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Abstract In this work, we introduce a new class of
functions defined on the interval-valued setting. These func-
tions extend classical OWA operators but allow for different
weighting vectors to handle the lower bounds and the upper
bounds of the considered intervals. As a consequence, the
resulting functions need not be an interval-valued aggrega-
tion function, so we study, in the case of the lexicographical
order, when these operators give an interval as output and
are monotone. We also discuss an illustrative example on a
decision making problem in order to show the usefulness of
our developments.
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1 Introduction

Aggregation functions [2,3,9,12] are crucial tools for most
artificial science and computer science applications when-
ever information which comes from different (homogeneous
or heterogeneous) sourcesmust be fused. These functions are
just required to satisfy appropriate boundary and monotonic-
ity conditions. These are quite natural conditions when we
are dealing with real numbers, e.g., with data in the unit
hypercube.

However, things are a bit more complicate when we have
to deal with data which are not real numbers [13], specially
if no natural linear order exists for such data [8]. This is
the case, for instance, if we must work with intervals, as
it happens when it exists uncertainty or lack of knowledge
around the information to be handled [1,4,16]. If, for the sake
of simplicity, we restrict ourselves to closed subintervals of
the unit interval, it is straight to define a partial order: it is
enough to consider the order which is inherited from the one
of real numbers. However, this order is not linear, that is,
there exist pairs of intervals which are not comparable in
terms of this relation.

The problemworsens if we consider the extension of some
specific types of aggregation operators to interval-valued
setting, as it is the case, for instance, of ordered weighted
aggregation (OWA) operators [5] or, more generally, of Cho-
quet integrals [10,17]. These types of operators require, as
a first step to compute them, that the inputs are ordered. So,
if we want to apply it to any n-tuple of intervals, we must
find a linear order which allows us to compare any pair of
intervals.

This problem was considered in [6] (see also [14]), where
the notion of admissible orderwas introduced. An admissible
order for intervals is a linear order which extends the partial
order induced by the classical order relationship in R. These
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admissible orders can be defined in terms of real-valued
aggregation functions which fulfill appropriate conditions,
and they include most of the linear orders between intervals
that have been considered in the literature, as the lexico-
graphical ones or the order defined by Xu and Yager in [18]
in terms of score and accuracy functions.

Once admissible orders have been defined, it is straight
to provide a definition of aggregation function where the
monotonicity condition is defined with respect to the con-
sidered admissible order. In this sense, in [7] the problem of
defining Choquet integrals and OWA operators for interval-
valued data was considered.

In thiswork,we go one step further from the developments
in [7]. Our objective is to define the so-called unbalanced
interval-valued OWA (UIVOWA) operators in terms of two
different weighting vectors, one for the lower bounds and
another one for the upper bounds.

TheUIVOWAoperator, however, needs not be an interval-
valued aggregation function, since, for instance, the output
may not be an interval. For this reason, we study which con-
ditions allow us to ensure that the result is an interval. We do
not do this for the general case of admissible orders, but just
for the specific case of the lexicographical orders, since the
whole analysis would be too long for this paper.

The usefulness of our developments is clear for those
applications where OWA operators have shown themselves
very fruitful, as it is the case of decision-making prob-
lems [7,11,19]. In this sense, we also discuss in this work
an illustrative example on a simplified problem to see how
our theory can be applied in this framework.

The structure of this work is as follows. In the next sec-
tion we recall several preliminary definitions and results.
In Sect. 3 we introduce the main concept of unbalanced
interval-valued OWA operator and we discuss, in the case of
lexicographical orders, when we recover an interval-valued
aggregation. In Sect. 4 we present an illustrative example in
decision-making.

2 Preliminaries

In this sectionwe recall several notions and definitions which
are necessary for our subsequent developments. Further-
more, we also fix some notations for the rest of the paper.

We denote by L([0, 1]) the set of closed subintervals of
the unit interval, i.e.,

L([0, 1]) = {
x = [X , X ]) | 0 ≤ X ≤ X ≤ 1

}
.

In particular, we denote 0L = [0, 0] and 1L = [1, 1].
The usual order in L([0, 1] is that inherited from R

2,
namely:

[X , X ] �2 [Y , q2Y ] if and only if X ≤ Y and X ≤ Y . (1)

However, for many applications it is necessary to have the
possibility of comparing any two data. This consideration
leads to the notion of admissible order [7].

