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Abstract Ordinal classification covers those classification
tasks where the different labels show an ordering relation,
which is related to the nature of the target variable. In addi-
tion, if a set ofmonotonicity constraints between independent
and dependent variables has to be satisfied, then the prob-
lem is known as monotonic classification. Both issues are
of great practical importance in machine learning. Ordinal
classification has been widely studied in specialized litera-
ture, but monotonic classification has received relatively low
attention. In this paper, we define and relate both tasks in
a common framework, providing proper descriptions, char-
acteristics, and a categorization of existing approaches in
the state-of-the-art. Moreover, research challenges and open
issues are discussed, with focus on frequent experimental
behaviours and pitfalls, commonly used evaluation mea-
sures and the encouragement in devoting substantial research
efforts in specific learning paradigms.
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1 Introduction

In the field of machine learning, classification problems are
focused on assigning each input vector to one of a finite
number of discrete categories [8], given a set of training data
with pre-labelled examples. In this context, special consid-
erations should be taken into account if the labels exhibit
an ordering relation, i.e. they are naturally ordered accord-
ing to the variable definition. For example, financial trading
could be assisted by ordinal classification techniques pre-
dicting not only a binary decision of buying an asset, but
also the amount of investment. The decision could cate-
gorised by {“no investment”, “low investment”, “medium
investment”, “huge investment”}. Machine learning meth-
ods should consider the natural order among the classes and
penalise differently the errors. Confusing a “no investment”
instance with a “huge investment” should be associated a
higher cost than a “little investment” prediction for the same
instance. Ordinal classification [34] (also known as ordinal
regression) deals with this kind of problems by trying to
exploit the ordinal relation between labels and imposing it in
the models to learn.

The classification with monotonicity constraints, also
known as monotonic classification [6], is an ordinal classifi-
cation problemwhere amonotonic restriction can be found: a
higher value of an attribute in an example, fixing other values,
should not decrease its class assignment. The monotonicity
of relations between the dependent and explanatory variables
is very usual as a prior knowledge form in data classification
[40]. To illustrate this, consider a credit card application [14].
A $1000 to $2000 incomemay be considered amediumvalue
of income in a data set. If a customerA has amedium income,
a customer B has a low income (i.e. less than $1000) and the
rest of input attributes remain the same, there is a relationship
of partial order between A and B: B < A. Considering that
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the application estimates the lending quantities as the output
class, it is quite obvious that the loan that the system should
give to customer B should not be greater than the one given
to customer A. If it is, a monotonicity constraint is violated
in the decision.

At least, two important reasons are identified for explain-
ing why knowledge about monotonicity should be exploited
in a learning task [7]. First, monotonicity imposes constraints
on the prediction function. This decreases the size of the
hypothesis space and also the complexity of the model. Sec-
ond, inmany cases, the domain experts decide the acceptance
or rejection of the trained models based on their consistency
with respect to the domain knowledge, regardless of their
accuracy.

In this paper, we will give a quick snapshot of ordinal
and monotonic classifications problems, emphasizing the
issues they have in common, the evaluation measures and
the most important approaches already proposed. Also, the
open issues and present trends in both related classification
problems will be examined, suggesting several open chal-
lenges and new directions to devote efforts in the near future.

The rest of the paper is organized as follows. We first
formalize the ordinal and monotonic classification problems
(Sect. 2). Then, in Sect. 3, we describe several performance
metrics widely used in the two problems. Afterwards, we
enumerate the main methods proposed for tackling these
problems (Sect. 4). Open issues and challenges are pointed
out in Sect. 5. Finally, some concluding remarks are given in
Sect. 6.

2 Problem definition

A standard classification problem consists of predicting
the category y of an input pattern x, where y ∈ Y =
{C1, C2, . . . , CQ} and x ∈ X ⊆ R

K . The objective is to
find a classifier r : X → Y to categorise new patterns. The
classifier has to be learnt from a training set of N points,
D = {(xi , yi ), i = 1, . . . , N }. For ordinal and monotonic
classification problems, a natural label ordering is included
in the form C1 ≺ C2 ≺ · · · ≺ CQ , where ≺ is an order rela-
tion. The position of the label in the ordinal scale is used by
many ordinal classification measures and algorithms, which
can be expressed by O(Cq) = q, q = 1, . . . , Q.

