Another very successful meta-heuristic is
theVariableNeighborhood Search [30], based on performing
systematic changes of neighborhood during the search space

exploration, to escape from local optima. The Teaching–
Learning-Based optimization [31], is another non-nature
meta-heuristic, based on the process of teaching–learning
producedbydifferent teachers in a class of students. There are
some alternative meta-heuristics based on social behavior of
humans, such as the Society and Civilization algorithm [32],
the Imperialist Competitive Algorithm [33], which makes
optimization based on imperial-colonies competition or the
Biogeography-Based Optimization algorithm [34], based on
the geographical distribution of living organisms.

This paper reviews the most important concepts of a new
evolutionary-type meta-heuristic for optimization recently
proposed: the coral reefs optimization (CRO) algorithm
[35,36]. This algorithm is a class of evolutionary approach
which simulates some of the biological processes that occur
in a real coral reef. In its basic version, theCROfinally results
in an evolutionary algorithm in which similarities with Sim-
ulated Annealing have been introduced. In fact, the basic
version of the CRO is defined as a modification of evolution-
ary algorithms in exploitation, i.e., it mainly tries to improve
the selection part of the algorithm, whereas the exploration
is left as an open decision of the practitioner. In fact, tra-
ditional crossover was first used as exploration operator for
the CRO, and also alternative search patterns such as HS
operators [37]. This algorithm’s structure, however, is the
seed of much more powerful approaches when the explo-
ration part of the algorithm is intervened. Thus, the CRO
with different modifications in its search procedures can be
converted in a strong co-evolution algorithmwithin one pop-
ulation. Thus, the CRO with coral species is a competitive
co-evolution algorithm which can tackled effectively opti-
mization problems with variable codification lengths. In the
same way, the CRO with substrate layers leads to a compet-
itive co-evolution approach able to combine very different
search patterns within just one population. A discussion on
the CRO algorithm novelty is provided to close the algorith-
mic contribution of this review. In this sense, the advanced
versions of the CRO with substrate layers and species lead
to strong generalization approaches, completely different to
other proposals in the meta-heuristics field, so the novelty of
the CRO-based approaches is ensured. This paper reviews
with detail these and other characteristics of the CRO algo-
rithm and its variants, including the description of a simple
CRO modification to adapt it to multi-objective problems,
and finally, a discussion of a good number of applications
that have been recently solved with this meta-heuristic.

The rest of this article is structured as follows: next sec-
tion provides a gentle introduction to coral reefs and corals’
structure and reproduction, as a biological reference for the
algorithm’s description. Section 3 presents the basic CRO
algorithm in detail. Section 4 presents differentmodifications
in the CRO to come up with stronger versions of the algo-
rithm. Specifically a CRO with species for problems with
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variable encoding length, a CRO with substrate layers as
a co-evolution competitive algorithm and a multi-objective
CRO version are the CRO modifications introduced. Section
6 reviews the main applications of the CRO meta-heuristics,
in different fields such as renewable energy applications,
telecommunications problems, logistics, control, etc. Finally,
Sect. 7 ends the paper by giving some concluding remarks
and future lines of development for the algorithm.

2 Biological concepts about corals and coral reefs

This section describes some important properties of corals
and coral reefs, including corals’ structure and reproduction,
as a biological reference for the algorithm’s description.

2.1 Corals and reef formation

Corals are invertebrate animals belonging to the phylum-
cnidaria group, which also includes jellyfishes, hydras or
sea anemones [38,39]. These animals are characterized by
their ability to subsist either as individuals or in colonies of
polyps, and many of them past part or their complete live
attached to a substrate. Currently more than 2500 different
species of corals have been described, appearing new ones
every year, both in shallow and deep waters.

An important subclass of corals are reef-building corals,
also known as hermatypic or hard corals. Hard corals are
usually shallow-water animals that produce a rigid skeleton
of calcium carbonate, segregated from their base. A coral reef
is formed by a hundred of hard corals, cemented together by
the calcium carbonate they have produced during their lives.
Periodically, each polyp in the reef lifts off its basal plate
of calcium carbonate and secretes a new one, forming a tiny
chamber that will contribute to the coral’s skeleton. Thus,
living corals grow on top of the skeletons of calcium carbon-
ate of their dead predecessors. A coral colony is composed
of a single specie of coral, but a reef’s structure can com-
prise multiple types of species. In fact, a coral reef can be
described as an ecosystem, in which a diverse collection of
animals and plants interact with each other, as well as with
their environment. In addition to corals, many other animals
and plants live in and from the reef, such as algae, sponges,
sea stars, crustaceans, mollusca, etc., and all them take an
active part in reef development and conservation [40,41]. Of
course, a huge variety of fishes also live in the reef, which
provides shelter and food.