Definition 1 Let ≤L be an order in L([0, 1]). The relation
≤ is an admissible order if

1. it is linear (i.e., for every x, y ∈ L([0, 1]) it holds that
x ≤L y or y ≤L x), and

2. for all x, y ∈ L([0, 1]), such that x �2 y it holds that
x ≤L y.

Remark 1 Note that for every admissible order ≤L and for
every x ∈ L([0, 1]) it holds that 0L ≤L x ≤L 1L . That is, 0L
and 1L are the top and the bottom elements, respectively, in
(L([0, 1]),≤L), whatever the admissible order ≤L is.

That is, an admissible order is a linear order which extends
the usual partial order between intervals.

Example 1 The three more relevant examples of admissible
orders that can be found in the literature are the following.

1. Lexicographical order with respect to the first variable.
x ≤lex1 y if X < Y or X = Y and X ≤ Y .

2. Lexicographical order with respect to the second vari-
able. x ≤lex2 y if X < Y or X = Y and X ≤ Y .

3. Xu and Yager’s order [18]:

[X , X ]≤XY [Y ,Y ] if
{
X + X < Y + Y or

X+X =Y+Y and X−X ≤Y−Y .

(2)

Remark 2 Xu and Yager’s order was initially introduced
in the Atanassov intuitionistic setting. However, as it is
well known, it exists an straight mathematical equivalence
between Atanassov intuitionistic fuzzy sets and interval-
valued fuzzy sets. Nevertheless, the order considered here
is not exactly the same which was originally defined by its
authors, since the second inequality is reversed here.

Another key notion which is at the basis of our present
work is that of aggregation function. The definition of aggre-
gation in the unit interval is widely known. Nevertheless, we
recall the definition here.

Definition 2 An aggregation function is a function M :
[0, 1]n → [0, 1] such that

1. M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1;
2. M is increasing in each variable.
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A particular instance of aggregation functions frequently
used in many application are OWA operators given by
Yager [3,20].

Definition 3 Letw be aweighting vector, i.e,w = (w1, . . . ,

wn) ∈ [0, 1]n withw1+· · ·+wn = 1. The ordered weighted
aggregation operator associated with w, OW Aw, is a map-
ping OW Aw : [0, 1]n −→ [0, 1] defined by

OW Aw(x1, . . . , xn) =
n∑

i=1

wi x(i)

where x(i), i = 1, . . . , n, denotes the i-th greatest component
of the input (x1, . . . , xn).

Aggregation functions can be used to define admissible
orders in L([0, 1]) as follows.
Proposition 1 Let M1, M2 be two aggregation functions
M1, M2 : [0, 1]2 → [0, 1] such that for all (a, b), (c, d) ∈
[0, 1]2 with a ≤ b and c ≤ d the equalities M1(a, b) =
M1(c, d) M2(a, b) = M2(c, d) hold simultaneously if and
only if a = c y b = d.

Then the relation≤M1,M2 on L([0, 1]) given by [a, b] ≤M

[c, d] if and only if

(i) M1(a, b) < M1(c, d) or
(ii) M1(a, b) = M1(c, d) and M2(a, b) ≤ M2(c, d)

is an admissible order on L([0, 1]).
Example 2 1. The lexicographical order with respect to the

first variable is recovered taking M1(x, y) = x and
M2(x, y) = y.

2. The lexicographical order with respect to the second vari-
able is recovered taking M1(x, y) = y and M2(x, y) =
x .

3. Xu and Yager’s order is recovered taking M1(x, y) =
x+y
2 and M2(x, y) = y.

Among admissible orders one very important class is gen-
erated by means of the Kα operators.

Definition 4 Let α ∈ [0, 1]. The operator Kα : L([0, 1]) →
[0, 1] is defined by:

Kα([X , X ]) = (1 − α)X + αX .

Note that K0 corresponds to the projection with respect
to the first component and K1 corresponds to the projection
with respect to the second component. In general, we have
the following result:

Proposition 2 Let α1, α2 ∈ [0, 1], with α1 �= α2. then, the
order ≤α1,α2 defined as in Proposition 1 with M1(x, y) =
(1 − α1)x + α1y and M2(x, y) = (1 − α2)x + α12 is an
admissible order.

Remark 3 The lexicographical order with respect to the first
component is the same as ≤0,1 whereas the lexicographical
order with respect to the second component corresponds to
≤1,0 and Xu and Yager’s order corresponds to ≤ 1

2 ,1.