The difference between ordinal classification and other
supervised problems is now established. Comparing the
problem to nominal classification, the order between class
labels makes that two different elements of the set Y can be
always compared by using the relation≺, and this is not pos-
sible under the nominal classification setting. If compared to
regression (where y ∈ R), although the standard < operator
can be used to order real values inR, labels in ordinal classi-
fication (y ∈ Y) do not carry metric information, so it is not

possible to establish the distance between two given labels
(following the example of Sect. 1, the distance between “low
investment” and “medium investment” could be significantly
higher than that between “no investment” and “low invest-
ment”, and there is no principle way to measure it without a
priori knowledge of the problem).

The case of monotonic classification is a particular case
of ordinal classification, where there are monotonicity con-
straints between features and decision classes, i.e. x � x′ →
f (x) ≥ f (x′) [40], where x � x′ means that x dominates x′,
i.e. xk ≥ x ′

k, k = 1, . . . , K .
Inmonotonic classification,we have to define the concepts

of monotonic classifier andmonotonic data set. Amonotonic
classifier is one thatwill not violatemonotonicity constraints,
those given previously. There will be pure monotonic classi-
fiers, whose decisions will be always monotonic between the
independent variables and the dependent one; and approx-
imate monotonic classifiers, which try to learn models as
monotonic as possible, namely, predictions with the lowest
number of monotonic violations.

A training data set D is monotonic if and only if all the
pairs of examples i , j are monotonic with respect to each
other [5]: xi � x j → yi ≥ y j ,∀i, j . Some monotonic classi-
fiers require pure monotonic data sets to successfully learn,
although there are others that are capable of learning from
non-monotonic data sets as well. Even using pure monotonic
data sets as input, there are monotonic classifiers that build
approximate monotonic models.

3 Performance metrics

Ordinal andmonotonic classifiers can be evaluated using dif-
ferent metrics [3,12,18,48]. The two most common metrics
are the mean zero-one error (MZE) and the mean absolute
error (MAE). The first one is defined as:

MZE = 1 − Acc = 1

N

N∑

i=1

�y∗
i �= yi �,

where yi and y∗
i are the true andpredicted labels, respectively,

and Acc is the accuracy of the classifier. The range of MZE
is [0, 1]. It is related to global performance, but the order
is not considered. It is also known as 0/1 loss or standard
misclassification rate. A way to include order information in
the evaluation is to make use of the MAE metric, which is
the average deviation in absolute value of the predicted rank
(O(y∗

i )) from the true one (O(yi )) [3]:

MAE = 1

N

N∑

i=1

|O(yi ) − O(y∗
i )|,
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where MAE ∈ [0, Q − 1]. This measure is also referred to
as absolute error or rank loss.

Many binary classifiers assign scores to the different
examples, and then a threshold is used for separating negative
samples from positive ones. In this context, the area under
the receiver operating characteristics (AUC) curve is one of
the most commonly used metrics for evaluating the perfor-
mance of a binary classifier, independently of the threshold
used. Basically, it estimates the probability that the classifier
ranks a randomly chosen positive instance higher than a ran-
domly chosen negative one [23]. AUC has been extended to
ordinal classification problems [61], by assuming classifiers
based on a scoring function with Q − 1 different thresholds
(thresholdmodels), in such away that each class corresponds
to an interval delimited by these thresholds (more details on
threshold models are given in Sect. 4.1). Consequently, AUC
for ordinal classification is based on measuring the proba-
bility that a pattern from a given class is correctly ranked
(according to the score function) with respect to patterns of
the remaining classes.

The same measures described above are also used in
monotonic classification for estimating the generalization
performance of the trainedmodels over test data. This behav-
iour could produce some negative effects, which will be
discussed in Sect. 5.2.