In general, hard coral species require free space to set-
tle down and grow. Although a priori the implementation of
this settlement procedure might be easy for a potential new
member of the reef, in practice free space is an extremely lim-
ited resource in the reef environment [42]. As a result, coral
species often compete with each other or exhibit aggressive

behavior to secure or maintain a given space in the reef sub-
strate [43]. Different strategies used by corals to compete for
the space have been described in the literature [43,44], and
include fast-growing (for covering other corals and kill them
by lack of light), sweeper tentacles (i.e., detect and dam-
age adjacent coral colonies), mesenterial filaments (namely,
enabling external digestion of neighboring colonies), ter-
penoid compounds (coral chemical warfare), etc.

2.2 Coral reproduction

Corals can reproduce in two completely differentmodes: sex-
ual or asexual. In fact, an individual polyp may use both
modes within its life time [38]. Furthermore, sexual repro-
duction can be either external or internal, depending on the
coral species. The majority of species in large coral reefs
use sexual external reproduction, but internal reproduction is
also specific of some species in the reef.

2.2.1 Broadcast spawning

The majority of hard corals species use a sexual external
reproduction method known as broadcast spawning [45]:
it consists in that every coral produces male and/or female
gametes that are massively released out to the water. Once
the eggs and sperm meet together, larvae (also called planu-
lae) are produced. Planulae float in the water until they find
a proper substrate in the reef to attach and start growing a
polyp [46]. In the majority of reefs, the phenomenon of coral
spawning occurs as a synchronized event. This timing is cru-
cial for successful reproduction, since corals cannot move
to force reproductive encounters. There are different natural
aspects that affect the timing of the corals’ spawning, such
as temperature, day length or temperature change rate.

2.2.2 Brooding

Brooding (internal sexual reproduction) is a method of inter-
nal reproduction used by some species of corals. In this
reproduction mode, some female polyps contain eggs that
are not released to the water, but fertilized by sperm released
byothermale corals of the same species. Theplanulae formed
are then released later to the water in an advanced stage of
development, so it should be easier for these planulae to set
onto hard substrate without being attacked or depredated.
There has also been described a type of brooding reproduc-
tion in hermaphrodite corals [47].

2.2.3 Asexual reproduction

Finally, asexual reproduction is described. Basically, new
polyps can bud off from parent polyps to expand or begin
new coral colonies [48], in a process known as budding.
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Budding occurs when the coral has grown enough to pro-
duce this reproduction. An alternative asexual reproduction
of corals is fragmentation, which is a process similar to bud-
ding, but it is caused by external phenomena (e.g., storms or
boats’ grounding), and usually a larger part of the coral is
divided in comparison to budding [49]. Individuals broken
off the reef as fragments should be able to keep growing and
finally establishing a new colony far way from the parent one
if conditions are favorable. It is important to note that both
budding and fragmentation processes produce polyps that are
genetically identical to the parent polyp or colony.

2.3 Reef longevity and causes of death

It is well known that hard coral colonies can live for several
centuries, though currently they are one of the most threat-
ened species in the world. In fact, corals and coral reefs must
face different important hazards during their life. In larva
state, corals are massively depredated by fishes and other
predators. Of course, the huge number of larvae produced in
broadcast spawning reproduction ensures that enough polyps
will settle in favorable ground and start forming a colony.
On the other hand, coral polyps encounter many types of
predators including sea stars, parrot-fishes or butterfly-fishes.
Nowadays human activities (e.g., over-fishing and indus-
trial processes that increase ocean pollution) and climate
change (which produce the increase of the oceans’ tempera-
ture, among other effects) are the main factors contributing
to the current massive loss of living corals [50,51].

3 The basic coral reefs optimization algorithm

Having these basis on the corals’ reproduction and reefs
formation in mind, the CRO algorithm tackles optimiza-
tion problems by modeling and simulating all the distinct
processes explained in the above Sect. 2. Let R be a model
of reef, consisting of a N × M square grid. We assume that
each square (i, j) ofR is able to allocate a coral (or colony of
corals) Ξi, j , representing different solutions to our problem,
using a given encoding for the problem at hand. The CRO
algorithm is first initialized at random by assigning some
squares in R to be occupied by corals (i.e., solutions to the
problem) and some other squares in the grid to be empty, i.e.,
holes in the reef where new corals can freely settle and grow.
The rate between free/occupied squares in R at the begin-
ning of the algorithm is a parameter of the CRO algorithm
denoted as ρ, and note that 0 < ρ0 < 1.

After the reef initialization described above, a second
phase of reproduction and reef formation is carried out. First,
a simulation of the corals’ reproduction in the reef is done
by sequentially applying different operators. Different oper-
ators for modeling sexual reproduction (broadcast spawning

and brooding), asexual reproduction (budding), and polyps
depredation are defined:

1. Broadcast spawning (external sexual reproduction): the
modeling of coral reproduction by broadcast spawning
consists of the following steps:

1(a) In a given step k of the CRO algorithm, select uni-
formly at random a fraction of the existing corals ρk
in the reef to be broadcast spawners. The fraction of
broadcast spawnerswith respect to the overall amount
of existing corals in the reef will be denoted as Fb.
Corals that are not selected to be broadcast spawners
(i.e. 1 − Fb) will reproduce by brooding later on in
the algorithm.

