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Abstract In this work, we empirically compare the rank-
ings produced by several multi-criteria decision-making
methods. We analyzed multi-MOORA, TOPSIS and three
different settings for VIKOR. Using decision matrices with
different number of alternatives and criteria, we compared
the rankings produced using the Spearman’s correlation
coefficient index. Our results showed that VIKOR could
fail to obtain a ranking due to the failure of certain cal-
culations. The rankings produced by TOPSIS and multi-
MOORA were very similar, while the rankings produced
by the different VIKOR variants showed a great variabil-
ity.

Keywords TOPSIS · VIKOR · Multi-MOORA · Rankings
comparison

1 Introduction

Multi-criteria decision-making (MCDM) methods are math-
ematicalmodels that help to take decisions in scenarioswhere
the possible alternatives are evaluated over multiple conflict-
ing criteria.
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The application areas of these methods are huge [8].
Examples can be found in supplier selection [18], techni-
cal evaluation of tenderers [10], evaluation of service quality
[9] or in renewable energy [1].

When facing a specific MCDM problem, there are no
clear guidelines on which MCDM method should be used
to solve it. This issue is controversial and it has been
studied in the literature since many decades ago [15–
17,19]. It is true that depending on the MCDM method
applied, the solution could be different, specially when
the alternatives are very similar. Therefore, we seek to
do a comparative analysis among some MCDM meth-
ods, in order to better understand their similarities and
differences. The long-term goal is to have guidelines to sup-
port the decision-maker in the selection of which MCDM
method to apply. We consider this work a step towards such
goal.

There are many MCDM methods in the literature, as
PROMETHEE [3,4], AHP [14], ELECTRE [13], etc. In
this work, we focus on multi-MOORA [2,5], TOPSIS [7]
and VIKOR [11,12]. Multi-MOORA applies aggregation
operators, while TOPSIS and VIKOR operates calculating
distances to “ideal” or “reference” points. We selected these
methods for comparison because they have the same input
and all of them rely on a normalization procedure.

The comparison among methods is done over a set of
randomly generated decisionmatrices, as in [19] and then the
ranking “agreement” between pairs of methods is assessed
through the Spearman’s correlation coefficient.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief overview on what is an MCDM
problem, and describes the basic calculations of multi-
MOORA, TOPSIS and VIKOR. Section 3 describes the
experimental framework and the results of the experiments.
Finally, Sect. 4 is devoted to conclusions.
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2 Multi-criteria decision-making problem and
methods

AnMCDM problem [15] is composed by a finite set of alter-
natives represented as A = {Ai | i = 1, 2, . . . ,m}, m being
the number of the alternatives. The alternatives are evalu-
ated according to certain criteria, denoted as C = {C j | j =
1, 2, . . . , n},wheren is the number of the criteria. The criteria
can have different domains, and may represent a cost (which
is desirable tominimize) or a benefit (desirable tomaximize).
In addition, each criterion is assigned an importance weight,
represented as W = {w j | j = 1, 2, . . . , n}. These weights
are normalized to add up to one, i.e.,

∑n
j=1 w j = 1.

This information is organized in a decisionmatrix (Mm×n)
as in Table 1, where each element xi j represents the value
of the alternative Ai with respect to the criterion C j . The
matrix M and the vector of weights W = {w1, w2, . . . , wn}
are the fundamental inputs for the MCDM methods that we
will consider here.

2.1 TOPSIS method

The TOPSIS method [7] evaluates the alternatives in terms
of their distance to the so-called “positive” and “negative”
ideal solution. TOPSIS is composed by the following steps:

Step 1 Normalize the decision matrix replacing every xi j
by ni j using the following formula:

ni j = xi j
√∑m

j=1(xi j )
2
, (1)

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Step 2 Calculate the weighted normalized values as vi j =

w j ∗ ni j , where w j correspond to the weight of the j th cri-
terion, i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 3 Calculate the positive ideal solution (PIS), A+, and
the negative ideal solution (NIS), A−, as follows:

(PIS) = A+ = {v+
1 , v+

2 , . . . , v+
j , . . . , v+

n },
(NIS) = A− = {v−

1 , v−
2 , . . . , v−

j , . . . , v−
n }, (2)

where v+
j = maxi (vi j ) and v−

j = mini (vi j ) if the j th crite-

rion is benefit; and v+
j = mini (vi j ) and v−

j = maxi (vi j ) if

the j th criterion is cost, i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Table 1 Decision matrix of an
MCDM problem