Regarding the quantification of the monotonicity in pre-
dictions, which is a particular condition in monotonic clas-
sification when noise is present, there are several metrics.

Thefirst is the non-monotonic index (NMI). Thismeasure-
ment was defined by Ben-David in [5] as the rate of number
of violations of monotonicity divided by the total number of
pairs of examples (excluding the pairs formed by themselves)

in a data set: NMI(D) =
∑N

i=1
∑N

j=1 mi, j

N2−N
, where mi, j is equal

to 1 if the pair formed by xi and xj is non-monotonic. To
aggregate standard estimation scores of decision trees with
quantification of monotonicity, the order -ambiguity-score
(A) is computed, as shown in the next equation, using the
concept of NMI:

A =
{
0, if NMI = 0,
−(log2 NMI)−1, otherwise.

Other alternative definitions are the following ones:

• Non-monotonicity index 1 (NMIO) [19], defined as
the number of clash-pairs divided by the total num-
ber of pairs of examples in the data set: NMIO =

1
N (N−1)

∑
x∈D NClash(x). NClash(x) is the number of

examples from D that do not meet the monotonicity
restrictions (or clash) with respect to x.

• Non-monotonicity index 2 (NMIT) [47], slightly dif-
ferent to the previous, is defined as the number of
non-monotonic examples divided by the total number of

examples: NMIT = 1
N

∑
x∈D Clash(x), where Clash(x)

= 1 if x clashes with at least one example in D, and 0
otherwise. If Clash(x) = 1, x is called a non-monotone
example.

We stress that these three last indices range in the unit
interval, so they can be conveniently expressed as percent-
ages.

4 Main methods

In this section, we briefly describe the most relevant meth-
ods proposed in the specialized literature for ordinal and
monotonic classification.

4.1 Ordinal classification classifiers

According to [34], ordinal classificationmethods can be clas-
sified into the following families:

• Naïve approaches include those methods which sim-
plify ordinal classification into other standard problems,
by making some assumptions. For example, all the dif-
ferent labels {C1, C2, . . . , CQ} can be mapped to real
values {r1, r2, . . . , rQ} [58], where ri ∈ R, and then
standard regression techniques [8] (such as neural net-
works, support vector regression. . .) can be applied.
Another option is to consider nominal classification and
simply ignore ordering information. Moreover, differ-
ent misclassification costs can be assigned according
to order information, resulting in cost-sensitive classi-
fication, where the cost matrix is usually related to the
absolute difference of ranks of true and predicted classes
(in a similarway to the costs assumedbyMAE).The three
options imply different assumptions which may hamper
the learning process: regression and cost-sensitive clas-
sification methods assume a distance or a cost between
labels which is generally unknown (being more sensitive
to the representation of the labels rather than its ordering
[35]), nominal classification ignores order information
(generally requiring more training data [35]).

• Ordinal binary decompositions are based on decompos-
ing the ordinal classification task into a set of binary
classification subtasks, in the same vein that multiclass
classification problems are frequently simplified into sev-
eral binary tasks using the well-known One-Versus-One
or One-Versus-All schemes [29]. Ordering information
can be imbued in these decompositions by considering,
for example, that a pattern of class Cq should be classi-
fied as positive by all binary classifiers corresponding to
classes with a lower or equal rank, i.e. fk(x) = 1,∀kCk �
Cq (Ordered Partitions scheme) [34].
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• Threshold models are based on assuming that the ordi-
nal class labels originate from consecutive intervals of
an unobservable one-dimensional latent variable. These
models learn two different elements from training data:
(1) a one-dimensional projection function correspond-
ing to an estimation of the latent variable, and (2) a set
of Q − 1 thresholds which divides the projection in Q
classes (each class being defined by an interval). This
scheme has been considered by many proposals in the
literature, adapting linear logistic regression [46], sup-
port vector machines [16], discriminant analysis [57] or
Gaussian processes [15] to the context of ordinal classi-
fication.