1(b) Select couples out of the pool of broadcast spawner
corals in step k. Each of such coupleswill form a coral
larva bymeans of a given crossovermechanismor any
other exploration strategy. Note that once two corals
have been selected to be the parents of a larva, they
are not chosen anymore in step k (i.e., two corals are
parents only once in a given step). These couple selec-
tion can be done uniformly at random or by resorting
to any fitness proportionate selection approach (e.g.,
roulette wheel).

2. Brooding (internal sexual reproduction): at each step
k of the reef formation phase in the CRO algorithm,
the fraction of corals that will reproduce by brood-
ing is 1 − Fb. The brooding modeling consists of
the formation of a coral larva by means of any kind
of mutation mechanism, to simulate of the brooding-
reproductive coral (self-fertilization considering her-
maphrodite corals).

3. Larvae setting: once all the larvae are formed at step k
either through broadcast spawning (1) or by brooding (2),
they will try to set and grow in the reef. First, the health
function (fitness) of each coral larva is computed. Second,
each larva will randomly try to set in a square (i, j) of
the reef. If the square is empty (free space in the reef),
the coral grows therein no matter the value of its health
function. By contrast, if a coral is already occupying the
square at hand, the new larva will set only if its health
function is better than that of the existing coral.We define
a number κ of attempts for a larva to set in the reef: after
κ unsuccessful tries, it is considered as depredated by the
animals in the reef.

4. Asexual reproduction: the modeling of asexual reproduc-
tion (budding or fragmentation) is the CRO is carried out
in the following way: the overall set of existing corals in
the reef are sorted as a function of their level of health
value (given by f (Ξi j )). Then a small a fraction Fa dupli-
cate themselves and are mutated to obtain variability.
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Fig. 1 Flowchart diagram of the original CRO algorithm

These new corals try to settle in a different part of the
reef by following the setting process described in Step 3.

5. Depredation in polyp phase: corals may die during the
reef formation phase of the CRO algorithm. At the end
of each reproduction step k, a small number of corals in
the reef can be depredated, thus liberating space in the
reef for next coral generation. The depredation operator
is applied with a very small probability Pd at each step
k, and exclusively to a fraction Fd of the worse health
corals inR.

Figure 1 illustrates the flowchart diagramof theCROalgo-
rithm, with the different CRO phases (reef initialization and
reef formation), along with all the operators described above.

4 Advanced CRO models

ThebasicCROcanbe improved to obtain stronger versions of
the meta-heuristic, based on alternative processes that occur
in coral reefs. We describe here three different modifications
of the CRO algorithm, which improves the performance of
this approach in specific applications. First, we describe the
CROwith species, which helps tackle optimization problems
with variable length encodings. It is also useful for managing
different encodings of problems within the same population,
obtaining a competitive co-evolution algorithm. The second
CRO version we present here is the CRO with substrates
layer. It has been useful to obtain a competitive co-evolution
algorithm in which different models are applied to the same

problems. These model can be either exploration models,
repairing mechanisms, etc., and the only pre-requisite is that
the objective function to evaluate corals in the reef must be
the same for the different models considered. Finally, we
show how the CRO can be easily modified to obtain a multi-
objective version of the algorithm.

4.1 CRO with species for encodings of variable length

The first modification of the CRO consists in considering
different coral species within a single coral community. The
objective of this modification is that each coral species rep-
resents a different model (or its hyper-parameters) out of T
possible models. In this context, model is generic, so it can
represent either a different encoding for the problem, a differ-
ent way of calculate the objective function, etc. Specifically,
the CRO with species is a new powerful way of managing
optimization problems with variable encodings. In this case,
each species will represent a different encoding length, and
the idea is that only corals of the same species can reproduce
in the broadcast spawning operator. Note however, that all
the models compete together in the larvae setting, since the
objective function in all cases should be the same for all the
species.

The CRO with species was first introduced in [52] as a
methodology to deal with a Model Selection Problem, in an
application of total energy consumption prediction in Spain.
In [52] each species represents a different way of calculating
the total energy consumption (a different model), and the
idea was to obtain a competitive co-evolution approach that
obtained the best possible model in addition to alternative
parameters such as the best prediction variables to feed the
prediction model. Note that the CRO with species can be
used to evolve a competition of different regressions for a
given problem, for example neural networks, support vector
machines, etc., in which the CRO encodes the parameters of
each regressor. Since the concept of species is open, it can
be used to compare different encodings for a given problem
(binary, integer, real, structures, etc.), in which each species
corresponds to a given encoding.

Algorithm 1 shows an outline of the CRO containing mul-
tiple species. Note that the competition among species will
produce emerging behavior, so the bestmodel (species) even-
tually will dominate, and will occupy the majority of spaces
in the reef.

