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Abstract This paper offers a comprehensive approach to
feature selection in the scope of classification problems,
explaining the foundations, real application problems and
the challenges of feature selection in the context of high-
dimensional data. First, we focus on the basis of feature
selection, providing a reviewof its history andbasic concepts.
Then, we address different topics in which feature selection
plays a crucial role, such as microarray data, intrusion detec-
tion, or medical applications. Finally, we delve into the open
challenges that researchers in the field have to deal with if
they are interested to confront the advent of “Big Data” and,
more specifically, the “Big Dimensionality”.

Keywords Feature selection · High-dimensional data ·
Big Data

1 Introduction

We are in a data-driven era, in which the size of digital
data available in the world is continuously growing since
data are acquired for countless purposes. Hence, machine
learning algorithms have to cope with data sets whose vol-
ume and complexity are also increasing. Among the many
machine learning algorithms, feature selection is character-
ized by electing the attributes that allow to clearly define a
problem, apart from those that are irrelevant or redundant.
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The many existing feature selection methods need to evolve
to deal with this new context. In this paper, we describe the
current context of feature selection, startingwith a brief defin-
ition and presenting themain categories underwhich existing
methods are divided. Subsequently, we introduce the trend-
ing topics and the open challenges that must be considered to
make feature selection indispensable in the era of Big Data.

The purpose of this introductory section was to briefly
present this new term that has captured the attention of the sci-
entific community: BigData. The volume of the newdata sets
makes dimensionality reduction, and thus feature selection, a
necessity. Further, we present some inherent difficulties that
current data sets may have and, therefore, constitute a chal-
lenge for any machine learning technique, including feature
selection.

1.1 A new scenario: Big Data

Since the late past century, enterprises have stored data to
extract information in a near future, butwithout a clear idea of
the potential usefulness of such amount of data. In addition to
this, the growing popularity of the Internet has generated data
in many different formats (text, multimedia, etc.) and from
many different sources (systems, sensors, mobile devices,
etc.). Different studies have tried to determine the size of
this digital universe, i.e., these digital bits created, replicated,
and consumed annually. According to one of the most recent
studies [71], the digital universe is doubling in size every two
years; then, by 2020, it is expected to reach 44 zettabytes
(1021 bytes). In a more visual way, if the digital universe is
represented by the memory in a stack of tablets (iPad Air
0.29′′ thick and 128 Gb), by 2020 there would be 6,6 stacks
from the Earth to the Moon.

In this context, a new concept is born: Big Data. The first
documented use of the term “Big Data” appeared in 1997
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[19] and it was referred to the area of scientific visualiza-
tion where the data sets are usually very large, specifically
the authors say “When data sets do not fit in main mem-
ory (in core), or when they do not fit even on local disk, the
most common solution is to acquire more resources.” This
first definition of Big Data refers to one of its main char-
acteristic: Volume. However, this concept rapidly expands
by including two more properties: velocity and variety [41].
The former refers to the speed of data creation, streaming,
and aggregation and the latter is a measure of the richness
of the data representation (text, images video, audio, etc).
These three properties were called the 3 V’s that define Big
Data. Another “V” property was included afterwards: Value.
Nowadays, value is considered themost important V because
it refers to the process of discovering huge hiddenvalues from
large data sets with various types and rapid generation [32].

Big Data can also be classified into different categories
to better understand their characteristics. This classification
is based on five aspects: (i) data sources, (ii) content format,
(iii) data stores, (iv) data staging and (v) data processing [32].
Machine learning algorithms usually cope with data stag-
ing (cleaning, transforming and normalizing data) and data
processing (batch or real time). However, machine learning
is still in its early stages of development [16]. Many algo-
rithms do not scale beyond data sets of a fewmillion elements
found in real-world data, i.e., they cannot deal with Big Data.
Then, further research is required to develop algorithms that
apply in real-world situations and on data sets of trillions
of elements. The automated or semi-automated analysis of
enormous volumes of data lies at the heart of big-data com-
puting for all application domains.

1.2 Why is feature selection important?

The size of a data set can be measured in two dimen-
sions, number of samples/instances (n) and number of
features/attributes (m). Bothm andn canbe enormously large
[47]. However, researchers in the data analytics community
have largely taken a one-sided study of volume, which refers
to the “instance size” of the data. On the other hand, the cor-
responding factor of “Big Dimensionality”, i.e., the feature
size, has received much lesser attention [75].