The definition of aggregation function can be extended to
L([0, 1] as follows.
Definition 5 Let≤L be an order in L([0, 1]). An aggregation
function M on L([0, 1]) with respect to the order ≤L is a
mapping M : (L([0, 1]))n →≤ L([0, 1]) satisfying:

1. M(0L , . . . , 0L) = 0L , M(1L , . . . , 1L) = 1L ,

2. M(x1, . . . , xn) ≤L M(y1, . . . , yn) whenever xi ≤L yi
for every i ∈ {1, . . . , n}.

Finally,we also recall here the definitionof interval-valued
fuzzy set [8,15].

Definition 6 An interval-valued fuzzy set A over the uni-
verse X �= ∅ is defined as:

A = {(x, μA(x)) | x ∈ X}.

whereμA : X → L([0, 1] is the membership function of the
set A.

We denote by IVFS(X) the set of all interval-valued fuzzy
sets on the universe X . Every order ≤L in L([0, 1]) induces
a (partial) order in IVFS(X) , (that we denote by ≤L , too),
given by:

A ≤L B ⇐⇒ μA(x) ≤L μB(x) for every x ∈ X.

3 Unbalanced interval-valued OWA operators

In the literature, interval-valued OWA operators are usually
defined using one single numerical value for each weight.
However, in this work we go one step further and propose
the possibility of using two different values, one for the upper
bounds and another for the lower bounds. For this reason, we
propose the following definition.

Definition 7 Let ≤L be an admissible on L([0, 1]). Con-
sider two weighing vectors w̃ = (w1, . . . , wn), ṽ =
(v1, . . . , vn) ∈ [0, 1]n such that w1 + · · · + wn = 1 and
v1 + · · · + vn = 1, with ṽ �= w̃. An unbalanced interval-
valued OWA operator (UIVOWA) is a mapping

UIVOWA[w̃,ṽ,≤L ] : (L([0, 1]))n −→ [0, 1]2
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defined by

UIVOWA[w̃,ṽ,≤]
([X1, X1], . . . , [Xn, Xn]

)

=
(

n∑

i=1

wi X (i),

n∑

i=1

vi X (i))

)

(3)

where [X (n), X (n)] ≤L · · · ≤L [X (1), X (1)].
Remark 4 OWA operators in the unit hypercube are partic-
ular instances of aggregation functions. Furthermore, note
that if we let ṽ = w̃ then we recover the usual definition of
interval-valued OWA operator. However, Definition 7 does
not in principle correspond to an interval-valued aggregation
function, since, to start with, it does not provide an interval
as its result. To see it, consider, for instance, the vectors of
weights

w̃ = (1, 0) and ṽ = (0, 1)

Then, if we consider the lexicographical order with respect
to the first component and we take the intervals [0, 0] and
[0.8, 1]. Then we have that [0, 0] ≤lex1 [0.8, 1] and we arrive
at

UIVOWA([0.8, 1], [0, 0]) = (0.8, 0)

which is not an interval.

We intend now to study the conditions which allow us
to state that UIVOWA operators are in fact interval-valued
aggregation functions. First of all, we have the following
trivial result, whose proof is straight.

Proposition 3 For every admissible order ≤L and for every
pair of weighting vectors w̃, ṽ ∈ [0, 1]n it holds that

1. UIVOWA[w̃,ṽ,≤L ]([1, 1], . . . , [1, 1]) = (1, 1);
2. UIVOWA[w̃,ṽ,≤L ]([0, 0], . . . , [0, 0]) = (0, 0).

So in order to recover an interval-valued aggregation func-
tion we only need to consider two points:

– Which conditions ensure that the function UIVOWA is
monotone with respect to the considered order ≤L , and

– which conditions ensure that
∑n

i=1 wi X (i) ≤ ∑n
i=1 vi

X (i); i.e., when we recover an interval.

None of these questions is trivial. Regarding the second
one, for instance, we have the following result.

Proposition 4 Let be≤L be an admissible order. Let ṽ, w̃ ∈
[0, 1]n be two weighing vectors such that it exists j0 ∈
{1, . . . , n} with wi = vi for every i < j0 and w j0 > v j0 .
Then, UIVOWA[w̃,ṽ,≤L ] does not provide an interval as its
result.

Proof First of all, it is clear that

j0−1∑

k=1

wk =
j0−1∑

k=1

vk

and consequently

n∑

k= j0

wk =
n∑

k= j0

vk .

We are going to prove that whatever the weighting vec-
tors are, we can find n intervals such that the image of the
corresponding UIVOWA operator is not an interval.