4.2 CRO with substrate layers

The second important modification of the CRO is the CRO
with substrate layers (CRO-SL). It is based on the fact
that there are many more interactions in real reef ecosys-
tems which can be also modeled and incorporated to the
CRO approach to improve it. For example, different stud-
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Algorithm 1 Pseudo-code for CRO algorithm with species
Require: Valid values for CRO parameters.
Ensure: The best model out of T possible.
1: Algorithm initialization (T different species)
2: for each iteration of the CRO do
3: Update values of influential variables: mortality probability and

the probability of asexual reproduction
4: Asexual reproduction (budding or fragmentation)
5: Sexual reproduction 1 (broadcast spawning, only same species can

reproduce)
6: Sexual reproduction 2 (brooding, only same species can repro-

duce)
7: Settlement of new larvae (competition among species)
8: Mortality process
9: Evaluate the new population in the reef (with the specific model

given for each species)
10: end for

ies have shown that successful recruitment in coral reefs
(i.e., successful settlement and subsequent survival of lar-
vae) depends on the type of substrate on which they fall
after the reproduction process [53]. This specific charac-
teristic of the coral reefs was first included in the CRO in
[52], to solve different instances of theModel Type Selection
Problem for energy applications. In [52], different substrate
layers were defined in the CRO, in such a way that each
layer represents a different model to evaluate the energy
demand estimation in Spain, from macro-economic vari-
ables.

As in the case of the CRO with species, the CRO with
substrates layer is, a much more general approach: it can be
defined as an algorithm for competitive co-evolution, where
each substrate layer represents different processes (different
models, operators, parameters, constraints, repairing func-
tions, etc.). The inclusion of substrate layers in the CRO can
be done in a straightforward manner: we redefine the artifi-
cial reef considered in the CRO in such a way that each cell
of the reef R is now defined by 3 indexes (i, j, t), where
i and j stand for the cell location in the grid, and index
t ∈ T defines the substrate layer, by indicating which struc-
ture (model, operator, parameter, etc.) is associated with the
cell (i, j). Each coral in the reef is then processed in a differ-
ent way depending on the specific substrate layer in which it
falls after the reproduction process. Note that this modifica-
tion of the basic algorithm does not imply any change in the
corals’ encoding (all the corals in the algorithm are encoded
in the same way).

The CRO-SL has been applied in [54] to obtain a com-
petitive co-evolution algorithm in which each substrate is
assigned to a different implementation of an exploration pro-
cedure. Thus, each coral will be processed in a different
way in the reproduction step of the algorithm depending
on the substrate it occupies. Figure 2 shows an example
of the CRO-SL, with different substrate layers. Each one is
assigned to a different exploration process, Harmony Search

HS DE 1-Point
Crossover

(a)

(b)

Gaussian
muta�on

Fig. 2 Example of CRO-SL and comparison with the original reef in
the CRO; a reef considered in the original CRO, b reef in the CRO-
SL, where four substrate layers associated with the broadcast spawning
process. Each substrate layer represents now a different exploration
process to carry out in that substrate

based, Differential Evolution, 1-point crossover or Gaussian
mutation (alternative assignment and different exploration
processes can be used in the substrate layer of the CRO-SL
approach).

The CRO-SL is a general procedure to co-evolve differ-
ent models, operators, parameter values, etc., with the only
requisite that there is only one health function defined in
the algorithm. In other words, each substrate can include a
different processing of problem’s constraints, exploration or
exploitation procedures etc.

4.3 Multi-objective CRO

The last modification of the CRO presented in this paper
is an adaptation to multi-objective problems, firstly intro-
duced in [55,56]. In fact, it is a very easy task starting
from the basic CRO approach, and only the larvae setting
process of the algorithm must be modified: once all the
larvae from broadcast spawning and brooding have been
produced, they start the setting process one by one, try-
ing to establish themselves into the reef. When an existing
coral occupies a given position in the reef that is tried by
a larva, a fight for the space occurs. In the multi-objective
version of the CRO (MO-CRO), this fight for the space is
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based on domination of solutions. Let us call ΞA to the coral
currently occupying a given location on the reef, and ΞB

the larva challenging for the space. In the MO-CRO, ΞB

wins the fight (and occupies the place of ΞA) if and only
if ΞA ≺ ΞB , where ≺ stands for the dominance operation
see [56]. In any other case, ΞA wins, and the challenging
larva either tries another place in the reef, or dies, depend-
ing on its current κ value. Note that in case of equivalency
between solutions (ΞA ≡ ΞB), the current solution in the
reef is maintained. A second adaptation is needed to pro-
vide diversity to the reef: In the MO-CRO, a fix number μ

of corals with the same value in all objective functions is
allowed in the population. After the larvae setting process,
the number of corals in the reef with the same value in
all objectives is obtained, let us call it β, and if μ < β,
(β−μ) randomly chosen corals are depredated. This adapta-
tion will be known as ExtremeDepredation Operator (EDO).
The pseudo-code of Algorithm 2 describes the MO-CRO
process.