MCDM C1 C2 · · · Cn

A1 x11 x12 · · · x1n

A2 x21 x22 · · · x2n

· · · · · · · · · xi j · · ·
Am xm1 xm2 · · · xmn

Step 4 Calculate the distances from every alternative to
the ideal solutions, d+

i being the distance to A+, and d−
i the

distance to A− as following:

d+
i =

⎧
⎨

⎩

n∑

j=1

(vi j − v+
j )2

⎫
⎬

⎭

1/2

,

d−
i =

⎧
⎨

⎩

n∑

j=1

(vi j − v−
j )2

⎫
⎬

⎭

1/2

, (3)

which correspond to the m-dimensional Euclidean distance
and i = 1, 2, . . . ,m.

Step 5 Calculate the relative closeness to both ideal solu-
tions as following:

Ri = d−
i

d+
i + d−

i

, (4)

where i = 1, 2, . . . ,m. If Ri = 0, then d−
i = 0 means that it

is the worst possible case. On the other hand, if Ri = 1, then
d+
i = 0 means that it is the best possible case. In general,
0 ≤ Ri ≤ 1.

Step 6 Rank the alternatives according to Ri in descending
order. The best alternative is the one with the highest Ri .

2.2 VIKOR method

The VIKOR method [11] is, as TOPSIS method, also based
in the idea of the distances to “ideal solutions”. However,
some differences exist between both methods, as stated in
[12].

VIKOR method follows these steps:
Step 1 Determine the best f ∗

j and worst f −
j values of

each criterion as f ∗
j = maxi (xi j ) and f −

j = mini (xi j ), if

the j th criterion is benefit, and as f ∗
j = mini (xi j ) and f −

j =
maxi (xi j ) if the j th criterion is cost, i = 1, 2, . . . ,m and
j = 1, 2, . . . , n.
Step 2 Normalize the xi j values as follows:

ni j = f ∗
j − xi j

f ∗
j − f −

j

, (5)

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Step 3 Calculate the values Si and Ri , i = 1, 2, . . . ,m

and j = 1, 2, . . . , n:

Si =
n∑

j=1

w j ∗ ni j , (6)

Ri = max
j

[
w j ∗ ni j

]
(7)
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Step 4 Calculate Qi as follows:

Qi = v
(Si − S∗)
(S− − S∗)

+ (1 − v)
(Ri − R∗)
(R− − R∗)

, (8)

where S∗ = mini (Si ), S− = maxi (Si ), R∗ = mini (Ri ),
R− = maxi (Ri ), and v ∈[0,1]. Parameter v balances the
relative importance of indexes S and R.

Step 5 Sort Q in increasing order. The best-ranked alter-
native is the one with the lowest value of Q.

Step 6 Compromise solution: the so-called compromise
solution is the alternative a′ which is the best ranked accord-
ing to Q (minimum) if the following two conditions are
satisfied:

– Condition 1: Acceptable advantage. Q(a′′) − Q(a′) ≥
DQ where a′′ is the second best alternative according to
Q and DQ = 1/(m−1) (m is the number of alternatives).

– Condition 2: Acceptable stability in decision-making.
Alternative a′ must be also the best ranked according
to S and/or R (the alternative with the lowest value).

If one of the conditions is not satisfied, then a set of com-
promise solutions is proposed, which consists of:

– The alternatives a′ and a′′ if condition 1 is true and con-
dition 2 is false, or

– The set of alternatives a′, a′′, . . . , a(p) if condition 1 is
false; p being the position in the ranking of the alternative
a(p) verifying Q(a(p)) − Q(a′) < DQ.

The best alternative, ranked by Q, is the one with the
minimum value of Q. The compromise ranking result is the
compromise ranking list of the alternatives with the “advan-
tage rate”.

2.3 Multi-MOORA method

Multi-MOORA constructs a ranking departing from three
calculations: the “Ratio System”, the “Reference Point” and
the “Full Multiplicative Form of Multiple Objectives” [5].

2.3.1 Ratio system

The first step is the normalization of the decision matrix.
Normalization is done according to Eq. 1 (as in TOPSIS)
and the values are denoted as ni j . Then, the ratio y∗

i of every
alternative is calculated as follows:

y∗
i =

g∑

j=1

ni j ∗ w j −
n∑

j=g+1

ni j ∗ w j , (9)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , g are the benefit cri-
teria and j = g + 1, 2, . . . ,m are the cost criteria. A higher
ratio y∗

i implies a better ranking of the alternative.