We have that

UIVOWA[w̃,ṽ,≤L ]
([X1, X1], . . . , [Xn, Xn]

)

=
(

n∑

i=1

wi X (i),

n∑

i=1

vi X (i))

)

The result is an interval if and only if

n∑

i=1

wi X (i) ≤
n∑

i=1

vi X (i) (4)

Let’s consider the following intervals:

(i) xi = [1, 1] for 0 ≤ i ≤ j0.
(ii) xi = [0, 0] for j0 + 1 ≤ i ≤ n.

Observe that the n-tuple (x1, . . . , xn) is already ordered in
decreasing order. Taking into account the intervals that we
have chosen, Eq. (4) is the same as

j0∑

i=1

wi ≤
j0∑

i=i

vi .

This is equivalent to

j0−1∑

i=1

wi + w j0 ≤
j0−1∑

i=i

vi + v j0 .

But the first j0 − 1 weights are the same, so actually we
arrive at w j0 ≤ v j0 , which contradicts the definition of j0.

In fact, the following result is also straight. 
�
Proposition 5 Let ≤L be an admissible order in L([0, 1])
and let w̃, ṽ ∈ [0, 1]n be weighting vectors such that
wi ≤ vi for every i ∈ {1, . . . , n}. Then, for every([X1, X1], . . . , [Xn, Xn]

) ∈ (L([0, 1]))n it holds that
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n∑

i=1

wi X (i) ≤
n∑

i=1

vi X (i).

Proof It is a straight consequence of the monotonicity of
OWA operators.

Note that, since usual OWA operators are aggregation
functions, it follows that

∑n
i=1 vi , X (i) ≤ 1, so, once the

output is an interval, it is in fact an element of L([0, 1]).
Besides, getting conditions for every possible admissible

order is a very complicate work. For this reason, we only
focus in this work in the case of lexicographical orders. As a
first result, we can state the following. 
�
Example 3 Let ≤lex1 be the lexicographical order with
respect to the first component. Consider the weighting vec-
tors w = (0, 1) and v = (0.5, 0.5). Then
UIVOWA[w̃,ṽ,≤lex1]([0.9, 0.9], [0, 0]) = (0.9 · 0 + 0 · 1, 0.9 ·
0.5 + 0 · 0.5) = (0, 0.45).

Similarly, U IV OW A[w̃,ṽ,≤lex1]([0.8, 1], [0, 0]) = (0.8 ·
0 + 0 · 1, 1 · 0.5 + 0 · 0.5) = (0, 0.5). We have that
[0.8, 1] ≤lex1 [0.9, 0.9] but [0, 0.5) ≥lex1 (0, 0.45) (seen
as intervals), so the operator UIVOWA is not monotonic in
this case.

3.1 The problem of recovering an interval

Let’s discuss now when we can ensure that we recover an
interval fromanUIVOWAoperator.Our interest lies in study-
ing when the inequality

n∑

i=1

wi X (i) ≤
n∑

i=1

vi X (i) (5)

holds. Note that if the considered intervals are degenerate,
i.e., if Xi = Xi for every i ∈ {1, . . . , n}, then the inequality
is equivalent to:

n∑

i=1

(wi − vi )X (i) ≤ 0. (6)

In this situation, the considered interval-valued fuzzy sets
actually correspond to fuzzy sets. In this setting, in gen-
eral, we only recover a degenerate interval for every possible
choice of the input degenerate intervals if the weighing vec-
tors w̃ and ṽ are the same. But in this case, we fall into the
usual (real-valued) definition of OWA operator.

Besides, note that since the class of admissible order is
so large, it is far out from the scope of the present work to
provide a full characterization result. For this reason, we are
going to focus in the case of lexicographical orders and we
leave for future works a full analysis.

In order to get a characterization result, we start with the
following lemma.

Lemma 1 Let x, y ∈ [0, 1]n be two weighting vectors.
Then the following statements are equivalent.

1.
∑i

j=1
x j ≤

∑i

j=1
y j for all i = 1, . . . , n.

2.
∑n

i=1
xi ti ≤

∑n

i=1
yi ti for all ti ∈ [0, 1] such that

t1 ≥ t2 ≥ · · · ≥ tn ≥ 0.