Algorithm 2 Pseudo-code for the MO-CRO algorithm
Require: Valid values for the parameters controlling the CRO algo-

rithm
Ensure: A feasible optimal pareto front of solutions to the optimization

problem
1: Initialize the algorithm: Set values for Pd , μ, Fa , Fb, Fd .
2: for each iteration k of the simulation do
3: ◦ Sexual crossover process (Brooding):
4: for each brooding coral Ξi, j do
5: Ξi, j → Ξm

6: end for
7: ◦ Sexual crossover process (Broadcast Spawning):
8: for couples of broadcast spawning corals Ξi, j and Ξk, j do
9: Ξi, j + Ξk, j → Ξb

10: end for
11: ◦ Asexual crossover process (Fragmentation):
12: Fa of the best corals in the reef duplicate and are mutatedΞi, j →

Ξ c

13: ◦ Settlement of new corals (dominant solutions prevail in the
reef): {Ξm ,Ξb,Ξb,Ξ c} → Ξi, j

14: ◦ Predation process (EDO operator):
15: for all corals in the reef do
16: eliminate copies of corals until just μ remain in the reef.
17: end for
18: ◦ Calculate corals’ health f (Ξi, j ) : I → R,
19: end for
20: Return the pareto front formed in the coral reef

5 Discussion: CRO novelty

This section closes the algorithmic contribution of this
review. A first reference to novelty issues related to new
meta-heuristic proposals recently raised in the literature is
provided. A discussion on the contributions of the CRO, why
it was proposed and its novelty is then carried out.

5.1 New metaphors and algorithm’s novelty

In the last years, the number of newmeta-heuristics proposals
for optimization has been massive. In the field of bio-
inspired meta-heuristics, a huge number of supposed novel
approaches based on very differentmetaphors have appeared.
The question that arises is whether these approaches are
really novel, and whether they contribute to the state of the
art optimization algorithms. In [57] a criticism on this issue
has been presented. The main criticism in that paper is that
some algorithms are just very similar version of existing
approaches, with a different name and different metaphor
to be based on. Previous works raising criticisms for specific
algorithms such as HS had appeared before [58,59], though
they have been recently rebutted [60]. The main conclusion
in [57] that “new metaphors should be avoided if they can-
not demonstrate a contribution to the field”. It seems a quite
reasonable conclusion, so the point is to define what is “con-
tribution to the field” in meta-heuristics. It does not mean to
attack any new metaphor or procedure in which new search-
ing mechanism is based on, but to ensure that the mechanism
is truly new and can lead to completely new developments
in the area.

5.2 Discussion on the CRO novelty

With the points discussed in the previous subsection in mind,
itmakes necessary to stress the pointswhich support theCRO
proposal and its novelty. First of all, from the beginning, the
CRO algorithm was defined as a class of EA. The fact that
it is based on the processes that occur in reefs is important,
since they have lead to completely novel versions of the CRO
(described above). In itsmorebasic version, theCROis anEA
with a different selection mechanism, with similarities to the
Simulated Annealing algorithm. In fact, in its basic version,
the CRO exploration of the search space relies on a crossover
mechanism, in the same manner as in an EA, and the algo-
rithm is only defined in exploitation. Since the CRO can be
defined in terms of different exploration patterns or mech-
anisms, this finally leads to the definition of the CRO with
Substrate Layer, the co-evolution version of the approach
to hybridize different searching mechanisms within a single
population (see Sect. 4.2). The possibility of defining species
in the CRO (to obtain the CRO with species), tackling this
way encodings of different length in a single population, is
also a novel version of this algorithm. The CROwith species
and the CRO-SL are general approaches to evolve different
models for a given problem (different objective functions,
encodings or even constraints), in a competitive co-evolution
framework. To the best of the author’s knowledge, there are
not similar proposals in the meta-heuristics field, so the nov-
elty of the CRO-based approaches is ensured, and the work
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consists of evaluating whether these proposals are competi-
tive against alternative ones in this research area.

6 A review of applications of the CRO algorithm

The CRO approach is a recently proposed approach, since it
was first described in a journal paper in 2014 [35]. Due to
the small fraction of time that has passed since its release,
the number of applications of this algorithm is not huge. In
addition, they are mainly focussed on specific lines, such as
energy and telecommunications engineering, though in the
last year some other lines in logistics, gaming or computer
science have appeared.

6.1 Applications of the CRO in energy problems

There are many different problems in energy which can be
stated as optimization problems. Thefirst onewediscuss here
is the optimal layout of turbines in wind farms. This prob-
lem consists of choosing the best location of wind turbines
in wind farms, in terms of different optimization criteria and
fulfilling a number of constraints [61]. The CRO has been
applied to a specific problem of turbines layout in the case
of offshore wind farms (wind farms situated in the sea) in
[62]. The basic CRO algorithm showed advantages against
other meta-heuristics in this problem, specifically Evolution-
ary Approaches, Differential Evolution and Harmony Search
algorithms. The case studies to test the CRO were real data
from a site for offshore wind farm location in the North sea
(Wikinger, Germany). Figure 3a shows the Wikinger area
where the wind farm is located, and the possible points to
install the wind turbines. A design with 20 turbines was con-
sidered, using as objective function the maximization of the
Annual Energy Production (AEP) in the wind farm. Figure
3b shows the layouts obtainedwith an evolutionary algorithm
(AEP 84.256) and Fig. 3c the result with the CRO (with an
AEP of 84.352).