Nevertheless, in the past few years, the number of data
sets with a ultra-high number of features is growing. For
instance, there are 18 data sets with more than 5000 features
at the UCI machine learning repository [45]. Table 1 shows
the maximum number of features of the data sets posted in
the UCI repository since 2008.

Other popular repositories, such as the LIBSVMDatabase
[18], include data sets with more than 29 million features
(KDD Cup 2010 dataset). In particular, seven of the data sets
posted there have more than 1 million features.

Table 1 Maximum number of features of the data sets posted in the
UCI repository [45] since 2008

Year Name No. of features

2008 Bag of Words and Dorothea 100, 000

2009 URL Reputation 3, 231, 961

2010 p53 mutants 5409

2011 PEMS-SF 138, 672

2012 CNAE-9 857

2013 Gas sensor open 1, 950, 000

2014 Gas sensor flow 150, 000

2015 Electricity load diagrams 140, 256

A specific problem arises when these data sets, instead
of being large in both dimensions, have a number of features
much larger than the number of samples, hindering the poste-
rior learning process. The best known example is microarray
data sets [14]; this type of data usually has very small samples
(often less than 100), whereas the number of features ranges
from 6000 to 60,000, since it measures a gene expression.
Due to the complex problem addressed, such data sets have
been widely studied in the literature [8]. Moreover, there are
data sets with similar characteristics in other areas such as
image classification, face recognition and text classification
[7]. In fact, data setswith large ratio features/samples are con-
stantly appearing, see for example, the recent data sets about
electricity load (140,256 features/370 samples) or gas sensor
array (120,432 features/58 samples) at UCImachine learning
repository [45]. Under this situation, feature selection meth-
ods whose objective is to select a minimal subset of features
according to some reasonable criteria become indispensable
to achieve a simpler data set. Then, this reduced data set is
a better representative of the whole population, and hence
it may lead to more concise results and better comprehen-
sibility [47]. For that reason, new feature selection methods
continue to emerge and the importance of these techniques
has not stopped growing.

2 Problems that feature selection has to deal with

In the previous section,we have pointed out the importance of
feature selection. In this section, we will present the inherent
difficulties that data may have due to the different methods of
acquisition. For the sake of brevity, we have not focused on
all issues; some not covered issues such as outliers, data com-
plexity or reduced sample size can be found in our book [13].

2.1 Class imbalance

Data are said to suffer the Class imbalance problemwhen the
class distributions are highly imbalanced. This occurs when
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a data set is dominated by a major class or classes which
have significantlymore instances than the other rare/minority
classes in the data.Often theminority class is very infrequent,
such as 1%of the data set. If one appliesmost traditional clas-
sifiers on the data set, they are likely to predict everything as
the majority class [46]. However, typically, people are more
interested in learning rare classes. For example, applications
such as medical diagnosis prediction of rare but important
diseases, such as cancer. Similar situations are observed in
other areas, such as detecting fraud in banking operations,
detecting network intrusions, anomaly detection and so on
[24]. Throughout the past years, in themachine learning com-
munity, many solutions have been proposed to deal with this
problem and they can be categorized into three major groups
: (i) data sampling; (ii) algorithm modification and (iii) cost-
sensitive learning [49].

Similarly to classic algorithms, learning algorithms
adapted to this kind of problem can benefit from an ade-
quate selection of features. Therefore, it is important to
select features that can capture the high skew in the class
distribution.

2.2 Data set shift

In real environments, samples may be collected under dif-
ferent conditions. For example, in an image classification
task, there may be differences in lighting conditions. This
sometimes makes the data set used for training the machine
learning method differ significantly from the test set. Many
machine learning competitions try to reflect this real situa-
tion. For example, in the KDDCup 99 competition task [39],
the aim was to build a network intrusion detector, a predic-
tive model capable of distinguishing between intrusions or
attacks and “good” normal connections. The test set provided
at this competition includes specific attack types not present
in the training data to illustrate a realistic situationwhere new
attacks continuously appear.

These data sets can suffer what is known as data set shift,
which is defined as “a challenging situation where the joint
distribution of inputs and outputs differs between the train-
ing and test stages” [58]. Moreno et al. [51] state that there
is no standard term to refer to this situation; therefore, there
are numerous terms in the bibliography, such as “concept
shift” or “concept drift”, “changes of classification”, “chang-
ing environments”, etc. These authors suggest to maintain
the term “data set shift” for “any situation in which train-
ing and test data follow distributions that are in some way
different”.

Numerous alternatives to address the “data set shift” prob-
lem can be found in [51,58]. However, it has to be noticed
that this problem may hinder the process of feature selection
and classification.