Proof Let’s start proving that 1. implies 2. From our hypoth-
esis, since x1 ≤ y1, it follows that for every a1 ≥ 0, the
inequality

a1x1 ≤ a1y1

holds. In the same way, x1 + x2 ≤ y1 + y2, so for a2 ≥ 0 it
holds that

a2(x1 + x2) ≤ a2(y1 + y2)

In this way, for each i ∈ {1, . . . , n} we get an inequality

ai (x1 + · · · + xi ) ≤ ai (y1 + · · · + yi )

for any ai ≥ 0. If we add all these inequalities up, we arrive
at

(a1 + · · · + an)x1 + (a2 + · · · + an)x2 + · · · + anxn

≤ (a1 + · · · + an)y1 + (a2 + · · · + an)y2 + · · · + an yn

for all a1, . . . , an ≥ 0. If we define now t1 = (a1+· · ·+an),
t2 = (a2 + · · · + an), . . . , tn = an , we see that (2) holds.

The fact that (2) implies (1) is trivial, since it is enough to
take t1 = t2 = · · · = ti = 1 and ti+1 = ti+2 = · · · = tn = 0.

Using Lemma 1, we can provide the following charac-
terization result for UIVOWA operators associated with the
lexicographical order with respect to the first variable. 
�

Theorem 1 Let w̃, ṽ ∈ (0, 1]n be two weighting vectors.
Then the following statements are equivalent

1. The result of U I V OW A operators associated with w̃, ṽ

and the order ≤lex1 is an interval.
2.

∑n

i=1
wi ti ≤

∑n

i=1
vi ti f orallti ∈ [0, 1] such that

t1 ≥ t2 ≥ · · · ≥ tn ≥ 0.

Proof Let us show that 1. implies 2. Suppose that the result
of UIVOWA is an interval. Then, in particular, the inequality
(6)
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n∑

i=1

(wi − vi )X (i) ≤ 0.

must hold for every choice of Xi ∈ [0, 1] (i ∈ {1, . . . , n}).
Since we are dealing with an admissible order, we have that
X (1) ≥ · · · ≥ X (n), so we only need to take ti = X (i) to get
the result.

Let us assume now that 2. holds. Let’s take n intervals
[Xi , Xi ] with i ∈ {1, . . . , n}. From the definition of UIV-
OWA operator, we have that

UIVOWA[w,v,≤lex1]
([X1, X1], . . . , [Xn, Xn]

)

=
(

n∑

i=1

wi X (i),

n∑

i=1

vi X (i)

)

where the chain of inequalities

X (1) ≥ X (2) ≥ · · · ≥ X (n)

must hold, sincewe are considering the lexicographical order
with respect to the first variable, ≤lex1.

Now, if we take ti = X (i), from (2) we have that

n∑

i=1

wi X (i) ≤
n∑

i=1

vi X (i)

But, as we are dealing with intervals, X (i) ≤ X (i), so the
previous inequality implies that

n∑

i=1

wi X (i) ≤
n∑

i=1

vi X (i)

and the result holds. 
�
Corollary 1 Let w̃, ṽ ∈ (0, 1]n be two weighting vectors.
Then the following statements are equivalent

1. The result of U I V OW A operators associated with w̃, ṽ

and the lexicographical order with respect to the first
component is an interval.

2. For every i ∈ {1, . . . , n}, it holds that
i∑

j=1

w j ≤
i∑

j=1

v j .

Proof Straight by Lemma 1 and Theorem 1.
We can make an analogous study for the case of the lexi-

cographical order with respect to the second variable. 
�
Theorem 2 Let w̃, ṽ ∈ (0, 1]n be weighting vectors. Then
the following statements are equivalent

1. The result of U I V OW A operators associated with w̃, ṽ

and the lexicographical order with respect to the second
variable is an interval.

2.
∑n

i=1
wi ti ≥

∑n

i=1
vi ti for all ti ∈ [0, 1] such that

tn ≥ tn−1 ≥ · · · ≥ t1 ≥ 0.

Proof Analogous to that of Theorem 1. 
�

Corollary 2 Let w̃, ṽ ∈ (0, 1]n be two weighting vectors.
Then the following statements are equivalent

1. The result of U I V OW A operators associated with w̃, ṽ

and the lexicographical order with respect to the second
variable is an interval.

2.
i∑

j=1

w j ≤
i∑

j=1

v j for all i = 1, . . . , n

Proof Straight from Theorem 2. 
�

Note that we have the following result.

Proposition 6 Let w̃, ṽ ∈ [0, 1]n be weighting vectors.
Then, the following statements are equivalent.

1.
∑i

j=1 w j ≤ ∑i
j=1 v j for i = 1, . . . , n−1 (the condition

for i = n is trivial).