Wind speed prediction is another problemwhere the CRO
has been successfully applied [63]. In this case, the CRO
has been used as part of a feature selection of the best vari-
ables to feed a neural network (Extreme Learning Machine
(ELM) [64]) to carry out the prediction. Results in a real
wind farm in Oregon (USA) showed the good performance
of the approach, better than the case in which no feature
selection method is applied. The CRO-ELMmethod showed
to be better than the feature selection with a classical evolu-
tionary algorithm. In [37] a similar problem has been tackled
with a modification in the CRO algorithm. In this case, the
exploration of the algorithm is carried out by means of a
Harmony Search pattern as broadcast spawning, instead of
using a classical crossover. The inclusion of this search pat-

tern seemed to improve the performance of the CRO-ELM
in this problem of wind speed prediction.

In a similar approach, the CROalgorithm has been applied
to solar radiation prediction in [65]. In this case, the approach
is slightly different from the application in wind speed pre-
diction, since now the number of predictive variables (inputs)
is small, and there is not a real need for feature selection. On
the contrary, the CRO has been applied to slightly modify
the ELM weights, in such a way that the ELM prediction is
improved. Results in real data from the radiometric observa-
tory of Murcia (Spain) showed that the hybridization of the
ELM with the CRO was able to improve the performance of
the former in this problem of solar radiation prediction.

Another application of the CRO approach in energy is
focused on a problem of total energy demand estimation
at nation’s level [52]. The problem consists of estimating
(within a time-horizon prediction of 1 year) the energy
that will be consumed in a country using macro-economic
variables. This problem had been previously tackled using
different meta-heuristics [66–68], but the application of the
CRO brought novelties, both in the problem’s resolution,
and also in terms of meta-heuristics design. In [52] the con-
cepts of CRO with species and substrates were introduced to
tackle this problem of energy demand estimation, concepts
that have been developed later on to obtain new co-evolution
approaches. This problem can be stated as estimating the
total energy demand in a country (Spain in this case) with a
time horizon of 1 year: f = Ek+1(xk), where the predictive
variables for time k are matched with the energy demand for
time k + 1. Data from 1980 to 2011 are available, with a
total of m = 14 predictive variables described in Table 1. A
maximum number ofm′ = 4 features were allowed in all the
models, so a feature selection mechanism that uses a binary
encoding is applied. A set of T = 6 different models for
the calculation of the energy demand estimation are taken
into account, and the parameters of each model (wx ) are also
encoded in the coral’s encoding:

1. Linear model (lin):

s1,w = w1 + w2 · x1 + w3 · x2 + w4 · x3 + w5 · x4 (1)

2. Exponential model (exp):

s2,w = w1 + w2 · xw3
1 + w4 · xw5

2 +w6 · xw7
3 +w8 · xw9

4

(2)

3. Logarithmic model (log):

s3,w = e(w1+w2·|ln(x1)|w3+w4·|ln(x2)|w5+w6·|ln(x3)|w7+w8·|ln(x4)|w9 )

(3)
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Fig. 3 Wikinger wind farm (North sea); awind farm contour and possible location points, b best solution obtained with an evolutionary algorithm,
c best solution obtained with the CRO approach

4. Quadratic model, version A (qua):

s4,w = w1 + w2 · x1 + w3 · x2 + w4 · x3 + w5 · x4
+w6 · x1 · x2 + w7 · x1 · x3
+w8 · x1 · x4 + w9 · x2 · x3 + w10 · x2 · x4
+w11 · x3 · x4 + w12 · x21 + w13 · x22
+w14 · x23 + w15 · x24 (4)

5. Quadratic model, version B (qub):

s5,w = w1 + w2 · xw3
1 + w4 · xw5

2

+w6 · xw7
3 + w8 · xw9

4 + w10 · x1 · x2
+w11 · x1 · x3 + w12 · x1 · x4
+w13 · x2 · x3 + w14 · x2 · x4 + w15 · x3 · x4

(5)

6. Mix model (mix):

s6,w = w1 + w2 · e(w3+w4·x1+w5·x2+w6·x3+w7·x4). (6)

With these prediction models, an error function is needed
to measure the quality of the prediction, for example the
Mean Square Error, defined, for a given model h as:

εMSE = 1

N

N∑

j=1

(Ek+1(xk) − sh,w)2, (7)