2.3 Incremental learning

Traditionally, machine learning consists of attempting to
learn concepts froma static data set. This data set is, therefore,
assumed to contain all information necessary to learn the rel-
evant concepts. This model, however, has proven unrealistic
for many real-world scenarios where the data flow continu-
ously or come in separated batches over time [34], such as
financial analysis, climate data analysis, bank fraud protec-
tion, traffic monitoring, predictive customer behavior, etc.

Learning under such conditions is known as incremental
learning. According to the definition byMuhlbaier et al. [52],
a learning algorithm is incremental if, for a sequence of train-
ing instances (potentially batches of instances), it satisfies the
following criteria:

– It produces a sequence of hypotheses such that the current
hypothesis describes all data seen thus far.

– It only depends on the current training data and a limited
number of previous hypotheses.

Given this definition, the stability–plasticity dilemma [28]
arises, i.e., it is necessary to design a learning system that
remains stable and unchanged to irrelevant events (e.g., out-
liers), while plastic (i.e., adaptive) to new, important data
(e.g., changes in concepts). Online learning algorithms are
those where the system is adapted immediately upon see-
ing the new instance and the instance is then immediately
discarded. The study of online learning algorithms is an
important domain in machine learning, one that has inter-
esting theoretical properties and practical applications [66].
This kind of learning has become a trending area in the past
few years since it allows to solve important problems such as
concept drift (see Sect. 2.2). This phenomenon happenswhen
the underlying data distribution changes, and these changes
make the model built on old data inconsistent with the new
data, and a regular updating of the model is necessary [70].
Applied to feature selection, a concept drift may cause that
the subset of relevant features changes over the time, so dif-
ferent sets of features become important for classification
and some totally new features with high predictive power
may appear.

2.4 Noisy data

It is almost inevitable that there is some noise in most of the
collected data, except in the most structured and synthetic
environments. This “imperfect data” can be due to many
sources, for instance, faulty measuring devices, transcription
errors, and transmission irregularities. However, the perfor-
mance of a learning algorithm may greatly depend on the
quality of the data used during the training phase, so a model
built from a noisy training set might be less accurate and less
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compact than one built form the noise-free version of the
same data set using an identical algorithm [17].

Imperfections in a data set can be dealt with in four broad
ways: (i) leave the noise in, (ii) data cleaning, i.e., filter the
noise out, (iii) data transformation, i.e., correct the noise and
(iv) data reduction, that is, to reduce the amount of data
by aggregating values or removing and clustering redundant
attributes [69].Anyof these techniques has its advantages and
disadvantages [13]. However, in the current context, where
the data sets are so large that they become unmanageable,
data reduction seems an appropriate strategy. And, among
the existing techniques, dimensionality reduction—and con-
sequently feature selection—is one of the most popular to
remove noisy (i.e., irrelevant) and redundant features. How-
ever, while feature selection has been the target of many
works, very little study has been done to systematically
address the issue of feature relevancy in the presence of noisy
data.

2.5 Budget constraints

Learning and decision-making under budget constraints in
uncertain and dynamic environments have gained attention
in several communities including machine learning, sig-
nal processing and information theory (see for example the
recent workshops on this topic at the International Confer-
ence on Machine Learning [36]). Learning problems under
budget constraints arise in a number of large-scale real-world
industrial applications ranging from medical diagnosis to
search engines and surveillance. In these applications budget
constraints arise as a result of limits on computational cost,
delay, throughput, power and monetary value. For instance,
in search engines CPU cost during test-time must be bud-
geted and accounted for.

Learning under test-time budgets departs from the tradi-
tional machine learning setting and introduces new exciting
challenges. For instance, features are accompanied by costs
[9] (for medical diagnosis, symptoms observed with the
naked eye are costless, but each diagnostic value extracted
by a clinical test is associated with its own cost and risk) and
their amortized sum is constrained at test-time. In other set-
tings, a systemmust maintain a throughput constraint to keep
pace with arriving traffic. All settings have in common that
they introduce a new tradeoff between accuracy and cost [9].
Studying this tradeoff between cost and performance is an
inherent challenge that should be investigated in a principled
fashion.

3 Foundations of feature selection

As discussed in the previous section, feature selection is an
area of growing interest in the field of machine learning;

therefore there aremany trending topics and open challenges.
But before exposing them,we briefly present the definition of
feature selection and the available methods for its successful
application.