2.3.2 Reference point

Initially, a reference point r j is calculated using the normal-
ized values and the weights. It is defined as r j = max j (ni j ∗
w j ) if C j is a benefit criteria, and as r j = min j (ni j ∗ w j )

if C j is a cost criteria. Then, every alternative is assigned a
value using the following metric:

min
i

(max
j

|r j − ni j ∗ w j |) (10)

The lower the value, the better the alternative is.

2.3.3 Full multiplicative form

An additional value Ui is calculated for every alternative:

Ui =
∏g

j=1 n
w j
i j

∏n
j=g+1 n

w j
i j

, (11)

where i = 1, 2, . . . ,m, j = 1, 2, . . . , g are the benefit crite-
ria and j = g + 1, 2, . . . ,m are the cost criteria. Finally, the
best-ranked alternative according to the full multiplicative
form is the one that has the highest value of U .

In order to construct the final ranking, multi-MOORA cal-
culates a “summary of rankings” from the Ratio System,
Reference Point and Full Multiplicative Form by applying
the “Theory of Dominance” [6].

3 Experiments and results

3.1 Methodology

Our experiments departs from a set of randomly generated
MCDM problems (i.e., decision matrices). These matrices
were generated according to the procedure described in [19],
where the following parameters were used:

1. Number of criteria: n ∈ {5, 10, 15, 20}.
2. Number of alternatives: m ∈ {3, 5, 7, 9}.
3. Values of the alternatives: xi j : randomly generated from

a uniform distribution in [0.01, . . . , 1].
4. Criteria Weights: all of them are considered equally

important, thus wi = 1/n.
5. Number of replications: we have generated 100 matrices

for each combination ofm and n, thus producing 4×4×
100 = 1600 MCDM problems.

6. Methods: five methods are considered: TOPSIS, multi-
MOORA (MM) and three different parametrization of
VIKOR using v = {0, 0.5, 1} (named as VIKOR0,
VIKOR0.5, VIKOR1). When using VIKOR, we just take

123



318 Prog Artif Intell (2016) 5:315–322

the ranking generated with the Q index, without consid-
ering the conditions of the “Compromise solution”, since
these are strong conditions (hard to meet) for the number
of alternatives in our experiments.

EveryMCDMproblem is solved using everymethod, giv-
ing a total of 8000 rankings.

Then, we measure the agreement between every pair of
rankings (one from each method) using the Spearman’s cor-
relation coefficient (ρ). An index value closer to 1 indicates a
high level of agreement (a “1” is obtained if the rankings are
equal). If the index is close to 0, then there is no agreement
between the rankings. Finally, if the index is close to −1, the
rankings are almost inverted.

For every combination of number of alternatives and cri-
teria, we analyze the results in terms of the average values of
ρ over the corresponding 100 MCDM problems.

The analysis of results is separated in three parts. The
first part focuses on a problem affecting two variants of the
VIKOR method (VIKOR0 and VIKOR0.5). The second part
provides a comparison of the methods on those cases where
VIKOR variants worked. Finally, in the third part, we com-
pare multi-Moora, TOPSIS and VIKOR1 over the whole set
of problems.

3.2 A problem concerning the VIKOR method

We have observed that on some MCDM problems, VIKOR0

and VIKOR0.5 failed to produce a ranking. This failure does
not appear with VIKOR1.

The reason lies at the core of the R calculation performed
in VIKOR (Eq. 7). In some problems, we observed that all
the alternatives have the same Ri value. As a consequence
R∗ = R− and the calculation of the Q (Eq. 8) index becomes
indeterminate for any v �= 1. Potentially, the same situation
may occur with the Si values, but this never happened in our
experiment.

Table 2 shows, for every combination of alternatives and
criteria, the percentage of problems solved by VIKOR0

and VIKOR0.5. Increasing the number of criteria, led to a
decrease in the percentage of problems solved (see the table
by rows). Also, if the number of criteria is fixed (reading the

Table 2 Percentage of problems solved (out of 100) by VIKOR0 and
VIKOR0.5

Alternatives (m) Number of criteria (n) (%)

5 10 15 20

3 32 4 3 0

5 94 47 12 2

7 100 86 56 28

9 100 98 88 56
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Fig. 1 Percentage of problems solved (out of 100) by VIKOR0 and
VIKOR0.5

table by columns), the problem becomes “more solvable”
as the number of alternatives increases. For example, when
n = 5, the percentage of problems solved raised from 32 %
when m = 3 to 100 % when m = 7 and m = 9. Just in these
last combinations (n = 5,m = {7, 9}), VIKOR is able to
provide a ranking for all the MCDM problems available.