Note that the use of different models complicate the prob-
lem, since each model implies a different encoding, with
different length (for example model s1,w induces an encod-
ing of length 19 (14 binary variables plus 5 from w), and
model s5,w encoding length is 29 (14 binary + 15 from w)).
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Table 1 Variables considered in the problem of energy demand esti-
mation at a nation level

# Variable

1 GDP

2 Population

3 Export

4 Import

5 Energy production (kTOE)

6 Electricity power transport (kWh)

7 Electricity production (kWh)

8 GDP per unit of energy use

9 Energy imports net (% of use)

10 Fossil fuel consumption (% of total)

11 Electric power consumption (kWh)

12 CO2 emissions total (Mtons)

13 Unemployment rate

14 Diesel consumption in road (kTOE)

In this case, the use of the CRO with species described in
Sect. 4.1 and CROwith Substrate Layer (Sect. 4.2) can solve
the problem. In the CRO with species, each species stands
for a given model s, and the encoding of the corals in the reef
is the following:

Ξ t
i, j = [t |I|w] , (8)

where t stands for the species number (model to calculate the
energy estimation), I is the binary part for feature selection
and w stands for the model’s parameters. On the other hand,
in the CRO-SL, the encoding is as follows:

Ξi, j = [I|w] , (9)

where I is the binary part for feature selection, and w stands
for the parameter of the models. The length of w is equal to
the maximum length required by the largest model consid-
ered (all corals in the reef have the same encoding, and the
substrate layer stands for the different models considered in
the problem, i.e., now each substrate represents a different
model, and each coral is evaluated with a different objective
function to estimate the energy demand depending on the
substrate it falls).

As previously mentioned, in [52] the specific case of
energy demand estimation in Spain from macro-economic
variables has been tackled. The CRO with species and CRO-
SL have been used, obtaining good results, slightly better in
the case of the CRO-SL as can be seen in [52]. From the algo-
rithms’ point of view, the convergence of both approaches is
different. Figure 4 shows the differences in convergence of
the CRO with species and CRO-SL in this problem. As can
be seen, in the CRO with species Fig. 4a, the worse species
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Fig. 4 Evolution comparison between the CRO with species and with
substrates in the problem of energy prediction from macro-economic
variables in Spain; a CRO with species, b CRO with substrates

perish with the algorithm’s generations, and finally only the
best species (energy model in this case) remains in the reef.
The effect of fitness increasing is due to the best individual of
a given species is killed by another individual (from a differ-
ent species). This can also be seen if we represent the number
of corals belonging to each species in the reef (Fig. 5). As
can be seen, the number of corals belonging to each species
is variable in the reef evolution. On the other hand, Fig. 4b
shows the evolution of the CRO-SL, and as can be seen, in
this case all the substrates remain equal until the end of the
evolution, so there is not the effect of species extinction as in
the CRO with species.

Finally, in [69] the CRO-SL algorithm has been suc-
cessfully applied to a problem of battery scheduling in
a micro-grid with renewable generation (wind and photo-
voltaic generations) and variable prices of electricity. The
CRO-SL approach was compared with a deterministic use of
the battery, in which the battery is charged is charged with
the maximum possible power every period of time in which
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Fig. 5 Evolution of the number of corals within generations (CRO
with species) in the problem of energy prediction frommacro-economic
variables in Spain

the generation is larger than the load’s demand, and in the
periods of time in which the load’s demand is larger than the
generation, the battery is discharged with the maximum pos-
sible power. Five substrates were defined in this application
for the CRO-SL: Harmony Search (HS), Differential Evolu-
tion (DE), two-points crossover (2Px), multi-point crossover
(MPx) and Gaussian mutation (GM). The CRO-SL approach
was able to clearly improve the deterministic use of the bat-
tery in all the tested cases (differentweeks periods in different
seasons of the year). Figure 6 show the results obtained by
the CRO-SL in comparison with those by the determinis-
tic use of the battery, for a winter week in the micro-grid
considered. Note that the use of the CRO-SL for battery
scheduling insteadof its deterministic use produces an impor-
tant reduction of the electricity consumption from the main
grid, specially in time instants where the electricity price is
high. Figure 7 shows the relative importance of each substrate
in the CRO-SL in this problem, in terms of the percentage of
times in which a given substrate provides the best larva (new
solution) in each generation. It seems that the crossover oper-
ators are useful in this application, and also the DE substrate
contributes to the evolution, whereas the GM provides little
contribution and the HS substrate does not provide a good
exploration of the search space in this case.