3.1 What is feature selection?

The ultrahigh dimensionality of actual data sets not only
incurs unbearable memory requirements and high computa-
tional cost in training, but also deteriorates the generalization
ability of learning algorithms because of the “curse of dimen-
sionality” issue. This term, coined byRichardBellman in [4],
indicates the difficulty of optimization by exhaustive enumer-
ation on product spaces. Considering that a data set can be
represented by amatrix where the rows are the recorded sam-
ples and the columns are the features, to tackle the “curse
of dimensionality” issue, we can find “narrower” matrices
that in some sense are close to the original. Since these nar-
rower matrices have a smaller number of features, they can
be used much more efficiently than the original matrix. The
process of finding these narrowmatrices is called dimension-
ality reduction. There are two main techniques to achieve
this dimensionality reduction: feature extraction and feature
selection. Feature extraction consists of reducing the fea-
ture space by deriving new features transforming the existing
ones; these new features are intended to be informative and
non-redundant. On the other hand, feature selection (FS) is
defined as the process of detecting relevant features and dis-
carding irrelevant and redundant features with the goal of
obtaining a subset of features that accurately describe a given
problem with a minimum degradation of performance [29].
Both techniques are aimed at improving the performance of
machine learning methods by using simpler models, proba-
bly gaining training speed. However, the main advantages of
selection against extraction are [29] as follows:

– Data understanding, gainingknowledge about the process
and perhaps helping to visualize it.

– Data reduction, limiting storage requirements and per-
haps helping in reducing costs.

Therefore, feature selection is the elected technique in
those contexts where it is important to maintain the repre-
sentativeness of the problem or where the cost of acquisition
and/or maintenance of the features is high such as clinical
problems.

3.2 Classification of feature selection methods

From a functional point of view, FS methods can work in
two different ways [44]. Some methods assign weights to
each feature, in such a way that the order corresponding to
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their theoretical relevance is preserved. Methods that follow
this approach are known as continuous, individual evalua-
tion or ranking methods. The second set of methods are
known as binary or subset evaluation methods. First, they
produce candidate feature subsets using search strategies.
Then, the subsets are assessed by an evaluation function
which determines the final selected subset of features. More-
over, methods can be uni or multivariate, depending on
whether they consider each feature independently of the rest
or not.

From a structural point of view, FS methods can be clas-
sified in three major groups [29] (see Fig. 1). Filter methods
perform the feature selection step as pre-processing, before
the learning step. The filter is independent of the learn-
ing algorithm and relies on underlying attributes of data.
Wrapper methods use the learning algorithm as a subroutine,
measuring the usefulness of the features with the prediction
performance of the learning algorithm over a validation set.
In embedded methods, the FS process is specifically built
into the machine learning method, in such a way that the
search is guided by the learning process itself. Each of these
approaches has its advantages and disadvantages. The main
factors are the speed of computation and the probability of
overfitting. Filters are faster than embeddedmethods, and the
latter are faster than wrappers. Regarding overfitting, wrap-
pers aremore likely to overfit than embeddedmethods,which
are more likely to overfit than filter methods. In general,
filters are relatively inexpensive in terms of computational
efficiency.

Given the importance of FS, numerous FS methods exist.
Without being an exhaustive list, Table 2 illustrates some

of the best known methods (where n is the number of
samples and m is the number of features). Note that there
are no wrapper methods in this table because they are
formed by combining a search strategy with an induction
algorithm, so there are as many as combinations of both
techniques. In general, filters are relatively inexpensive in
terms of computational efficiency; they are simple and fast
and, therefore, most of the designed methods pertain to this
category.

4 Trending topics

As mentioned before, the advent of high-dimensional data
has brought unprecedented challenges to machine learning
researchers, making the learning task more complex and
computationally demanding. In this scenario, feature selec-
tion might play a crucial role and that is why its use as
preprocessing technique has been growing in importance
along the past years. In this section, we will discuss some
of the topics in which the use of feature selection is in the
spotlight.