Figure 1 graphically shows the results of Table 2. It can
be observed that the rate of problems solved according to the
number of criteria varies in terms of the number of alterna-
tives available. When having n = 20 criteria, the decision
problem should have much more than m = 9 alternatives to
produce results. However, when n = 5, it is almost enough
to have just m = 5 alternatives to produce a ranking when
theMCDMproblems are generated as we did. In general, the
percentage of problems solved increases with the number of
the alternatives available.

3.3 First comparison: all methods over a subset of
problems

Now,wewill show an all-against-all comparison of themeth-
ods restricted to the cases where VIKOR0 and VIKOR0.5

solved more than 80 % of the problems. These six cases
are n = 5,m = {5, 7, 9}; n = 10,m = {7, 9} and
n = 15,m = 9. Recall that we had tested 100 problems
in every case. The global results are shown in Table 3, where
the average values of ρ (over 600MCDMproblems) between
every pair of methods is shown.

On average, the agreement of the rankings produced by
TOPSIS and VIKOR1, and TOPSIS with multi-MOORA is
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Table 3 Mean of ρ over 600 MCDM problems (considering n =
5,m = {5, 7, 9}; n = 10,m = {7, 9} and n = 15,m = 9)

Methods Mean ρ

TOPSIS–VIKOR1 0.88

TOPSIS–MM 0.87

VIKOR1–VIKOR0.5 0.83

VIKOR1–MM 0.82

VIKOR0.5–MM 0.78

VIKOR0.5–TOPSIS 0.75

VIKOR0–VIKOR0.5 0.61

VIKOR0–MM 0.44

VIKOR0–VIKOR1 0.35

VIKOR0–TOPSIS 0.33

MM multi-MOORA
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Fig. 2 Mean of ρ for 5 criteria andm = {5, 7, 9}.MMmulti-MOORA

very high (ρ ≥ 0.87). Less similar rankings are produced
by VIKOR0 and TOPSIS (ρ = 0.33). Moreover, as the last
four rows correspond toVIKOR0,we can say that thismethod
produced rankings that shows very little similarity with those
produced by other methods. A similar observation can be
done regarding VIKOR0.5.

If we split the analysis in terms of the problem size, we
obtain the results depicted in Figs. 2, 3 and 4. Figures show
the mean of ρ for every pair of methods. Figure 2 shows
the case for 5 criteria and different number of alternatives
(methods are sorted according with the results whenm = 9).
Figure 3 considers 10 criteria and m = {7, 9} (methods are
also sorted according with the results when m = 9). Finally,
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Fig. 4 Mean of ρ for 15 criteria and m = 9. MM multi-MOORA

Fig. 4 corresponds to n = 15,m = 9. The corresponding
values for Fig. 2 are shown in Table 4.

The similarities among methods when considering the
problem sizes are quite similar to those shown in the global
analysis (Table 3). This fact can be checked seeing the order
of the methods in the X axis of the plots in Figs. 2, 3 and 4. In
addition, we can mention that the mean of ρ is higher when
the number of alternatives is increased.
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Table 4 Mean of ρ for MCDM problems with 5 criteria

Methods Alternatives (m)

5 7 9

VIKOR1–TOPSIS 0.79 0.88 0.91

VIKOR1–VIKOR0.5 0.80 0.84 0.89

MM–TOPSIS 0.87 0.86 0.88

MM–VIKOR0.5 0.73 0.82 0.87

MM–VIKOR1 0.78 0.81 0.85

VIKOR0.5–TOPSIS 0.67 0.77 0.85

VIKOR0–VIKOR0.5 0.67 0.72 0.74

VIKOR0–MM 0.47 0.58 0.64

VIKOR0–VIKOR1 0.39 0.46 0.53

VIKOR0–TOPSIS 0.36 0.45 0.52

Table is sorted according to m = 9
MM multi-MOORA

A fact somehow“surprising” is the influence of the v value
in the output of VIKOR method with respect to TOPSIS.
When considering v = 1 (VIKOR1), the output of the meth-
ods are almost similar. However, when v = 0 (VIKOR0), the
outputs produced are quite different. In other words, VIKOR
shows a wide range of behaviors depending on a single para-
meter that makes it to behave or not like TOPSIS. To the
best of our knowledge, there are no guidelines to set up such
value when facing a new problem, so it is hard to imagine
how such value should be defined.

It should also be highlighted that TOPSIS and multi-
MOORA show a high mean value of ρ, stating that their
outputs are quite similar.