• Augmented binary classification the reduction frame-
work of Lin and Li [43] approaches ordinal classification
problem by reducing it to binary classification with
additional input variables and specific weights for the
extended patterns. A previous method exploiting the
same idea is the data replication method of Cardoso et
al. [11], the main difference being that it is limited to the
absolute cost, whereas the framework of Lin and Li [43]
can be used with any V -shaped cost matrix. On the other
hand, data replication proposal includes a parameter s
which limits the number of adjacent classes considered
[11], in order to reduce the number of additional data
points generated by the approach.

4.2 Monotonic classifiers

There are five main families of methods that deal with
monotonicity constraints in classification:

• Instance-based learning methods are pioneers and well-
known in the field of monotonic classification. Next,
we will describe the three most important techniques in
detail: OLM, OSDL and k-NN.

• The ordinal learning model (OLM) [4] is a very
simple algorithm that learns ordinal concepts by elim-
inating non-monotonic pairwise inconsistencies. The
generated concepts can be viewed as rules. During
the learning phase, each example is checked against
every rule in a rule-base, which is initially empty. If
an example is inconsistent with a rule in the rule-
base, one of them is selected at random while the
other is discarded, but if the example is selected, it
must be checked for consistency against all the other
monotonicity rules. If it passes this consistency test, it
is added as a rule. Consequently, the rule-base is kept
monotonic at all times. Classification is done con-
servatively. All the rules are checked in decreasing
order of class values against an attribute vector, and
the vector is classified as the class of the first rule that

covers it. If such a rule does not exist, the attribute
vector is assigned the lowest possible class.

• Theordinal stochastic dominance learner [42] (OSDL)
is based on the concept of ordinal stochastic domi-
nance. The stochastic order computes when a random
variable is bigger than another. Considering this
order, stochastic dominance can be established as a
form of stochastic order. In this case, a probability
distribution over possible predictions can be ranked.
The ranking depends on the nature of the data set.
Stochastic dominance refers to a set of relations that
may hold between a pair of distributions.

• The monotonic k-NN was proposed in [22]. This
method consists of two steps. In the first step, the
training data is made monotone by relabelling as few
cases as possible. This relabelled data setmay be con-
sidered as the monotone classifier with the smallest
error index in the training data. In the second step,
a modified nearest neighbour rule is used to predict
the class labels of new data, so that violations of the
restrictions of monotonicity will not occur.

Recently, some approaches that hybridize rule induction
and instance-based learning, such as the nested gener-
alized example learning, have appeared in monotonic
classification [30,31].

• Decision trees A monotone extension of ID3 (MID) was
proposed by Ben-David [5], using an additional impurity
measure for splitting the total ambiguity score. However,
the resulting tree may not be monotone anymore even
when starting from a monotone data set. MID defines
the total-ambiguity-score as the sum of the entropy score
of ID3 and the order-ambiguity-score. This last score is
defined in terms of the NMI of the tree (see Sect. 3).
Makino et al. [44] proposed a monotone (or positive)
decision tree (P-DT) and a quasi-monotone (quasi-
positive) decision tree (QP-DT) extension of ID3 in the
two-class setting. They start from a monotone training
set and demand, in the case of QP-DT, that monotonicity
is (only) guaranteed on this training set, while in the case
of P-DT the tree (or equivalently, the derived rule base)
is required to be monotone. These methods have been
nontrivially extended in [53] to the multi-class problem,
accommodating also continuous attributes. In addition
to the fact that these approaches start from a monotone
training set, the main technique for guaranteeing (quasi-
)monotonicity is by adding at each step, if necessary, new
data generated from the data in the previous step.
A splitting criteria thought for monotonic classification
has been proposed in [10]. The criterion aims at reducing
the numbers of non-monotonepairs of points in the result-
ing branches. It chooses the split with the least number
of conflicts. Another way to achieve monotone classi-
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fication models in a post-processing step is by pruning
classification trees [25]. This method prunes the parent
of the non-monotone leaf that provides the largest reduc-
tion in the number of non-monotonic leaves’ pairs. Here,
similar accuracy is reported, with increased comprehen-
sibility. Isotonic regression is also used for relabelling
non-monotone leaf nodes of the decision tree [38].
As for explicit monotonic trees, we can find some repre-
sentatives proposed in the literature. MDT [41] aimed to
predict the implicit ordering in terms of pair comparison
in the original classification. In [36], the authors propose
a rank generalization of Shannon mutual information,
namely rank mutual information and underline that this
measure is both sensitive to monotonicity and robust to
noisy data. Then, this measure is used to build binary tree
classifiers guaranteed to have a weak form of monotonic-
ity (rule monotonicity), in the case the starting data set
is monotone consistent. They call this algorithm REMT
and show that it behaveswell compared to bothmonotone
and non-monotone classifiers. An extension of the inter-
val valued attribute decision tree to deal with monotonic
classification is given in [63], which selects extended
attributes by minimizing rank mutual information to
generate a decision tree.Recently, in [45], the authors pre-
sented a binary tree classifier, RDMT(H ), parametrized
by a discrimination measure H used for splitting and
other three pre-pruning parameters. According to them,
RDMT(H ) guarantees a weak form of monotonicity on
the resulting tree.