4.1 Does the “best feature selection method” exist?

Feature selection has been an active and fruitful field of
research in machine learning. Its importance is indisputable
and it has proven effective in increasing predictive accu-
racy and reducing complexity of machine learning models.
For this reason, new feature selection methods have been
steadily appearing during the past few decades. The pro-

Fig. 1 Feature selection
techniques. a Filter. b
Embedded. c Wrapper

(a) (b) (c)

Table 2 Frequently used feature selection methods

Uni/multivariate Functional view Structural view Complexity

Chi-squared [48] Univariate Ranker Filter nm

F score (Fisher score) [21] Univariate Ranker Filter nm

Information gain [59] Univariate Ranker Filter nm

ReliefF [39] Multivariate Ranker Filter n2m

mRMR [55] Multivariate Ranker Filter nm2

SVM-RFE [30] Multivariate Ranker Embedded max(n,m)m2

CFS [31] Multivariate Subset Filter nm2

FCBF [43] Multivariate Subset Filter nmlogm

INTERACT [77] Multivariate Subset Filter nm2

Consistency [20] Multivariate Subset Filter nm2
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liferation of feature selection algorithms, however, has not
brought about a general methodology that allows for intel-
ligent selection from existing algorithms. There are some
rules of thumb, such as choosing filters when dealing with
extremely large data sets and using embedded and wrap-
pers when the computational burden is not an issue, but even
so some level of expertise is necessary to choose a specific
method. In the machine learning field, it is common to deal
with some factors that might affect the performance of a
feature selection method, such as the proportion of irrele-
vant features present in the data or the interaction between
attributes. Another important factor to take into account is the
noise in the data. In the current scenario of Big Data, huge
amounts of data are continuously generated, so it becomes
more and more difficult to rely on the correctness of the pro-
vided label assignments (a problem known as label-noise
[23]).

It was natural that numerous reviews of the existing fea-
ture selection methods appeared during the past few years.
A common problem, however, when testing the effective-
ness of feature selection methods is that it is not always
possible to know the relevant features a priori, so their perfor-
mance clearly rely on the performance of the learningmethod
used afterwards and it can vary notably from one method
to another. Apart from this, the performance of the differ-
ent methods can be measured using many different metrics
such as computer resources (memory and time), accuracy,
ratio of features selected, etc. So, for example, Molina et al.
[50] assessed the performance of fundamental feature selec-
tion algorithms in a controlled scenario, taking into account
data set relevance, irrelevance and redundancy. Saeys et al.
[63] created a basic taxonomy of classical feature selection
techniques, discussing their use in bioinformatics applica-
tions. Hua et al. [35] compared some basic feature selection
methods in settings involving thousands of features, using
both model-based synthetic data and real data. Brown et
al. [15] presented a unifying framework for information
theoretic feature selection, bringing almost two decades of
research into heuristic filter criteria under a single theoreti-
cal umbrella. Along the same line, Vergara and Estévez [72]
presented a review of the state of the art of information-
theoretic feature selectionmethods. Finally, García et al. [25]
dedicated a chapter in their data preprocessing book to a dis-
cussion of feature selection and an analysis of itsmain aspects
and methods.

In addition to these works, we have performed our own
review [6], in which we evaluated the performance of
several state-of-the-art feature selection algorithms in an
artificial controlled scenario, checking their efficiency in
tackling problems such as redundancy between features, non-
linearity, noise in inputs and in the class label and a higher
number of features than samples (as happens with DNA
microarray classification).

The conclusion of these works is that existing fea-
ture selection methods have their merits and demerits and,
although some suggestions are made to help the user, there
is no “best” feature selection method in general.

4.2 Can feature selection be helpful in real applications?

Feature selection may be very useful in real domains, since
it allows the storage costs to decrease, the performance of a
classifier to improve and a good understanding of the model
to be obtained. In this section, we will comment two case
studies in which we obtained promising results thanks to the
application of feature selection.

4.2.1 Tear film lipid layer classification

Evaporative dry eye (EDE) is a symptomatic disease which
affects a wide range of population and has a negative impact
on their daily activities, such as driving or working with
computers. Its diagnosis can be achieved by several clinical
tests, one of which is the analysis of the interference pattern.
A methodology for automatic tear film lipid layer (TFLL)
classification was developed in [62], based on color texture
analysis. However, the best accuracy results were obtained at
the expense of a too long processing time (38 s) becausemany
features had to be computed. This fact makes this method-
ology unfeasible for practical applications and prevents its
clinical use. Reducing processing time is a critical issue in
this application which should work in real-time to be used in
the clinical routine. Therefore, we decided to apply feature
selection methods in an attempt to decrease the number of
features and, consequently, the computational time without
compromising the classification performance.

The results of our study [61] after applying the CFS filter
were able to surpass previous results in terms or processing
time whilst maintaining classification accuracy. In clinical
terms, the manual process done by experts can be automated
with the benefits of being faster and unaffected by subjective
factors, with maximum accuracy over 97 % and processing
time under 1 s.