6.2 Applications of the CRO in telecommunications
problems

The second line of applications in which the CRO have
been most applied are Telecommunication related prob-
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Fig. 6 Comparison of the results obtained using the proposedCRO-SL
(blue line) and the deterministic approach (red line) for a winter week in
the micro-grid considered; a consumption from the main grid, b battery
power scheduling and c % state of charge (SOC) in the battery (color
figure online)

lems. In [70] the CRO is introduced to tackle the problem
of optimal distribution of different services over available
technologies in mobile communications systems, to obtain
an optimized-cost network deployment. Different services
within all the spectrum of mobile communications technolo-
gies (2G-GSM, 3G-UMTS, 3G-HSPA and 4G-LTE) have
been considered. The CRO obtained improvements in terms
of the networkdeployment cost, improving the results of clas-
sical evolutionary algorithm and a Teaching-Based-Learning
meta-heuristic approach. In [71] another problem of optimal
network deployment for 2G-GSM systems is tackled with
the CRO algorithm with grouping encoding. In this case, the
optimal location of Base Stations (BSs) is carried out, in
terms of three design objectives: maximization of the net-
work coverage, minimization of the installation cost, and
minimization of the electromagnetic pollution caused by the
installation of new BSs. A CRO with a specific grouping
encoding [72] was proposed for this problem, obtaining a
solid algorithms which is able to manage different solutions
involving a different number of BSs in the same popula-
tion. The good performance of the grouping CRO in this
problem was tested in comparison with alternative grouping
versions of evolutionary algorithms, Harmony Search and
Particle Swarm Optimization algorithms. In [73], a different
version of this problem was also tackled with the grouping
CRO approach. In this case, a capacity constraint in BSs
was considered, in such a way the number of users in each
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Fig. 7 Comparison of the
effect of the different substrates
of the CRO-SL in the winter
week considered [percentage of
times in which a given substrate
gives the best larva (new
solution) in each generation]
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BS is restricted. The CRO obtained again very good perfor-
mance in this version of the problem. In [74] the coverage
optimization problem in a directional sensor network was
formulated as a multi-objective optimization problem. The
problem’s definition takes into account the coverage rate of
the network, the number of working sensor nodes and the
network’s connectivity. A novel Tchebycheff decomposition
method is introduced in this paper, in such a way that it is
possible to decompose the multi-objective problem into a
single-objective problem. A novel learning automata-based
CRO (LA-CRO) is then introduced to solve the problem, in
such a way that the LA-CRO obtains the best set of para-
meters for this problem. The LA-CRO approach was tested
in several computational tests on this problems, showing a
good performance. The last work we review on this sec-
tion is an optimization problem on cloud computing [75].
In this paper a cloud resource allocation problem with the
CRO is tackled. In this case, the CRO is used to model cloud
elasticity in a cloud-data center, and on the classic Game
Theory to optimize the resource reallocation schema with
respect to cloud provider’s optimization objectives and cus-
tomer requirements.

6.3 Other applications of the CRO algorithm

Recently, alternative applications of the CRO algorithms
have been successfully introduced in different research areas.
For example, in [76] a hybrid Differential Evolution CRO
algorithm (DECRO) has been proposed for the optimal train-
ing of Extreme Learning Machine Networks. Experimental
results in different sets have shown that DECRO-ELM can
reduce the prediction time of original ELM, and obtain bet-
ter performance for training ELM than both DE and CRO
on their own. In [77] the CRO performance in clustering-
related problems has been studied. Specifically, the CRO has
been adjusted to provide a good clustering partition for differ-

ent datasets. Three new modifications of the CRO algorithm
and an index to be used as objective function for the prob-
lems have also been introduced in [77]. A comparison of the
different CRO version with a hybrid genetic algorithm for
clustering is carried out to show the performance of the CRO
in these problems. In [78] the CRO is used to combine mul-
tiple partitions generated by different clustering algorithms
into a single clustering solution. The CRO was shown to be
able to improve the solution of a classic genetic algorithm
for this task. In [79] a novel version of the CRO for the
capacitated vehicle routing problem is introduced. The mod-
ification of the CRO algorithm consists of using and initial
solution for the problem based on the probabilistic Clarke–
Wright savings algorithm [80], and then improve the obtained
solution with the CRO mechanism. The proposed approach
has been tested in 14 well-known capacitated vehicle rout-
ing benchmark instances, and compared it with other existing
algorithms in the literature, obtaining competitive results. In
[81] a discussion on the CRO suitability for the dynamic cell
formation problem is carried out. Finally, in [82] an applica-
tion of the CRO to the optimal parameters’ identification of
a permanent magnet synchronous motor is presented. The
CRO has been compared against a Particle Swarm Opti-
mization algorithm with least squares, outperforming this
approach in obtaining the best set of parameters for themotor.

7 Conclusions

In this paper, we have discussed the main characteristics of a
recently proposed meta-heuristic, the Coral Reefs Optimiza-
tion algorithm (CRO). The basics of this evolutionary-type
approach have been described, detailing the different oper-
ators applied to simulate the processes that occur in a real
coral reef, which finally conform the algorithm. Different
improvements to the basic version of the algorithm have been
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also presented, including a CRO version with species, that
can be applied to optimization problems with variable length
encodings, a CRO with substrate layers, which provides a
strong algorithm in which different models can be evolved,
and finally a multi-objective version of the CRO, which can
be obtained by applying very few changes to the basic CRO
algorithm. We have closed the paper with a discussion of
the most important applications of the CRO to engineering
problems.
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