3.4 Second comparison: a subset of methods over all the
problems

In this subsection, we provide an all-against-all compari-
son of multi-MOORA, TOPSIS and VIKOR with v = 1
(VIKOR1) over all the test problems considered (1600 dif-
ferent decision matrices).

Table 5 shows themean ofρ for every pair ofmethods, and
for all combinations of number of criteria and alternatives.
The values are also shown as plots in Fig. 5.

Focusing first on the comparison of multi-MOORA vs.
TOPSIS, we can observe a quite high level of agreement
between the rankings. The less similar case achieved an aver-
age of ρ = 0.81 when m = 3, n = 10. As Fig. 5a shows,
such similarity is independent of the number of alternatives
and criteria.

The situation is different when multi-MOORA is com-
pared against VIKOR1. Now, the average ρ ranges from 0.58
(when m = 3, n = 10) to 0.85 (when m = 9, n = 5). From
Fig. 5b, it is clear that as the number of alternatives increased,
the outputs of the methods became more similar.

The comparison of TOPSIS vs. VIKOR1 led to a similar
result. We should highlight the case wherem = 9 and n = 5,
with an average ρ = 0.91. This means that the outputs of
both methods are almost the same over the 100 tested cases.
Again, as Fig. 5c indicates, there is a clear tendency showing
that a higher number of alternatives implies a higher rank
similarity (independent of the number of criteria).

4 Conclusions

In this work, we performed a comparison of differentMCDM
methods over 1600 randomly generated decision problems to
understand their similarities and differences in terms of the
rankings they produced.

The MCDM methods compared were: multi-MOORA,
TOPSIS and VIKOR, considering v = 0, v = 0.5 and
v = 1, i.e., considering the rankings produced by S, Q and
R, respectively, in VIKOR.

From this comparison, two main points can be outlined:
the first one is relative to VIKORmethod in particular, while
the second one is relative to multi-MOORA, TOPSIS and
VIKOR with v = 1.

The first observation we did concerns the VIKORmethod
in two aspects. Firstly, we point out that its output strongly
depends on the parameter v. The rankings produced when
using v = {0.5, 1} are quite similar. However, the use of
v = 0 led to rankings that showed quite low similarities with
those from the other methods considered.

Secondly, when usingVIKORwith v = {0, 0.5}we found
that themethod failed to produce a ranking formany decision

Table 5 Mean of ρ for
all-against-all method’s
comparison

m n

MM vs. TOPSIS MM vs. VIKOR1 TOPSIS vs. VIKOR1

5 10 15 20 5 10 15 20 5 10 15 20

3 0.88 0.81 0.87 0.88 0.64 0.58 0.67 0.71 0.61 0.51 0.61 0.68

5 0.87 0.86 0.84 0.86 0.78 0.79 0.77 0.76 0.79 0.78 0.78 0.80

7 0.86 0.87 0.85 0.85 0.81 0.83 0.84 0.83 0.88 0.85 0.86 0.87

9 0.88 0.86 0.88 0.84 0.85 0.82 0.86 0.83 0.91 0.89 0.89 0.88

MM multi-MOORA
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Fig. 5 Mean of ρ for all-against-all method’s comparison

problems. In themost extreme case, VIKOR could not solved
any of the 100 problems with 3 alternatives and 20 criteria.
We may assume that this is a quite unrealistic situation, but it
also failed to provide a ranking in 44 problems (out of 100)
with 9 alternatives and 20 criteria. The problem relies on the
calculation of the Q index, which is a convex combination of
two terms. One of them (R) produced a division by zero thus
leading to a indetermination in the Q value. In such cases,
VIKOR will fail for any v �= 1. In other words, just one
possible value for v is “safe”.

The second observation address the results of the compar-
ison among multi-MOORA, TOPSIS and VIKOR1. Multi-
MOORA and TOPSIS obtained very similar results (their
rankings are almost the same), being the lowest value
of ρ 0.81. A high level of similarity was obtained inde-
pendently of the number of criteria/alternatives consid-
ered.

The similarity of multi-MOORA with VIKOR1, and
VIKOR1 with TOPSIS is not as high, but it clearly increased
as more alternatives are available. In both cases, the number
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of criteria showed a quite minor influence on the similarity
values.

In short, our conclusions are in two lines: (1) if the problem
will be solved using severalmethods, then the user should not
choose simultaneously multi-MOORA and TOPSIS; and (2)
VIKOR’s ranking is very sensitive to the parameter v, thus it
should be carefully defined.
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