4.2.2 K-complex classification

K-complex is one of the key features that contributes to
sleep stages assessment. Unfortunately, their visual identi-
fication is very time-consuming and rather dependent on the
knowledge and experience of the clinician since it cannot be
performed on regular basis. This is the reason why automatic
identification ofK-complexes is of great interest. For this rea-
son, in [33] we presented a methodology for the automatic
classification of K-complexes, making use of three feature
selection filters, and five different classification algorithms.
Our objective was to achieve a low false-positive rate (very
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important in this scenario) whilst maintaining the accuracy.
When feature selectionwas applied, the results improved sig-
nificantly for all the classifiers. It is remarkable the 91.40 %
of classification accuracy was obtained by the CFS filter,
reducing in 64 % the number of features.

4.3 Is feature selection paramount when dealing with
microarray data?

Over the past two decades, the advent of DNA microarray
data sets has stimulated a new line of research in bioinfor-
matics and in machine learning. This type of data is used to
collect information from tissue and cell samples regarding
gene expression differences that could be useful for diag-
nosing disease or for distinguishing a specific tumor type.
Although there are usually very few samples (often fewer
than 100 patients) for training and testing, the number of
features in the raw data ranges from 6000 to 60,000, since
it measures the gene expression en masse, and converts this
problem to the classical example of reduced sample size.
A typical classification task is to separate healthy patients
from cancer patients based on their gene expression “profile”
(binary approach). There are also data sets where the goal is
to distinguish between different types of tumors (multiclass
approach), making the task even more complicated.

Since the introduction of this type of data, feature selection
has been considered a de facto standard in thefield, and ahuge
number of feature selection methods were utilized trying to
reduce the input dimensionality while improving the classifi-
cation performance. In [8], we have reviewed the up-to-date
contributions of feature selection research applied to the field
of DNA microarray data analysis, as well as analysing the
intrinsic difficulties of this type of data (such as class imbal-
ance, data set shift or the presence of outliers). In addition
to this, we provided a practical evaluation of several well-
known feature selection methods on a suite of nine widely
used binary data sets. The conclusions of this comprehensive
study were

– Support vector machines showed their superiority over
other classifiers in this domain, as previously noticed by
Gonzalez [27]. On the other hand, decision trees such as
C4.5 may be affected by their embedded feature selec-
tion, in some cases leading to an extremely reduced set of
features which can degrade the classification accuracy.

– Regarding the different feature selection methods tested,
the filters that returned a subset of features showed an
outstanding behavior, especially CFS and INTERACT.
Notice that those methods which return a ranker require
a threshold to decide the number of features to keep and,
since this number has to be set a priori, it may prove too
small or too large, the main disadvantage of using these
types of methods.

To sum up, the conclusions of this work were that since
the infancy of microarray data classification, feature selec-
tion has become an imperative preprocessing step, not only
to improve the classification performance but also to help
biologists identify the underlying mechanism that relates
gene expression to diseases. Due to the high computational
resources that these data sets demand,wrapper and embedded
methods have beenmostly avoided, in favor of less expensive
approaches such as filters.

Regarding the opportunities for future feature selection
research in this topic, there tends to be a focus on new com-
binations such as hybrid or ensemble methods. These types
of methods are able to enhance the robustness of the final
subset of selected features. Another interesting line of future
research might be to distribute the microarray data vertically
(i.e., by features) to reduce the heavy computational burden
when applying wrapper methods.

4.4 The other side of the coin: feature selection for
problems with large number of samples

It seems natural to believe that feature selection ismore effec-
tive when the number of features is extremely high, but the
truth is that it can be also helpful even when the number
of features is relatively small but the number of samples is
high, since it contributes to reduce the general dimension of
the data.

An example of this type of problem can be the classifica-
tion of intrusion detection systems; in particular, the KDD
(Knowledge Discovery and Data Mining Tools Conference)
Cup 99 data set [38] is a well-known benchmark for machine
learning researchers. This data set contains five million sam-
ples represented by 41 features, with the aim of categorizing
each connection in one of the following classes: normal con-
nection (around 20 % of the connections), Denial of Service
(DoS) attacks, Probe attacks, Remote-to-Local (R2L) attacks
and User-to-Root (U2R) attacks. Usually, people deal with
a smaller subset provided in the competition as training set
(494 021 instances) and a test set containing 331 029 patterns.