• Ensemble learning techniques have been proposed for
classificationwithmonotonicity constraints. For instance,
a boosting-like technique for ordinal classification prob-
lems related to decision rules has been proposed in
[21,39]. Ensembles of bagged decision rules have been
considered in [9] and bagged decision trees in [56]. This
last paper considered global constraints in ordinal classi-
fication by imposing the ordinal constraints in a decision
function and avoiding over-regularised decision spaces.
A straightforward scheme based on Random Forest and
ensemble pruning was proposed in [33]. Finally, in [54],
the authors developed a method of fusing monotonic
decision trees.

• Neural networks have been also applied on monotonic
classification. Total and partial monotonic neural net-
works were examined in [20], and an adaptation of neural
networks that imposes monotonicity constraints on the
weights connecting the hidden layer with the output layer
was presented in [26].

• Data preprocessing and construction Another trend in
monotonic classification is to preprocess the data [32]
in order to “monotonize” the data set, rejecting or rela-
belling the examples that violate the monotonic restric-
tions. There are two consolidated techniques for obtain-

ing monotonic data sets, either generating artificial data
[47,52] or by relabelling existing data sets [22,24,55].
The second option is the preferred for addressing real data
setswith classifiers that exclusivelyworkwithmonotonic
data.

5 Open issues

This section discusses some specific problems and issues
associated to ordinal and monotonic classification, establish-
ing aspects of the field which should receive further attention
by the research community.

5.1 Open issues in ordinal classification

Focusing on ordinal classification, the main problems are
related to the performance metrics and the data sets used for
evaluating the classifiers. Specifically:

• First of all, it is important to outline the necessity of tak-
ing ordering information into account.Manyworks in the
machine learning field use ordinal classification data sets,
ignoring the order of the categories. This can decrease the
performance of the obtained model [34]. Some authors
have previously studied whether there are performance
improvements when considering order information. In
[37], ordinal meta-models were compared against nomi-
nal ones, concluding that such ordinal methodsmay yield
better performance. Indeed, much more differences can
be found when considering specific ordinal classification
methods (insteadofmeta-models) [34].Another study [7]
argues that ordinal classifiers may not present meaning-
ful advantages over the analogue non-ordinal methods,
based on accuracy and Cohen’s Kappa statistic [17].
However, the results in [34] show that statistically signif-
icant differences are found when using measures which
take the order into account, such as theMAE. In this way,
it is extremely important to consider ordinal performance
metrics to evaluate the benefits of applying ordinal clas-
sifiers.

• Independently of the performance differences, there are
additional advantages on the use of ordinal classification
models. For example, threshold models allow projection
of the patterns into a real line, according to the latent
variable value estimated for each pattern. This additional
information can be very useful to detect uncertain predic-
tions (close to the thresholds of its category) or to rank
patterns in the same class.