2. 1 +
∑i

j=1
w j ≤ 1 +

∑i

j=1
v j for i = 1, . . . , n − 1.

3. 1 − ∑i
j=1 v j ≤ 1 − ∑i

j=1 w j for i = 1, . . . , n − 1.
4.

∑n
j=i+1 v j ≤ ∑n

j=i+1 w j for i = 1, . . . , n − 1.

Proof It follows from a straight calculation.
So it follows that the conditions for both lexicographical

orders are in fact the same. 
�

4 An illustrative example

In order to show the usefulness of our developments, we
consider now an illustrative example in which we make use
of our theoretical developments about UIVOWA operators.

We are going to consider a decision making problem.
In such a problem we are given a set of n alternatives,
{A1, . . . , An} and we must find which is the best one accord-
ing to a set of criteria.

In this particular case, experts from three different con-
sultants have been asked to provide his/her preferences on
whether it is better to invest some money in one or another
of four companies, {C1,C2,C3,C4}. In order to take into
account uncertainty about data, each consultant has provided
a final grade for the quality of the investment in each of the
alternatives.
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For instance, the first consultant has provided the follow-
ing data:

A1 = {(Company 1, [0.3, 0.8]), (Company 2, [0.56, 0.72]),
(Company 3, [0.6, 0.8]), (Company 4, [0.16, 0.0, 74])}

where each of the interval has been obtained providing as
lower bound the worst of the valuations provided by the
experts in the company and as upper bound the best of the
valuations provided by the experts in the company.

The results obtained from the other two consultants are
the following.

A2 = {(Company 1, [0.46, 0.58]), (Company 2, [0.4, 0.4]),
(Company 3, [0.2, 0.5]), (Company 4, [0.75, 0.8])}

A3 = {(Company 1, [0.12, 0.66]), (Company 2, [0.26, 0.42]),
(Company 3, [0.7, 0.7]), (Company 4, [0.44, 0.74])}

The first step in order to determine which is the best
possible option for investment is to fuse the information
coming from the three different consultants. Once this step
has been accomplished, we will use our UIVOWA opera-
tors with respect to the lexicographical order with respect
to the first component and with the weight vectors w̃ =
(0.2, 0.25, 0.55) and ṽ = (0.25, 0.35, 0.4) in order to select
the best alternative. Note that the choice of the lexicograph-
ical order with respect to the lower bound corresponds to
considering better that solution which has obtained the best
worst note, so it can be understood as a sort of pessimistic
choice. The choice of theweights, in a real-world application,
should be done via an appropriate experimental procedure,
depending on the considered problem. Note also that, with
this choice, we are in the setting of Corollary 1.

The results are

UIVOWA[w̃,ṽ,≤lex1]([0.3, 0.8], [0.46, 0.58], [0.12, 0.66])
= [0.233, 0.689]

UIVOWA[w̃,ṽ,≤lex1]([0.56, 0.72], [0.4, 0.4], [0.26, 0.42])
= [0.355, 0.488]

UIVOWA[w̃,ṽ,≤lex1]([0.6, 0.8], [0.2, 0.5], [0.7, 0.7])
= [0.4, 0.634]

UIVOWA[w̃,ṽ,≤lex1]([0.16, 0.74], [0.75, 0.8], [0.44, 0.74])
= [0.348, 0.755].

That is, putting together the information provided by each
of the consultants we arrive at

Ã = {(Company 1, [0.233, 0.689]),
(Company 2, [0.355, 0.488]),

(Company 3, [0.4, 0.634]),
(Company 4, [0.348, 0.755])}.

Now we just need to get the Company which has got the
best score. In order to so, wemust pick a linear order between
intervals, since we should be able to compare to each other
any two of the alternatives. In particular, and taking into
account the way in which we have built the UIVOWA opera-
tors, it seems natural thatwe choose again the lexicographical
order with respect to the first component. According to this
admissible order, we have the following ranking:

Company 3 better than Company 2 better than

Company 4 better than Company 1.

That is, the best alternative in this illustrative example
would be the third one.

5 Conclusion

In this paper we have introduced the notion of unbalanced
interval-valued OWA operator. This operator uses two dif-
ferent weighting vectors, one for the lower bounds and one
for the upper bounds of the considered intervals. We have
analyzed when this operator, defined in terms of admissible
orders, are in fact interval-valued aggregation functions in
the case of the lexicographical orders.

In future works we intend to consider other admissible
orders, so that our theoretical developments may be fully
applied in real world applications.
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