Although the number of features in this data set cannot be
considered extremely high (41), this data set is a good candi-
date for feature selection because of the characteristics of its
input attributes. There are two features that are constant and
some that are almost constant. Apart from constant features,
theKDDCup99 data set has continuous features that are very
skewed and for which a possible solution could be discretiz-
ing numeric data. So, in a previous work [10], we proposed
a three-step methodology which consisted of (i) applying a
discretizer method; (ii) after discretization, feature selection
was applied using filters; and (iii) finally, a classifier was
applied.

Table 3 shows the best results of our approach (two first
columns) compared with other results in the literature as well
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Table 3 Test results on KDD Cup 99 data set, comparison with other
authors

Method Error TP FP

Disc+Cons+C4.5 5.14 94.08 1.92

Disc+INT+C4.5 6.74 91.73 0.44

KDD Winner 6.70 91.80 0.55

5FNs_poly 6.48 92.45 0.86

5FNs_fourier 6.69 92.72 0.75

5FNs_exp 6.70 92.75 0.75

SVM Linear 6.89 91.83 1.62

SVM 2poly 6.95 91.79 1.74

SVM 3poly 7.10 91.67 1.94

SVM RBF 6.86 91.83 1.43

ANOVA ens. 6.88 91.67 0.90

Pocket 2cl. 6.90 91.80 1.52

Pocket mcl. 6.93 91.86 1.96

Best performance values marked in bold font

as with the winner of the KDD Cup 99 competition. Details
of the experimental settings can be consulted in [10,13].

As can be seen in Table 3, the combination Disc+Cons+
C4.5 obtains the best error and true positive rate employ-
ing only 6 features (14 % of total). Nevertheless, this
improvement has a negative impact on the false-positive
rate, although it is not the worst value in the table (SVM
3poly and Pocket mcl). The lowest FP rate is achieved using
Disc+INTERACT+C4.5. It can be verified that these results
outperform the results achieved by the KDD Winner. Error
and TP rate are very similar and, in addition to this, a decre-
ment in the FP rate is obtained using this combination. It
must be emphasized that the FP rate is a measure of immense
importance in determining the quality of an intrusion detec-
tion system.Moreover, this combination uses only 7 features,
while the KDD winner employs the whole feature set (41).
Therefore, a better result is obtained with a simpler model
that only needs 17 % of the total features, enhancing the
appropriateness of feature selection in this kind of data sets.

So far, this paper was devoted to studying feature selection
methods and their adequacy for being applied to data of high
dimensionality. However, there are still an important number
of emerging challenges that researchers need to deal with and
that will be outlined in the next section.

5 Open challenges

Asmentioned already in the Introduction section, large-scale
data are getting common nowadays in most contexts, due to
the new possibilities available in sensoring and computing
technologies. The so-called big-dimensional data might thus
be created by handheld devices, social networks, internet of
things, multimedia, and many other new applications with

the well-known characteristics of volume, velocity and vari-
ety. The Terabyte (1012 bytes) is being gradually seen as
“medium size”, and now the usual measures are in PetaByte
(1015 bytes) and progressively turning to Zettabytes (1021

bytes). Furthermore, problems like incomplete and inconsis-
tent data, present already in small and medium data sets, will
appear even more frequently, because data are obtained from
different sensors and systems. The impact of noise, outliers,
incomplete and inconsistent data, as well as redundant data
(see Sect. 1.2), will be increased. Therefore, how to mitigate
their impact will be an open issue. Consequently, feature
selection methods probably will become one of the must-do
preprocessing steps in handling these data sets to be able to
obtain accurate, efficient and interpretable learning models.
Ironically, though, most feature selection algorithms are not
applicable in these high-dimensional data sets, due to their
excessive temporal requirements. Thus, there are some open
issues on the field:
– Using efficient methods to reduce the computational time
will play an important role. Regarding this challenge, one
of the paths that have been addressed already by a few
papers is to consider parallel computing environments
to re-implement feature selection algorithms [56,60,68].
Other authors, however, had tried to comply with the
extreme dimensions of the new data sets using on-line
or incremental feature selection methods [73,74]. The
latter could also be used for those cases in which non-
stationary distributions are confronted, also an important
new line of improvement for FS methods. Some other
works [3,5,67,76] address the distribution of the data sets
both vertically (features) and/or horizontally (samples),
as well as the methods that can be used to join the partial
results obtained. In this way, an important reduction in
the computational time is achieved, and more important,
data sizes that were previously unapproachable become
feasible,while accuracy ismaintained and, in some cases,
even improved.