• Proportional odds model (POM) is a linear model based
on extending binary logistic regression to ordinal clas-
sification [46]. As such, its training is very fast but its
performance is generally low [34], because many real
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world problems require nonlinear decision boundaries.
This fact is important, given that the POMand its variants
are themostwidely used ordinal classificationmethods in
areas such asmedical sciences or psychology [27,60,62].

• Public repositories (such as UCI [2], Keel [1], or
mldata.org [50]) include benchmark classification
data sets with ordinal classification problems. Indeed,
there are many previous works where these data sets are
treated as standard classification. A careful examination
of the data sets in these repositories is needed to under-
stand the nature of the target variable and separate ordinal
classification tasks from standard multiclass classifica-
tion (although formonotonic classification itmakes sense
to consider binary problems, ordinal classification prob-
lems must be, at least, three-class problems). However,
there are some ordinal classification works [15,16,43]
which consider the repository provided byChu et al. [15].
These data sets are not real ordinal classification prob-
lems but regression ones, which are turned into ordinal
classification by discretising the target into Q different
bins with equal frequency or equal width. Validating new
algorithms using only these data sets can result in mis-
leading conclusions, because it is clear that they can be
simpler than real ordinal classification problems. When
using equal frequency binning, class imbalance is sup-
pressed, given that all classes are assigned the same
number of patterns. For equal width binning, all classes
are assigned intervals of the same width in the latent
variable, simplifying the problem. Furthermore, there are
observed values of the actual target regression variable
(although they are ignored), so the classification problem
can be simpler than problems where these values are not
available and there are only categories. In any case, we
do not neglect the opportunity of using these data sets to
check how the algorithms perform in a more controlled
environment, but we think they should be complemented
with real ordinal classification data sets in order to test
the performance of the classifiers in realistic settings.

• Finally, the different performance metrics used to eval-
uate ordinal classifiers make different assumptions. For
example, MAE assigns proportional costs to all pairs of
consecutive categories, in such a way that misclassifying
a pattern of class C3 as class C1 is exactly twice more
costly than assigning it a C2. This may not be the case for
many real problems, where the costs ofmisclassifications
may be very different depending on the classes evaluated.
One possibility could be the use of association metrics
[18], which evaluate the relative order of the patterns, but
not the exact labels, i.e. if patterns are well sorted using
the ordinal classifierwith respect to sorting established by
the true labels. Again, association metrics should be used
together with MAE or other alternative metrics, because
they evaluate different aspects of the classifiers (e.g. a

classifier which shifts all the predictions one class in the
ordinal scale will score the same value for association
metrics).

• Ordinal classification data sets are unbalanced in nature,
because extreme classes tend to be associated to rare
events. Uneven pattern distributions pose a serious hin-
drance for classifier training, in such a way that minority
classes tend to be ignored by the obtained classifiers.
There have been many efforts for tackling this prob-
lem in the binary or multiclass classification contexts
[13,28], but few works adapts these techniques to ordi-
nal classification [51]. Specific characteristics of ordinal
classification tasks should be taken into account when
developing new strategies for alleviating this problem.

5.2 Open issues in monotonic classification

This section will be devoted to point out some of the existing
open issues we have detected in monotonic classification.

• As we have indicated before, most of the same measures
described for standard ordinal classification are usually
used in experimental comparisons of monotonic classi-
fiers for estimating the generalization performance, such
as MZE or MAE. This can cause a major deviation and
misinterpretation of the results reported over real prob-
lems and learned concepts. It is worth mentioning that
any performance metric is estimated over a set of test
examples, and these test examples are obtained by using
statistical validations applied over the original data. Thus,
it seems obvious to expect that if the original data set has
inconsistencies or non-monotonicity violations, part of
these flaws will be inherited in the test partitions. It is
frequent and avoidable in standard classification, but it
is more critical in monotonic classification. The errors
derived from misclassifications of test examples that are
really non-monotonic will influence the final estimate of
performance measure. If we want to learn a monotonic
model, we hope to predict unseen examples satisfying
monotonic constraints. In this manner, the experimen-
tal evaluations should achieve conclusions from a link
between measures of generalization performance and
measures for estimating the degree of monotonicity in
the predictions, such as NMI.