– Scalability and stability of FS methods are other aspects
that deserve deeper research. In large-scale problems, not
only accuracy is important, but also a tradeoff between
the latter and the computational complexity of the meth-
ods employed should be taken into account. In this sense,
feature selection algorithms should be studied to reflect
their sensitivity to variations in the training sets (stabil-
ity). Only a few studies are available in this respect [15].
Scalability, that is, studying the behavior of the different
algorithms when data set sizes increase, is also of great
importance. In this case, univariate methods are gener-
ally more scalable, but as they do not take into account
feature dependencies, the performance results of the sub-
sequent machine learning algorithms are lower. Thus, if
accuracy is to be preferred over temporal constraints,
multivariate techniques are to be used [57]. Ensemble
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feature selection is another relatively new approach that
has appeared from the rising interest from various appli-
cation fields, most notably from bioinformatics, due, as
mentioned before, to the very high dimensionality of
the data. In [1,11,12,40,63], the different possibilities
of this approach for improving accuracy and stability
are emphasized. Ensemble feature selection applies fea-
ture selection methods multiple times and combines the
results into one decision; thus the final feature list should
be more stable. Ensemble FS is similar to ensemble
classification, and normally the procedures are either
emphasizing data diversity (using the samemethods over
different samples of the data set), functional diversity
(using different methods over the same data set), or in a
hybrid manner. In all cases, the stability of the results is
higher than in each of the methods individually [64], but
other interesting advantages are that the performance is
comparable, if not better, than that of the methods alone,
while the non experienced users are exonerated from the
task of selecting the adequate feature selection method
for each problem at hand.

– Most of the successful stories of feature selection are
related to classification problems, and in a lesser extent
to regression. However, the application of FS to other
areas is scarcely studied. In [53], the organizers of aNIPS
workshop, Caruana and Joachims, stated that it is of great
interest to explore the supervised learning problems that
go beyond the standard value prediction model, such as
those in which either the learning goal or the input to the
learner is more complex than that in classification and
regression. Some of these problems are ordinal regres-
sion, graph learning, learning partial or complete ranking
preferences, one-class or anomaly detection problems,
etc. Despite the time that has passed since that work-
shop, and although some new learning algorithms of the
types mentioned were developed, specific feature selec-
tion aimed at dealing with their characteristics that could
enhance their generalization capabilities are very few
[2,26,37,42]. One interesting line of research could be
not only a deeper study for designing new powerful FS
algorithms for these problems, but also how to manage
them in distributed scenarios.

– Better techniques for visualizationof the features involved
in a problem and their relations is undoubtedly another
of the most interesting latest challenges. The availability
of tools of this type will allow for better understanding of
the problems, accessing insight of the data available [7].
However, although visualizations are allowed for several
feature extraction techniques [22,65], that is not the case
for feature selection methods that are preferably used
when model interpretability is necessary, as the former
transform the original features into a new set of features,
while the lattermaintain the original features, eliminating

the redundant and irrelevant ones. Defiance is allowing
useful, user-friendly visualization of results, as it is for-
mulated for example, in several of theH2020 calls related
to Big Data. Consequently, two areas that have not inter-
acted frequently, such as feature selection methods and
visualization techniques, with a widespread use in areas
of Business Intelligence, should find an intersection to
follow a common route that perhaps will take a leading
role in the present real-world high-dimensional scenar-
ios.

– Finally, the emergence of Big Data has also had a great
influence on the fields of computer vision and multi-
media analysis. A new term has been coined, named
“Visual BigData”,which is devoted to visual information
such as image and videos. In this scenario, dimension-
ality reduction techniques also play a important role, as
demonstrated by the recent special issue in Neurocom-
puting on “Dimensionality reduction for visual BigData”
[54]. Papers in this special issue include subspace learn-
ing for visual BigData, non-negativematrix factorization
for visual Big Data, sparse representation for visual Big
Data, feature extraction and selection for visual BigData,
metric learning for visual Big Data and applications of
dimensionality reduction for visual Big Data. As can
be seen, researchers in both communities (visual Big
Data anddimensionality reduction) can benefit fromhuge
opportunities as well as new challenges.
In conclusion, although feature selection is a field of

machine learning that has been applied for decades, it
is still in the spotlight due to the advent of Big Data
and the appearance of new scenarios—not only related
with massive volumes or stream data, but also with other
aspects such as unbalanced classes, uncertain and partial
labels, non-stationary distributions, etc.—which open new
lines of research in which the use of feature selection
is, perhaps, more necessary than ever. This new scenario
offers both opportunities and challenges to machine learning
researchers, who should embrace this opportunity to launch
new lines of research.
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