• An attempt of reducing the previous effect was suggested
in [30], when tackling data sets with noise and possi-
ble non-monotonic violations. The measures MAcc and
MMAE (monotonic accuracy and MAE, respectively)
were used to estimate the errors over test data. Both do
not consider the non-monotonic comparable examples in
the estimate. The reason for this is to ensure that future
examples will fulfil the monotonicity assumption. These
metrics serve as monotonicity level measurements of the
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Fig. 1 Process of
transformation of the 10-fcv to
the new one by removing the
non-monotonic instances from
the test data sets

predictions carried out. To address this, the validation
process followed is presented in Fig. 1 where the parti-
tions used in 10-fcv are modified conserving the training
data sets but removing the non-monotonic instances in
the test data sets. The process of conflictive instance
removal searches for fair comparisons and it is based on
a deterministic greedy algorithm, avoiding randomness
(see Algorithm 1).

Algorithm 1 Greedy Non-Monotonic Instances Removal
Algorithm for test partitions.
function GreedyRemoval(D - data set)

while NumberOfTotalCollisions(D)>0 do
maxColis=0, xselected=0;
for each instance xi in D do

Colis=NumberOfCollisionsProduced(xi ,D);
if Colis>maxColis then

maxColis=Colis, xselected=xi ;
end if

end for
D = D - xselected ;

end while
return D

end function

• NMI is a well-known metric used in monotonic classi-
fication for estimating the degree of monotonicity in a
set of predictions. It is also used to compute the degree
of monotonicity in models, especially in interpretable
models such as decision trees [5,36] or decision rules
[4]. More complex models built from other algorithms
such as ensembles or neural networks also contain hidden
monotonicity violations in theirmodels. This emphasizes
the fact that obtaining monotonic predictions is as impor-
tant as obtaining monotonic models.

• The most widely used scheme for preparing the data to
learners that explicit require complete monotonic data is
to relabel the data [24].However, relabelling is not always
the best approach to preprocess data that contains noise,

inconsistencies and harmful examples [32]. The problem
may not be only present in the class label, so other tech-
niques such as edition, noise filtering and attribute values
correction could work well in these cases.

• Possible extensions of the monotonic classification prob-
lemcould consider different priorities among the explana-
tory attributes or different degrees of non-monotonicity
among examples. The former extension refers to pri-
oritize some attributes over others, depending on the
background taken from the problem itself. As an exam-
ple in credit risk, it may be more critical to predict a
favourable loan to afirst customerwith lower income than
another customer whose loan was denied, instead of pre-
dicting the same when considering the attribute “assets”,
keeping the remaining attribute values unchanged. The
later extension is very related to the former one, because
it assumes the existence of different degrees of non-
monotonicity between two examples, which must be
calculated by using the explanatory variables in one way
or another. Also, the spacial separation of data points
could influence this factor.

• Currently, monotonic classification is seen as a natural
extension of classical or ordinal classification. Other
predictive learning paradigms that require some inter-
pretation of the results can benefit of monotonic models
or predictions in certain real applications, such as Sub-
group Discovery [49], Semi-Supervised learning [59] or
Multi-Label learning.

6 Conclusions

This paper has presented a review and analysis of two
supervised classification tasks highly related: ordinal and
monotonic classification. Both are concerned with the clas-
sification of patterns into naturally ordered categories,
although the latter considers constraints of monotonicity
between input and target variables. A common framework
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and notation is given for both kinds of problems, and the
main existing techniques used for them are categorized and
reviewed.

Moreover, the paper has uncovered some of the pitfalls
and problems hidden in both fields, which are mainly related
to the performancemetrics, the data sets and the experimental
design used for the evaluation of new ordinal or monotonic
classification methodologies. We think that our analysis can
serve as a motivation for developing specific experimental
strategies for these tasks or as a set of recommendations for
the application of existing ordinal and monotonic method-
ologies to other fields of study.
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